| author | huffman | 
| Thu, 17 Jan 2008 21:44:19 +0100 | |
| changeset 25922 | cb04d05e95fb | 
| parent 25904 | 8161f137b0e9 | 
| child 25925 | 3dc4acca4388 | 
| permissions | -rw-r--r-- | 
| 25904 | 1  | 
(* Title: HOLCF/CompactBasis.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Brian Huffman  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {* Compact bases of domains *}
 | 
|
7  | 
||
8  | 
theory CompactBasis  | 
|
9  | 
imports Bifinite SetPcpo  | 
|
10  | 
begin  | 
|
11  | 
||
12  | 
subsection {* Ideals over a preorder *}
 | 
|
13  | 
||
14  | 
locale preorder =  | 
|
15  | 
fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
16  | 
assumes refl: "r x x"  | 
|
17  | 
assumes trans: "\<lbrakk>r x y; r y z\<rbrakk> \<Longrightarrow> r x z"  | 
|
18  | 
begin  | 
|
19  | 
||
20  | 
definition  | 
|
21  | 
ideal :: "'a set \<Rightarrow> bool" where  | 
|
22  | 
"ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. r x z \<and> r y z) \<and>  | 
|
23  | 
(\<forall>x y. r x y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))"  | 
|
24  | 
||
25  | 
lemma idealI:  | 
|
26  | 
assumes "\<exists>x. x \<in> A"  | 
|
27  | 
assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. r x z \<and> r y z"  | 
|
28  | 
assumes "\<And>x y. \<lbrakk>r x y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"  | 
|
29  | 
shows "ideal A"  | 
|
30  | 
unfolding ideal_def using prems by fast  | 
|
31  | 
||
32  | 
lemma idealD1:  | 
|
33  | 
"ideal A \<Longrightarrow> \<exists>x. x \<in> A"  | 
|
34  | 
unfolding ideal_def by fast  | 
|
35  | 
||
36  | 
lemma idealD2:  | 
|
37  | 
"\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. r x z \<and> r y z"  | 
|
38  | 
unfolding ideal_def by fast  | 
|
39  | 
||
40  | 
lemma idealD3:  | 
|
41  | 
"\<lbrakk>ideal A; r x y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A"  | 
|
42  | 
unfolding ideal_def by fast  | 
|
43  | 
||
44  | 
lemma ideal_directed_finite:  | 
|
45  | 
assumes A: "ideal A"  | 
|
46  | 
shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. r x z"  | 
|
47  | 
apply (induct U set: finite)  | 
|
48  | 
apply (simp add: idealD1 [OF A])  | 
|
49  | 
apply (simp, clarify, rename_tac y)  | 
|
50  | 
apply (drule (1) idealD2 [OF A])  | 
|
51  | 
apply (clarify, erule_tac x=z in rev_bexI)  | 
|
52  | 
apply (fast intro: trans)  | 
|
53  | 
done  | 
|
54  | 
||
55  | 
lemma ideal_principal: "ideal {x. r x z}"
 | 
|
56  | 
apply (rule idealI)  | 
|
57  | 
apply (rule_tac x=z in exI)  | 
|
58  | 
apply (fast intro: refl)  | 
|
59  | 
apply (rule_tac x=z in bexI, fast)  | 
|
60  | 
apply (fast intro: refl)  | 
|
61  | 
apply (fast intro: trans)  | 
|
62  | 
done  | 
|
63  | 
||
64  | 
lemma directed_image_ideal:  | 
|
65  | 
assumes A: "ideal A"  | 
|
66  | 
assumes f: "\<And>x y. r x y \<Longrightarrow> f x \<sqsubseteq> f y"  | 
|
67  | 
shows "directed (f ` A)"  | 
|
68  | 
apply (rule directedI)  | 
|
69  | 
apply (cut_tac idealD1 [OF A], fast)  | 
|
70  | 
apply (clarify, rename_tac a b)  | 
|
71  | 
apply (drule (1) idealD2 [OF A])  | 
|
72  | 
apply (clarify, rename_tac c)  | 
|
73  | 
apply (rule_tac x="f c" in rev_bexI)  | 
|
74  | 
apply (erule imageI)  | 
|
75  | 
apply (simp add: f)  | 
|
76  | 
done  | 
|
77  | 
||
78  | 
lemma adm_ideal: "adm (\<lambda>A. ideal A)"  | 
|
79  | 
unfolding ideal_def by (intro adm_lemmas adm_set_lemmas)  | 
|
80  | 
||
81  | 
end  | 
|
82  | 
||
83  | 
subsection {* Defining functions in terms of basis elements *}
 | 
|
84  | 
||
85  | 
lemma (in preorder) lub_image_principal:  | 
|
86  | 
assumes f: "\<And>x y. r x y \<Longrightarrow> f x \<sqsubseteq> f y"  | 
|
87  | 
  shows "(\<Squnion>x\<in>{x. r x y}. f x) = f y"
 | 
|
88  | 
apply (rule thelubI)  | 
|
89  | 
apply (rule is_lub_maximal)  | 
|
90  | 
apply (rule ub_imageI)  | 
|
91  | 
apply (simp add: f)  | 
|
92  | 
apply (rule imageI)  | 
|
93  | 
apply (simp add: refl)  | 
|
94  | 
done  | 
|
95  | 
||
96  | 
lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u"  | 
|
97  | 
apply (drule (1) directed_finiteD, rule subset_refl)  | 
|
98  | 
apply (erule bexE)  | 
|
99  | 
apply (rule_tac x=z in exI)  | 
|
100  | 
apply (erule (1) is_lub_maximal)  | 
|
101  | 
done  | 
|
102  | 
||
103  | 
lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S"  | 
|
104  | 
apply (erule exE, drule lubI)  | 
|
105  | 
apply (drule is_lubD1)  | 
|
106  | 
apply (erule (1) is_ubD)  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x"  | 
|
110  | 
by (erule exE, drule lubI, erule is_lub_lub)  | 
|
111  | 
||
112  | 
locale bifinite_basis = preorder +  | 
|
113  | 
fixes principal :: "'a::type \<Rightarrow> 'b::cpo"  | 
|
114  | 
fixes approxes :: "'b::cpo \<Rightarrow> 'a::type set"  | 
|
115  | 
assumes ideal_approxes: "\<And>x. preorder.ideal r (approxes x)"  | 
|
116  | 
assumes cont_approxes: "cont approxes"  | 
|
117  | 
  assumes approxes_principal: "\<And>a. approxes (principal a) = {b. r b a}"
 | 
|
118  | 
assumes subset_approxesD: "\<And>x y. approxes x \<subseteq> approxes y \<Longrightarrow> x \<sqsubseteq> y"  | 
|
119  | 
||
120  | 
fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a"  | 
|
121  | 
assumes take_less: "r (take n a) a"  | 
|
122  | 
assumes take_take: "take n (take n a) = take n a"  | 
|
123  | 
assumes take_mono: "r a b \<Longrightarrow> r (take n a) (take n b)"  | 
|
124  | 
assumes take_chain: "r (take n a) (take (Suc n) a)"  | 
|
125  | 
assumes finite_range_take: "finite (range (take n))"  | 
|
126  | 
assumes take_covers: "\<exists>n. take n a = a"  | 
|
127  | 
begin  | 
|
128  | 
||
129  | 
lemma finite_take_approxes: "finite (take n ` approxes x)"  | 
|
130  | 
by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take])  | 
|
131  | 
||
132  | 
lemma basis_fun_lemma0:  | 
|
133  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
134  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
135  | 
shows "\<exists>u. f ` take i ` approxes x <<| u"  | 
|
136  | 
apply (rule finite_directed_has_lub)  | 
|
137  | 
apply (rule finite_imageI)  | 
|
138  | 
apply (rule finite_take_approxes)  | 
|
139  | 
apply (subst image_image)  | 
|
140  | 
apply (rule directed_image_ideal)  | 
|
141  | 
apply (rule ideal_approxes)  | 
|
142  | 
apply (rule f_mono)  | 
|
143  | 
apply (erule take_mono)  | 
|
144  | 
done  | 
|
145  | 
||
146  | 
lemma basis_fun_lemma1:  | 
|
147  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
148  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
149  | 
shows "chain (\<lambda>i. lub (f ` take i ` approxes x))"  | 
|
150  | 
apply (rule chainI)  | 
|
151  | 
apply (rule is_lub_thelub0)  | 
|
152  | 
apply (rule basis_fun_lemma0, erule f_mono)  | 
|
153  | 
apply (rule is_ubI, clarsimp, rename_tac a)  | 
|
154  | 
apply (rule trans_less [OF f_mono [OF take_chain]])  | 
|
155  | 
apply (rule is_ub_thelub0)  | 
|
156  | 
apply (rule basis_fun_lemma0, erule f_mono)  | 
|
157  | 
apply simp  | 
|
158  | 
done  | 
|
159  | 
||
160  | 
lemma basis_fun_lemma2:  | 
|
161  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
162  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
163  | 
shows "f ` approxes x <<| (\<Squnion>i. lub (f ` take i ` approxes x))"  | 
|
164  | 
apply (rule is_lubI)  | 
|
165  | 
apply (rule ub_imageI, rename_tac a)  | 
|
166  | 
apply (cut_tac a=a in take_covers, erule exE, rename_tac i)  | 
|
167  | 
apply (erule subst)  | 
|
168  | 
apply (rule rev_trans_less)  | 
|
169  | 
apply (rule_tac x=i in is_ub_thelub)  | 
|
170  | 
apply (rule basis_fun_lemma1, erule f_mono)  | 
|
171  | 
apply (rule is_ub_thelub0)  | 
|
172  | 
apply (rule basis_fun_lemma0, erule f_mono)  | 
|
173  | 
apply simp  | 
|
174  | 
apply (rule is_lub_thelub [OF _ ub_rangeI])  | 
|
175  | 
apply (rule basis_fun_lemma1, erule f_mono)  | 
|
176  | 
apply (rule is_lub_thelub0)  | 
|
177  | 
apply (rule basis_fun_lemma0, erule f_mono)  | 
|
178  | 
apply (rule is_ubI, clarsimp, rename_tac a)  | 
|
179  | 
apply (rule trans_less [OF f_mono [OF take_less]])  | 
|
180  | 
apply (erule (1) ub_imageD)  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
lemma basis_fun_lemma:  | 
|
184  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
185  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
186  | 
shows "\<exists>u. f ` approxes x <<| u"  | 
|
187  | 
by (rule exI, rule basis_fun_lemma2, erule f_mono)  | 
|
188  | 
||
189  | 
lemma approxes_mono: "x \<sqsubseteq> y \<Longrightarrow> approxes x \<subseteq> approxes y"  | 
|
190  | 
apply (drule cont_approxes [THEN cont2mono, THEN monofunE])  | 
|
191  | 
apply (simp add: set_cpo_simps)  | 
|
192  | 
done  | 
|
193  | 
||
194  | 
lemma approxes_contlub:  | 
|
195  | 
"chain Y \<Longrightarrow> approxes (\<Squnion>i. Y i) = (\<Union>i. approxes (Y i))"  | 
|
196  | 
by (simp add: cont2contlubE [OF cont_approxes] set_cpo_simps)  | 
|
197  | 
||
198  | 
lemma less_def: "(x \<sqsubseteq> y) = (approxes x \<subseteq> approxes y)"  | 
|
199  | 
by (rule iffI [OF approxes_mono subset_approxesD])  | 
|
200  | 
||
201  | 
lemma approxes_eq: "approxes x = {a. principal a \<sqsubseteq> x}"
 | 
|
202  | 
unfolding less_def approxes_principal  | 
|
203  | 
apply safe  | 
|
204  | 
apply (erule (1) idealD3 [OF ideal_approxes])  | 
|
205  | 
apply (erule subsetD, simp add: refl)  | 
|
206  | 
done  | 
|
207  | 
||
208  | 
lemma mem_approxes_iff: "(a \<in> approxes x) = (principal a \<sqsubseteq> x)"  | 
|
209  | 
by (simp add: approxes_eq)  | 
|
210  | 
||
211  | 
lemma principal_less_iff: "(principal a \<sqsubseteq> x) = (a \<in> approxes x)"  | 
|
212  | 
by (simp add: approxes_eq)  | 
|
213  | 
||
214  | 
lemma approxesD: "a \<in> approxes x \<Longrightarrow> principal a \<sqsubseteq> x"  | 
|
215  | 
by (simp add: approxes_eq)  | 
|
216  | 
||
217  | 
lemma principal_mono: "r a b \<Longrightarrow> principal a \<sqsubseteq> principal b"  | 
|
218  | 
by (rule approxesD, simp add: approxes_principal)  | 
|
219  | 
||
220  | 
lemma lessI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u"  | 
|
221  | 
unfolding principal_less_iff  | 
|
222  | 
by (simp add: less_def subset_def)  | 
|
223  | 
||
224  | 
lemma lub_principal_approxes: "principal ` approxes x <<| x"  | 
|
225  | 
apply (rule is_lubI)  | 
|
226  | 
apply (rule ub_imageI)  | 
|
227  | 
apply (erule approxesD)  | 
|
228  | 
apply (subst less_def)  | 
|
229  | 
apply (rule subsetI)  | 
|
230  | 
apply (drule (1) ub_imageD)  | 
|
231  | 
apply (simp add: approxes_eq)  | 
|
232  | 
done  | 
|
233  | 
||
234  | 
definition  | 
|
235  | 
  basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
 | 
|
236  | 
"basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` approxes x)))"  | 
|
237  | 
||
238  | 
lemma basis_fun_beta:  | 
|
239  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
240  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
241  | 
shows "basis_fun f\<cdot>x = lub (f ` approxes x)"  | 
|
242  | 
unfolding basis_fun_def  | 
|
243  | 
proof (rule beta_cfun)  | 
|
244  | 
have lub: "\<And>x. \<exists>u. f ` approxes x <<| u"  | 
|
245  | 
using f_mono by (rule basis_fun_lemma)  | 
|
246  | 
show cont: "cont (\<lambda>x. lub (f ` approxes x))"  | 
|
247  | 
apply (rule contI2)  | 
|
248  | 
apply (rule monofunI)  | 
|
249  | 
apply (rule is_lub_thelub0 [OF lub ub_imageI])  | 
|
250  | 
apply (rule is_ub_thelub0 [OF lub imageI])  | 
|
251  | 
apply (erule (1) subsetD [OF approxes_mono])  | 
|
252  | 
apply (rule is_lub_thelub0 [OF lub ub_imageI])  | 
|
253  | 
apply (simp add: approxes_contlub, clarify)  | 
|
254  | 
apply (erule rev_trans_less [OF is_ub_thelub])  | 
|
255  | 
apply (erule is_ub_thelub0 [OF lub imageI])  | 
|
256  | 
done  | 
|
257  | 
qed  | 
|
258  | 
||
259  | 
lemma basis_fun_principal:  | 
|
260  | 
fixes f :: "'a::type \<Rightarrow> 'c::cpo"  | 
|
261  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
262  | 
shows "basis_fun f\<cdot>(principal a) = f a"  | 
|
263  | 
apply (subst basis_fun_beta, erule f_mono)  | 
|
264  | 
apply (subst approxes_principal)  | 
|
265  | 
apply (rule lub_image_principal, erule f_mono)  | 
|
266  | 
done  | 
|
267  | 
||
268  | 
lemma basis_fun_mono:  | 
|
269  | 
assumes f_mono: "\<And>a b. r a b \<Longrightarrow> f a \<sqsubseteq> f b"  | 
|
270  | 
assumes g_mono: "\<And>a b. r a b \<Longrightarrow> g a \<sqsubseteq> g b"  | 
|
271  | 
assumes less: "\<And>a. f a \<sqsubseteq> g a"  | 
|
272  | 
shows "basis_fun f \<sqsubseteq> basis_fun g"  | 
|
273  | 
apply (rule less_cfun_ext)  | 
|
274  | 
apply (simp only: basis_fun_beta f_mono g_mono)  | 
|
275  | 
apply (rule is_lub_thelub0)  | 
|
276  | 
apply (rule basis_fun_lemma, erule f_mono)  | 
|
277  | 
apply (rule ub_imageI, rename_tac a)  | 
|
278  | 
apply (rule trans_less [OF less])  | 
|
279  | 
apply (rule is_ub_thelub0)  | 
|
280  | 
apply (rule basis_fun_lemma, erule g_mono)  | 
|
281  | 
apply (erule imageI)  | 
|
282  | 
done  | 
|
283  | 
||
284  | 
lemma compact_principal: "compact (principal a)"  | 
|
285  | 
by (rule compactI2, simp add: principal_less_iff approxes_contlub)  | 
|
286  | 
||
287  | 
lemma chain_basis_fun_take:  | 
|
288  | 
"chain (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))"  | 
|
289  | 
apply (rule chainI)  | 
|
290  | 
apply (rule basis_fun_mono)  | 
|
291  | 
apply (erule principal_mono [OF take_mono])  | 
|
292  | 
apply (erule principal_mono [OF take_mono])  | 
|
293  | 
apply (rule principal_mono [OF take_chain])  | 
|
294  | 
done  | 
|
295  | 
||
296  | 
lemma lub_basis_fun_take:  | 
|
297  | 
"(\<Squnion>i. basis_fun (\<lambda>a. principal (take i a))\<cdot>x) = x"  | 
|
298  | 
apply (simp add: basis_fun_beta principal_mono take_mono)  | 
|
299  | 
apply (subst image_image [where f=principal, symmetric])  | 
|
300  | 
apply (rule unique_lub [OF _ lub_principal_approxes])  | 
|
301  | 
apply (rule basis_fun_lemma2, erule principal_mono)  | 
|
302  | 
done  | 
|
303  | 
||
304  | 
lemma finite_directed_contains_lub:  | 
|
305  | 
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u"  | 
|
306  | 
apply (drule (1) directed_finiteD, rule subset_refl)  | 
|
307  | 
apply (erule bexE)  | 
|
308  | 
apply (rule rev_bexI, assumption)  | 
|
309  | 
apply (erule (1) is_lub_maximal)  | 
|
310  | 
done  | 
|
311  | 
||
312  | 
lemma lub_finite_directed_in_self:  | 
|
313  | 
"\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S"  | 
|
314  | 
apply (drule (1) directed_finiteD, rule subset_refl)  | 
|
315  | 
apply (erule bexE)  | 
|
316  | 
apply (drule (1) is_lub_maximal)  | 
|
317  | 
apply (drule thelubI)  | 
|
318  | 
apply simp  | 
|
319  | 
done  | 
|
320  | 
||
321  | 
lemma basis_fun_take_eq_principal:  | 
|
322  | 
"\<exists>a\<in>approxes x.  | 
|
323  | 
basis_fun (\<lambda>a. principal (take i a))\<cdot>x = principal (take i a)"  | 
|
324  | 
apply (simp add: basis_fun_beta principal_mono take_mono)  | 
|
325  | 
apply (subst image_image [where f=principal, symmetric])  | 
|
326  | 
apply (subgoal_tac "finite (principal ` take i ` approxes x)")  | 
|
327  | 
apply (subgoal_tac "directed (principal ` take i ` approxes x)")  | 
|
328  | 
apply (drule (1) lub_finite_directed_in_self, fast)  | 
|
329  | 
apply (subst image_image)  | 
|
330  | 
apply (rule directed_image_ideal)  | 
|
331  | 
apply (rule ideal_approxes)  | 
|
332  | 
apply (erule principal_mono [OF take_mono])  | 
|
333  | 
apply (rule finite_imageI)  | 
|
334  | 
apply (rule finite_take_approxes)  | 
|
335  | 
done  | 
|
336  | 
||
337  | 
lemma principal_induct:  | 
|
338  | 
assumes adm: "adm P"  | 
|
339  | 
assumes P: "\<And>a. P (principal a)"  | 
|
340  | 
shows "P x"  | 
|
341  | 
apply (subgoal_tac "P (\<Squnion>i. basis_fun (\<lambda>a. principal (take i a))\<cdot>x)")  | 
|
342  | 
apply (simp add: lub_basis_fun_take)  | 
|
343  | 
apply (rule admD [rule_format, OF adm])  | 
|
344  | 
apply (simp add: chain_basis_fun_take)  | 
|
345  | 
apply (cut_tac x=x and i=i in basis_fun_take_eq_principal)  | 
|
346  | 
apply (clarify, simp add: P)  | 
|
347  | 
done  | 
|
348  | 
||
349  | 
lemma finite_fixes_basis_fun_take:  | 
|
350  | 
  "finite {x. basis_fun (\<lambda>a. principal (take i a))\<cdot>x = x}" (is "finite ?S")
 | 
|
351  | 
apply (subgoal_tac "?S \<subseteq> principal ` range (take i)")  | 
|
352  | 
apply (erule finite_subset)  | 
|
353  | 
apply (rule finite_imageI)  | 
|
354  | 
apply (rule finite_range_take)  | 
|
355  | 
apply (clarify, erule subst)  | 
|
356  | 
apply (cut_tac x=x and i=i in basis_fun_take_eq_principal)  | 
|
357  | 
apply fast  | 
|
358  | 
done  | 
|
359  | 
||
360  | 
end  | 
|
361  | 
||
362  | 
||
363  | 
subsection {* Compact bases of bifinite domains *}
 | 
|
364  | 
||
365  | 
defaultsort bifinite  | 
|
366  | 
||
367  | 
typedef (open) 'a compact_basis = "{x::'a::bifinite. compact x}"
 | 
|
368  | 
by (fast intro: compact_approx)  | 
|
369  | 
||
370  | 
lemma compact_Rep_compact_basis [simp]: "compact (Rep_compact_basis a)"  | 
|
371  | 
by (rule Rep_compact_basis [simplified])  | 
|
372  | 
||
373  | 
lemma Rep_Abs_compact_basis_approx [simp]:  | 
|
374  | 
"Rep_compact_basis (Abs_compact_basis (approx n\<cdot>x)) = approx n\<cdot>x"  | 
|
375  | 
by (rule Abs_compact_basis_inverse, simp)  | 
|
376  | 
||
377  | 
lemma compact_imp_Rep_compact_basis:  | 
|
378  | 
"compact x \<Longrightarrow> \<exists>y. x = Rep_compact_basis y"  | 
|
379  | 
by (rule exI, rule Abs_compact_basis_inverse [symmetric], simp)  | 
|
380  | 
||
381  | 
definition  | 
|
382  | 
compact_le :: "'a compact_basis \<Rightarrow> 'a compact_basis \<Rightarrow> bool" where  | 
|
383  | 
"compact_le = (\<lambda>x y. Rep_compact_basis x \<sqsubseteq> Rep_compact_basis y)"  | 
|
384  | 
||
385  | 
lemma compact_le_refl: "compact_le x x"  | 
|
386  | 
unfolding compact_le_def by (rule refl_less)  | 
|
387  | 
||
388  | 
lemma compact_le_trans: "\<lbrakk>compact_le x y; compact_le y z\<rbrakk> \<Longrightarrow> compact_le x z"  | 
|
389  | 
unfolding compact_le_def by (rule trans_less)  | 
|
390  | 
||
391  | 
lemma compact_le_antisym: "\<lbrakk>compact_le x y; compact_le y x\<rbrakk> \<Longrightarrow> x = y"  | 
|
392  | 
unfolding compact_le_def  | 
|
393  | 
apply (rule Rep_compact_basis_inject [THEN iffD1])  | 
|
394  | 
apply (erule (1) antisym_less)  | 
|
395  | 
done  | 
|
396  | 
||
397  | 
interpretation compact_le: preorder [compact_le]  | 
|
398  | 
by (rule preorder.intro, rule compact_le_refl, rule compact_le_trans)  | 
|
399  | 
||
400  | 
text {* minimal compact element *}
 | 
|
401  | 
||
402  | 
definition  | 
|
403  | 
compact_bot :: "'a compact_basis" where  | 
|
404  | 
"compact_bot = Abs_compact_basis \<bottom>"  | 
|
405  | 
||
406  | 
lemma Rep_compact_bot: "Rep_compact_basis compact_bot = \<bottom>"  | 
|
407  | 
unfolding compact_bot_def by (simp add: Abs_compact_basis_inverse)  | 
|
408  | 
||
409  | 
lemma compact_minimal [simp]: "compact_le compact_bot a"  | 
|
410  | 
unfolding compact_le_def Rep_compact_bot by simp  | 
|
411  | 
||
412  | 
text {* compacts *}
 | 
|
413  | 
||
414  | 
definition  | 
|
415  | 
compacts :: "'a \<Rightarrow> 'a compact_basis set" where  | 
|
416  | 
  "compacts = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
 | 
|
417  | 
||
418  | 
lemma ideal_compacts: "compact_le.ideal (compacts w)"  | 
|
419  | 
unfolding compacts_def  | 
|
420  | 
apply (rule compact_le.idealI)  | 
|
421  | 
apply (rule_tac x="Abs_compact_basis (approx 0\<cdot>w)" in exI)  | 
|
422  | 
apply (simp add: approx_less)  | 
|
423  | 
apply simp  | 
|
424  | 
apply (cut_tac a=x in compact_Rep_compact_basis)  | 
|
425  | 
apply (cut_tac a=y in compact_Rep_compact_basis)  | 
|
426  | 
apply (drule bifinite_compact_eq_approx)  | 
|
427  | 
apply (drule bifinite_compact_eq_approx)  | 
|
428  | 
apply (clarify, rename_tac i j)  | 
|
429  | 
apply (rule_tac x="Abs_compact_basis (approx (max i j)\<cdot>w)" in exI)  | 
|
430  | 
apply (simp add: approx_less compact_le_def)  | 
|
431  | 
apply (erule subst, erule subst)  | 
|
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25904 
diff
changeset
 | 
432  | 
apply (simp add: monofun_cfun chain_mono [OF chain_approx])  | 
| 25904 | 433  | 
apply (simp add: compact_le_def)  | 
434  | 
apply (erule (1) trans_less)  | 
|
435  | 
done  | 
|
436  | 
||
437  | 
lemma compacts_Rep_compact_basis:  | 
|
438  | 
  "compacts (Rep_compact_basis b) = {a. compact_le a b}"
 | 
|
439  | 
unfolding compacts_def compact_le_def ..  | 
|
440  | 
||
441  | 
lemma cont_compacts: "cont compacts"  | 
|
442  | 
unfolding compacts_def  | 
|
443  | 
apply (rule contI2)  | 
|
444  | 
apply (rule monofunI)  | 
|
445  | 
apply (simp add: set_cpo_simps)  | 
|
446  | 
apply (fast intro: trans_less)  | 
|
447  | 
apply (simp add: set_cpo_simps)  | 
|
448  | 
apply clarify  | 
|
449  | 
apply simp  | 
|
450  | 
apply (erule (1) compactD2 [OF compact_Rep_compact_basis])  | 
|
451  | 
done  | 
|
452  | 
||
453  | 
lemma compacts_lessD: "compacts x \<subseteq> compacts y \<Longrightarrow> x \<sqsubseteq> y"  | 
|
454  | 
apply (subgoal_tac "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y", simp)  | 
|
455  | 
apply (rule admD [rule_format], simp, simp)  | 
|
456  | 
apply (drule_tac c="Abs_compact_basis (approx i\<cdot>x)" in subsetD)  | 
|
457  | 
apply (simp add: compacts_def Abs_compact_basis_inverse approx_less)  | 
|
458  | 
apply (simp add: compacts_def Abs_compact_basis_inverse)  | 
|
459  | 
done  | 
|
460  | 
||
461  | 
lemma compacts_mono: "x \<sqsubseteq> y \<Longrightarrow> compacts x \<subseteq> compacts y"  | 
|
462  | 
unfolding compacts_def by (fast intro: trans_less)  | 
|
463  | 
||
464  | 
lemma less_compact_basis_iff: "(x \<sqsubseteq> y) = (compacts x \<subseteq> compacts y)"  | 
|
465  | 
by (rule iffI [OF compacts_mono compacts_lessD])  | 
|
466  | 
||
467  | 
lemma compact_basis_induct:  | 
|
468  | 
"\<lbrakk>adm P; \<And>a. P (Rep_compact_basis a)\<rbrakk> \<Longrightarrow> P x"  | 
|
469  | 
apply (erule approx_induct)  | 
|
470  | 
apply (drule_tac x="Abs_compact_basis (approx n\<cdot>x)" in meta_spec)  | 
|
471  | 
apply (simp add: Abs_compact_basis_inverse)  | 
|
472  | 
done  | 
|
473  | 
||
474  | 
text {* approximation on compact bases *}
 | 
|
475  | 
||
476  | 
definition  | 
|
477  | 
compact_approx :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis" where  | 
|
478  | 
"compact_approx = (\<lambda>n a. Abs_compact_basis (approx n\<cdot>(Rep_compact_basis a)))"  | 
|
479  | 
||
480  | 
lemma Rep_compact_approx:  | 
|
481  | 
"Rep_compact_basis (compact_approx n a) = approx n\<cdot>(Rep_compact_basis a)"  | 
|
482  | 
unfolding compact_approx_def  | 
|
483  | 
by (simp add: Abs_compact_basis_inverse)  | 
|
484  | 
||
485  | 
lemmas approx_Rep_compact_basis = Rep_compact_approx [symmetric]  | 
|
486  | 
||
487  | 
lemma compact_approx_le:  | 
|
488  | 
"compact_le (compact_approx n a) a"  | 
|
489  | 
unfolding compact_le_def  | 
|
490  | 
by (simp add: Rep_compact_approx approx_less)  | 
|
491  | 
||
492  | 
lemma compact_approx_mono1:  | 
|
493  | 
"i \<le> j \<Longrightarrow> compact_le (compact_approx i a) (compact_approx j a)"  | 
|
494  | 
unfolding compact_le_def  | 
|
495  | 
apply (simp add: Rep_compact_approx)  | 
|
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25904 
diff
changeset
 | 
496  | 
apply (rule chain_mono, simp, assumption)  | 
| 25904 | 497  | 
done  | 
498  | 
||
499  | 
lemma compact_approx_mono:  | 
|
500  | 
"compact_le a b \<Longrightarrow> compact_le (compact_approx n a) (compact_approx n b)"  | 
|
501  | 
unfolding compact_le_def  | 
|
502  | 
apply (simp add: Rep_compact_approx)  | 
|
503  | 
apply (erule monofun_cfun_arg)  | 
|
504  | 
done  | 
|
505  | 
||
506  | 
lemma ex_compact_approx_eq: "\<exists>n. compact_approx n a = a"  | 
|
507  | 
apply (simp add: Rep_compact_basis_inject [symmetric])  | 
|
508  | 
apply (simp add: Rep_compact_approx)  | 
|
509  | 
apply (rule bifinite_compact_eq_approx)  | 
|
510  | 
apply (rule compact_Rep_compact_basis)  | 
|
511  | 
done  | 
|
512  | 
||
513  | 
lemma compact_approx_idem:  | 
|
514  | 
"compact_approx n (compact_approx n a) = compact_approx n a"  | 
|
515  | 
apply (rule Rep_compact_basis_inject [THEN iffD1])  | 
|
516  | 
apply (simp add: Rep_compact_approx)  | 
|
517  | 
done  | 
|
518  | 
||
519  | 
lemma finite_fixes_compact_approx: "finite {a. compact_approx n a = a}"
 | 
|
520  | 
apply (subgoal_tac "finite (Rep_compact_basis ` {a. compact_approx n a = a})")
 | 
|
521  | 
apply (erule finite_imageD)  | 
|
522  | 
apply (rule inj_onI, simp add: Rep_compact_basis_inject)  | 
|
523  | 
apply (rule finite_subset [OF _ finite_fixes_approx [where i=n]])  | 
|
524  | 
apply (rule subsetI, clarify, rename_tac a)  | 
|
525  | 
apply (simp add: Rep_compact_basis_inject [symmetric])  | 
|
526  | 
apply (simp add: Rep_compact_approx)  | 
|
527  | 
done  | 
|
528  | 
||
529  | 
lemma finite_range_compact_approx: "finite (range (compact_approx n))"  | 
|
530  | 
apply (cut_tac n=n in finite_fixes_compact_approx)  | 
|
531  | 
apply (simp add: idem_fixes_eq_range compact_approx_idem)  | 
|
532  | 
apply (simp add: image_def)  | 
|
533  | 
done  | 
|
534  | 
||
535  | 
interpretation compact_basis:  | 
|
536  | 
bifinite_basis [compact_le Rep_compact_basis compacts compact_approx]  | 
|
537  | 
apply unfold_locales  | 
|
538  | 
apply (rule ideal_compacts)  | 
|
539  | 
apply (rule cont_compacts)  | 
|
540  | 
apply (rule compacts_Rep_compact_basis)  | 
|
541  | 
apply (erule compacts_lessD)  | 
|
542  | 
apply (rule compact_approx_le)  | 
|
543  | 
apply (rule compact_approx_idem)  | 
|
544  | 
apply (erule compact_approx_mono)  | 
|
545  | 
apply (rule compact_approx_mono1, simp)  | 
|
546  | 
apply (rule finite_range_compact_approx)  | 
|
547  | 
apply (rule ex_compact_approx_eq)  | 
|
548  | 
done  | 
|
549  | 
||
550  | 
||
551  | 
subsection {* A compact basis for powerdomains *}
 | 
|
552  | 
||
553  | 
typedef 'a pd_basis =  | 
|
554  | 
  "{S::'a::bifinite compact_basis set. finite S \<and> S \<noteq> {}}"
 | 
|
555  | 
by (rule_tac x="{arbitrary}" in exI, simp)
 | 
|
556  | 
||
557  | 
lemma finite_Rep_pd_basis [simp]: "finite (Rep_pd_basis u)"  | 
|
558  | 
by (insert Rep_pd_basis [of u, unfolded pd_basis_def]) simp  | 
|
559  | 
||
560  | 
lemma Rep_pd_basis_nonempty [simp]: "Rep_pd_basis u \<noteq> {}"
 | 
|
561  | 
by (insert Rep_pd_basis [of u, unfolded pd_basis_def]) simp  | 
|
562  | 
||
563  | 
text {* unit and plus *}
 | 
|
564  | 
||
565  | 
definition  | 
|
566  | 
PDUnit :: "'a compact_basis \<Rightarrow> 'a pd_basis" where  | 
|
567  | 
  "PDUnit = (\<lambda>x. Abs_pd_basis {x})"
 | 
|
568  | 
||
569  | 
definition  | 
|
570  | 
PDPlus :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> 'a pd_basis" where  | 
|
571  | 
"PDPlus t u = Abs_pd_basis (Rep_pd_basis t \<union> Rep_pd_basis u)"  | 
|
572  | 
||
573  | 
lemma Rep_PDUnit:  | 
|
574  | 
  "Rep_pd_basis (PDUnit x) = {x}"
 | 
|
575  | 
unfolding PDUnit_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def)  | 
|
576  | 
||
577  | 
lemma Rep_PDPlus:  | 
|
578  | 
"Rep_pd_basis (PDPlus u v) = Rep_pd_basis u \<union> Rep_pd_basis v"  | 
|
579  | 
unfolding PDPlus_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def)  | 
|
580  | 
||
581  | 
lemma PDUnit_inject [simp]: "(PDUnit a = PDUnit b) = (a = b)"  | 
|
582  | 
unfolding Rep_pd_basis_inject [symmetric] Rep_PDUnit by simp  | 
|
583  | 
||
584  | 
lemma PDPlus_assoc: "PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)"  | 
|
585  | 
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_assoc)  | 
|
586  | 
||
587  | 
lemma PDPlus_commute: "PDPlus t u = PDPlus u t"  | 
|
588  | 
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_commute)  | 
|
589  | 
||
590  | 
lemma PDPlus_absorb: "PDPlus t t = t"  | 
|
591  | 
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_absorb)  | 
|
592  | 
||
593  | 
lemma pd_basis_induct1:  | 
|
594  | 
assumes PDUnit: "\<And>a. P (PDUnit a)"  | 
|
595  | 
assumes PDPlus: "\<And>a t. P t \<Longrightarrow> P (PDPlus (PDUnit a) t)"  | 
|
596  | 
shows "P x"  | 
|
597  | 
apply (induct x, unfold pd_basis_def, clarify)  | 
|
598  | 
apply (erule (1) finite_ne_induct)  | 
|
599  | 
apply (cut_tac a=x in PDUnit)  | 
|
600  | 
apply (simp add: PDUnit_def)  | 
|
601  | 
apply (drule_tac a=x in PDPlus)  | 
|
602  | 
apply (simp add: PDUnit_def PDPlus_def Abs_pd_basis_inverse [unfolded pd_basis_def])  | 
|
603  | 
done  | 
|
604  | 
||
605  | 
lemma pd_basis_induct:  | 
|
606  | 
assumes PDUnit: "\<And>a. P (PDUnit a)"  | 
|
607  | 
assumes PDPlus: "\<And>t u. \<lbrakk>P t; P u\<rbrakk> \<Longrightarrow> P (PDPlus t u)"  | 
|
608  | 
shows "P x"  | 
|
609  | 
apply (induct x rule: pd_basis_induct1)  | 
|
610  | 
apply (rule PDUnit, erule PDPlus [OF PDUnit])  | 
|
611  | 
done  | 
|
612  | 
||
613  | 
text {* fold-pd *}
 | 
|
614  | 
||
615  | 
definition  | 
|
616  | 
fold_pd ::  | 
|
617  | 
    "('a compact_basis \<Rightarrow> 'b::type) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'a pd_basis \<Rightarrow> 'b"
 | 
|
618  | 
where "fold_pd g f t = fold1 f (g ` Rep_pd_basis t)"  | 
|
619  | 
||
620  | 
lemma (in ACIf) fold_pd_PDUnit:  | 
|
621  | 
"fold_pd g f (PDUnit x) = g x"  | 
|
622  | 
unfolding fold_pd_def Rep_PDUnit by simp  | 
|
623  | 
||
624  | 
lemma (in ACIf) fold_pd_PDPlus:  | 
|
625  | 
"fold_pd g f (PDPlus t u) = f (fold_pd g f t) (fold_pd g f u)"  | 
|
626  | 
unfolding fold_pd_def Rep_PDPlus by (simp add: image_Un fold1_Un2)  | 
|
627  | 
||
628  | 
text {* approx-pd *}
 | 
|
629  | 
||
630  | 
definition  | 
|
631  | 
approx_pd :: "nat \<Rightarrow> 'a pd_basis \<Rightarrow> 'a pd_basis" where  | 
|
632  | 
"approx_pd n = (\<lambda>t. Abs_pd_basis (compact_approx n ` Rep_pd_basis t))"  | 
|
633  | 
||
634  | 
lemma Rep_approx_pd:  | 
|
635  | 
"Rep_pd_basis (approx_pd n t) = compact_approx n ` Rep_pd_basis t"  | 
|
636  | 
unfolding approx_pd_def  | 
|
637  | 
apply (rule Abs_pd_basis_inverse)  | 
|
638  | 
apply (simp add: pd_basis_def)  | 
|
639  | 
done  | 
|
640  | 
||
641  | 
lemma approx_pd_simps [simp]:  | 
|
642  | 
"approx_pd n (PDUnit a) = PDUnit (compact_approx n a)"  | 
|
643  | 
"approx_pd n (PDPlus t u) = PDPlus (approx_pd n t) (approx_pd n u)"  | 
|
644  | 
apply (simp_all add: Rep_pd_basis_inject [symmetric])  | 
|
645  | 
apply (simp_all add: Rep_approx_pd Rep_PDUnit Rep_PDPlus image_Un)  | 
|
646  | 
done  | 
|
647  | 
||
648  | 
lemma approx_pd_idem: "approx_pd n (approx_pd n t) = approx_pd n t"  | 
|
649  | 
apply (induct t rule: pd_basis_induct)  | 
|
650  | 
apply (simp add: compact_approx_idem)  | 
|
651  | 
apply simp  | 
|
652  | 
done  | 
|
653  | 
||
654  | 
lemma range_image_f: "range (image f) = Pow (range f)"  | 
|
655  | 
apply (safe, fast)  | 
|
656  | 
apply (rule_tac x="f -` x" in range_eqI)  | 
|
657  | 
apply (simp, fast)  | 
|
658  | 
done  | 
|
659  | 
||
660  | 
lemma finite_range_approx_pd: "finite (range (approx_pd n))"  | 
|
661  | 
apply (subgoal_tac "finite (Rep_pd_basis ` range (approx_pd n))")  | 
|
662  | 
apply (erule finite_imageD)  | 
|
663  | 
apply (rule inj_onI, simp add: Rep_pd_basis_inject)  | 
|
664  | 
apply (subst image_image)  | 
|
665  | 
apply (subst Rep_approx_pd)  | 
|
666  | 
apply (simp only: range_composition)  | 
|
667  | 
apply (rule finite_subset [OF image_mono [OF subset_UNIV]])  | 
|
668  | 
apply (simp add: range_image_f)  | 
|
669  | 
apply (rule finite_range_compact_approx)  | 
|
670  | 
done  | 
|
671  | 
||
672  | 
lemma ex_approx_pd_eq: "\<exists>n. approx_pd n t = t"  | 
|
673  | 
apply (subgoal_tac "\<exists>n. \<forall>m\<ge>n. approx_pd m t = t", fast)  | 
|
674  | 
apply (induct t rule: pd_basis_induct)  | 
|
675  | 
apply (cut_tac a=a in ex_compact_approx_eq)  | 
|
676  | 
apply (clarify, rule_tac x=n in exI)  | 
|
677  | 
apply (clarify, simp)  | 
|
678  | 
apply (rule compact_le_antisym)  | 
|
679  | 
apply (rule compact_approx_le)  | 
|
680  | 
apply (drule_tac a=a in compact_approx_mono1)  | 
|
681  | 
apply simp  | 
|
682  | 
apply (clarify, rename_tac i j)  | 
|
683  | 
apply (rule_tac x="max i j" in exI, simp)  | 
|
684  | 
done  | 
|
685  | 
||
686  | 
end  |