author | nipkow |
Mon, 06 Jun 2005 21:21:19 +0200 | |
changeset 16307 | cb0f9e96d456 |
parent 14171 | 0cab06e3bbd0 |
child 16417 | 9bc16273c2d4 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/AC/AC_Equiv.thy |
991 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Krzysztof Grabczewski |
991 | 4 |
|
5 |
Axioms AC1 -- AC19 come from "Equivalents of the Axiom of Choice, II" |
|
6 |
by H. Rubin and J.E. Rubin, 1985. |
|
7 |
||
8 |
Axiom AC0 comes from "Axiomatic Set Theory" by P. Suppes, 1972. |
|
9 |
||
10 |
Some Isabelle proofs of equivalences of these axioms are formalizations of |
|
1123 | 11 |
proofs presented by the Rubins. The others are based on the Rubins' proofs, |
12 |
but slightly changed. |
|
991 | 13 |
*) |
14 |
||
12776 | 15 |
theory AC_Equiv = Main: (*obviously not Main_ZFC*) |
8123 | 16 |
|
12776 | 17 |
constdefs |
991 | 18 |
|
19 |
(* Well Ordering Theorems *) |
|
12776 | 20 |
WO1 :: o |
21 |
"WO1 == \<forall>A. \<exists>R. well_ord(A,R)" |
|
22 |
||
23 |
WO2 :: o |
|
24 |
"WO2 == \<forall>A. \<exists>a. Ord(a) & A\<approx>a" |
|
991 | 25 |
|
12776 | 26 |
WO3 :: o |
27 |
"WO3 == \<forall>A. \<exists>a. Ord(a) & (\<exists>b. b \<subseteq> a & A\<approx>b)" |
|
1123 | 28 |
|
12776 | 29 |
WO4 :: "i => o" |
30 |
"WO4(m) == \<forall>A. \<exists>a f. Ord(a) & domain(f)=a & |
|
31 |
(\<Union>b<a. f`b) = A & (\<forall>b<a. f`b \<lesssim> m)" |
|
991 | 32 |
|
12776 | 33 |
WO5 :: o |
34 |
"WO5 == \<exists>m \<in> nat. 1\<le>m & WO4(m)" |
|
991 | 35 |
|
12776 | 36 |
WO6 :: o |
37 |
"WO6 == \<forall>A. \<exists>m \<in> nat. 1\<le>m & (\<exists>a f. Ord(a) & domain(f)=a |
|
38 |
& (\<Union>b<a. f`b) = A & (\<forall>b<a. f`b \<lesssim> m))" |
|
991 | 39 |
|
12776 | 40 |
WO7 :: o |
41 |
"WO7 == \<forall>A. Finite(A) <-> (\<forall>R. well_ord(A,R) --> well_ord(A,converse(R)))" |
|
991 | 42 |
|
12776 | 43 |
WO8 :: o |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
44 |
"WO8 == \<forall>A. (\<exists>f. f \<in> (\<Pi> X \<in> A. X)) --> (\<exists>R. well_ord(A,R))" |
991 | 45 |
|
46 |
||
12776 | 47 |
(* Auxiliary concepts needed below *) |
48 |
pairwise_disjoint :: "i => o" |
|
49 |
"pairwise_disjoint(A) == \<forall>A1 \<in> A. \<forall>A2 \<in> A. A1 Int A2 \<noteq> 0 --> A1=A2" |
|
991 | 50 |
|
12776 | 51 |
sets_of_size_between :: "[i, i, i] => o" |
52 |
"sets_of_size_between(A,m,n) == \<forall>B \<in> A. m \<lesssim> B & B \<lesssim> n" |
|
53 |
||
991 | 54 |
|
55 |
(* Axioms of Choice *) |
|
12776 | 56 |
AC0 :: o |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
57 |
"AC0 == \<forall>A. \<exists>f. f \<in> (\<Pi> X \<in> Pow(A)-{0}. X)" |
991 | 58 |
|
12776 | 59 |
AC1 :: o |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
60 |
"AC1 == \<forall>A. 0\<notin>A --> (\<exists>f. f \<in> (\<Pi> X \<in> A. X))" |
12776 | 61 |
|
62 |
AC2 :: o |
|
63 |
"AC2 == \<forall>A. 0\<notin>A & pairwise_disjoint(A) |
|
64 |
--> (\<exists>C. \<forall>B \<in> A. \<exists>y. B Int C = {y})" |
|
65 |
AC3 :: o |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
66 |
"AC3 == \<forall>A B. \<forall>f \<in> A->B. \<exists>g. g \<in> (\<Pi> x \<in> {a \<in> A. f`a\<noteq>0}. f`x)" |
991 | 67 |
|
12776 | 68 |
AC4 :: o |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
69 |
"AC4 == \<forall>R A B. (R \<subseteq> A*B --> (\<exists>f. f \<in> (\<Pi> x \<in> domain(R). R``{x})))" |
12776 | 70 |
|
71 |
AC5 :: o |
|
72 |
"AC5 == \<forall>A B. \<forall>f \<in> A->B. \<exists>g \<in> range(f)->A. \<forall>x \<in> domain(g). f`(g`x) = x" |
|
73 |
||
74 |
AC6 :: o |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
75 |
"AC6 == \<forall>A. 0\<notin>A --> (\<Pi> B \<in> A. B)\<noteq>0" |
991 | 76 |
|
12776 | 77 |
AC7 :: o |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
78 |
"AC7 == \<forall>A. 0\<notin>A & (\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1\<approx>B2) --> (\<Pi> B \<in> A. B) \<noteq> 0" |
991 | 79 |
|
12776 | 80 |
AC8 :: o |
81 |
"AC8 == \<forall>A. (\<forall>B \<in> A. \<exists>B1 B2. B=<B1,B2> & B1\<approx>B2) |
|
82 |
--> (\<exists>f. \<forall>B \<in> A. f`B \<in> bij(fst(B),snd(B)))" |
|
83 |
||
84 |
AC9 :: o |
|
85 |
"AC9 == \<forall>A. (\<forall>B1 \<in> A. \<forall>B2 \<in> A. B1\<approx>B2) --> |
|
86 |
(\<exists>f. \<forall>B1 \<in> A. \<forall>B2 \<in> A. f`<B1,B2> \<in> bij(B1,B2))" |
|
991 | 87 |
|
12776 | 88 |
AC10 :: "i => o" |
89 |
"AC10(n) == \<forall>A. (\<forall>B \<in> A. ~Finite(B)) --> |
|
90 |
(\<exists>f. \<forall>B \<in> A. (pairwise_disjoint(f`B) & |
|
91 |
sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B))" |
|
991 | 92 |
|
12776 | 93 |
AC11 :: o |
94 |
"AC11 == \<exists>n \<in> nat. 1\<le>n & AC10(n)" |
|
95 |
||
96 |
AC12 :: o |
|
97 |
"AC12 == \<forall>A. (\<forall>B \<in> A. ~Finite(B)) --> |
|
98 |
(\<exists>n \<in> nat. 1\<le>n & (\<exists>f. \<forall>B \<in> A. (pairwise_disjoint(f`B) & |
|
99 |
sets_of_size_between(f`B, 2, succ(n)) & Union(f`B)=B)))" |
|
991 | 100 |
|
12776 | 101 |
AC13 :: "i => o" |
102 |
"AC13(m) == \<forall>A. 0\<notin>A --> (\<exists>f. \<forall>B \<in> A. f`B\<noteq>0 & f`B \<subseteq> B & f`B \<lesssim> m)" |
|
103 |
||
104 |
AC14 :: o |
|
105 |
"AC14 == \<exists>m \<in> nat. 1\<le>m & AC13(m)" |
|
106 |
||
107 |
AC15 :: o |
|
108 |
"AC15 == \<forall>A. 0\<notin>A --> |
|
109 |
(\<exists>m \<in> nat. 1\<le>m & (\<exists>f. \<forall>B \<in> A. f`B\<noteq>0 & f`B \<subseteq> B & f`B \<lesssim> m))" |
|
991 | 110 |
|
12776 | 111 |
AC16 :: "[i, i] => o" |
112 |
"AC16(n, k) == |
|
113 |
\<forall>A. ~Finite(A) --> |
|
114 |
(\<exists>T. T \<subseteq> {X \<in> Pow(A). X\<approx>succ(n)} & |
|
115 |
(\<forall>X \<in> {X \<in> Pow(A). X\<approx>succ(k)}. \<exists>! Y. Y \<in> T & X \<subseteq> Y))" |
|
991 | 116 |
|
12776 | 117 |
AC17 :: o |
118 |
"AC17 == \<forall>A. \<forall>g \<in> (Pow(A)-{0} -> A) -> Pow(A)-{0}. |
|
119 |
\<exists>f \<in> Pow(A)-{0} -> A. f`(g`f) \<in> g`f" |
|
991 | 120 |
|
13416 | 121 |
locale AC18 = |
122 |
assumes AC18: "A\<noteq>0 & (\<forall>a \<in> A. B(a) \<noteq> 0) --> |
|
123 |
((\<Inter>a \<in> A. \<Union>b \<in> B(a). X(a,b)) = |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
124 |
(\<Union>f \<in> \<Pi> a \<in> A. B(a). \<Inter>a \<in> A. X(a, f`a)))" |
13416 | 125 |
--"AC18 cannot be expressed within the object-logic" |
12776 | 126 |
|
13416 | 127 |
constdefs |
12776 | 128 |
AC19 :: o |
129 |
"AC19 == \<forall>A. A\<noteq>0 & 0\<notin>A --> ((\<Inter>a \<in> A. \<Union>b \<in> a. b) = |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
130 |
(\<Union>f \<in> (\<Pi> B \<in> A. B). \<Inter>a \<in> A. f`a))" |
12776 | 131 |
|
132 |
||
991 | 133 |
|
12776 | 134 |
(* ********************************************************************** *) |
135 |
(* Theorems concerning ordinals *) |
|
136 |
(* ********************************************************************** *) |
|
991 | 137 |
|
12776 | 138 |
(* lemma for ordertype_Int *) |
139 |
lemma rvimage_id: "rvimage(A,id(A),r) = r Int A*A" |
|
140 |
apply (unfold rvimage_def) |
|
141 |
apply (rule equalityI, safe) |
|
142 |
apply (drule_tac P = "%a. <id (A) `xb,a>:r" in id_conv [THEN subst], |
|
12820 | 143 |
assumption) |
12776 | 144 |
apply (drule_tac P = "%a. <a,ya>:r" in id_conv [THEN subst], (assumption+)) |
145 |
apply (fast intro: id_conv [THEN ssubst]) |
|
146 |
done |
|
991 | 147 |
|
12776 | 148 |
(* used only in Hartog.ML *) |
149 |
lemma ordertype_Int: |
|
150 |
"well_ord(A,r) ==> ordertype(A, r Int A*A) = ordertype(A,r)" |
|
151 |
apply (rule_tac P = "%a. ordertype (A,a) =ordertype (A,r) " in rvimage_id [THEN subst]) |
|
152 |
apply (erule id_bij [THEN bij_ordertype_vimage]) |
|
153 |
done |
|
154 |
||
155 |
lemma lam_sing_bij: "(\<lambda>x \<in> A. {x}) \<in> bij(A, {{x}. x \<in> A})" |
|
156 |
apply (rule_tac d = "%z. THE x. z={x}" in lam_bijective) |
|
12814 | 157 |
apply (auto simp add: the_equality) |
12776 | 158 |
done |
159 |
||
160 |
lemma inj_strengthen_type: |
|
161 |
"[| f \<in> inj(A, B); !!a. a \<in> A ==> f`a \<in> C |] ==> f \<in> inj(A,C)" |
|
162 |
by (unfold inj_def, blast intro: Pi_type) |
|
163 |
||
164 |
lemma nat_not_Finite: "~ Finite(nat)" |
|
165 |
by (unfold Finite_def, blast dest: eqpoll_imp_lepoll ltI lt_not_lepoll) |
|
991 | 166 |
|
12776 | 167 |
lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll] |
168 |
||
169 |
(* ********************************************************************** *) |
|
170 |
(* Another elimination rule for \<exists>! *) |
|
171 |
(* ********************************************************************** *) |
|
172 |
||
173 |
lemma ex1_two_eq: "[| \<exists>! x. P(x); P(x); P(y) |] ==> x=y" |
|
174 |
by blast |
|
991 | 175 |
|
12776 | 176 |
(* ********************************************************************** *) |
177 |
(* image of a surjection *) |
|
178 |
(* ********************************************************************** *) |
|
991 | 179 |
|
12776 | 180 |
lemma surj_image_eq: "f \<in> surj(A, B) ==> f``A = B" |
181 |
apply (unfold surj_def) |
|
182 |
apply (erule CollectE) |
|
12820 | 183 |
apply (rule image_fun [THEN ssubst], assumption, rule subset_refl) |
12776 | 184 |
apply (blast dest: apply_type) |
185 |
done |
|
186 |
||
187 |
||
188 |
(* ********************************************************************** *) |
|
189 |
(* Lemmas used in the proofs like WO? ==> AC? *) |
|
190 |
(* ********************************************************************** *) |
|
991 | 191 |
|
12776 | 192 |
lemma first_in_B: |
193 |
"[| well_ord(Union(A),r); 0\<notin>A; B \<in> A |] ==> (THE b. first(b,B,r)) \<in> B" |
|
194 |
by (blast dest!: well_ord_imp_ex1_first |
|
195 |
[THEN theI, THEN first_def [THEN def_imp_iff, THEN iffD1]]) |
|
196 |
||
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
197 |
lemma ex_choice_fun: "[| well_ord(Union(A), R); 0\<notin>A |] ==> \<exists>f. f:(\<Pi> X \<in> A. X)" |
12776 | 198 |
by (fast elim!: first_in_B intro!: lam_type) |
991 | 199 |
|
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
13416
diff
changeset
|
200 |
lemma ex_choice_fun_Pow: "well_ord(A, R) ==> \<exists>f. f:(\<Pi> X \<in> Pow(A)-{0}. X)" |
12776 | 201 |
by (fast elim!: well_ord_subset [THEN ex_choice_fun]) |
202 |
||
991 | 203 |
|
12776 | 204 |
(* ********************************************************************** *) |
205 |
(* Lemmas needed to state when a finite relation is a function. *) |
|
206 |
(* The criteria are cardinalities of the relation and its domain. *) |
|
207 |
(* Used in WO6WO1.ML *) |
|
208 |
(* ********************************************************************** *) |
|
991 | 209 |
|
12776 | 210 |
(*Using AC we could trivially prove, for all u, domain(u) \<lesssim> u*) |
211 |
lemma lepoll_m_imp_domain_lepoll_m: |
|
212 |
"[| m \<in> nat; u \<lesssim> m |] ==> domain(u) \<lesssim> m" |
|
213 |
apply (unfold lepoll_def) |
|
214 |
apply (erule exE) |
|
215 |
apply (rule_tac x = "\<lambda>x \<in> domain(u). LEAST i. \<exists>y. <x,y> \<in> u & f`<x,y> = i" |
|
216 |
in exI) |
|
217 |
apply (rule_tac d = "%y. fst (converse(f) ` y) " in lam_injective) |
|
218 |
apply (fast intro: LeastI2 nat_into_Ord [THEN Ord_in_Ord] |
|
219 |
inj_is_fun [THEN apply_type]) |
|
220 |
apply (erule domainE) |
|
12820 | 221 |
apply (frule inj_is_fun [THEN apply_type], assumption) |
12776 | 222 |
apply (rule LeastI2) |
223 |
apply (auto elim!: nat_into_Ord [THEN Ord_in_Ord]) |
|
224 |
done |
|
991 | 225 |
|
12776 | 226 |
lemma rel_domain_ex1: |
227 |
"[| succ(m) \<lesssim> domain(r); r \<lesssim> succ(m); m \<in> nat |] ==> function(r)" |
|
228 |
apply (unfold function_def, safe) |
|
229 |
apply (rule ccontr) |
|
230 |
apply (fast elim!: lepoll_trans [THEN succ_lepoll_natE] |
|
231 |
lepoll_m_imp_domain_lepoll_m [OF _ Diff_sing_lepoll] |
|
232 |
elim: domain_Diff_eq [OF _ not_sym, THEN subst]) |
|
233 |
done |
|
234 |
||
235 |
lemma rel_is_fun: |
|
236 |
"[| succ(m) \<lesssim> domain(r); r \<lesssim> succ(m); m \<in> nat; |
|
237 |
r \<subseteq> A*B; A=domain(r) |] ==> r \<in> A->B" |
|
238 |
by (simp add: Pi_iff rel_domain_ex1) |
|
239 |
||
991 | 240 |
end |