author | nipkow |
Mon, 06 Jun 2005 21:21:19 +0200 | |
changeset 16307 | cb0f9e96d456 |
parent 15481 | fc075ae929e4 |
child 16417 | 9bc16273c2d4 |
permissions | -rw-r--r-- |
615 | 1 |
(* Title: ZF/ZF.thy |
0 | 2 |
ID: $Id$ |
3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
14076 | 5 |
*) |
0 | 6 |
|
14076 | 7 |
header{*Zermelo-Fraenkel Set Theory*} |
0 | 8 |
|
13780 | 9 |
theory ZF = FOL: |
0 | 10 |
|
3906 | 11 |
global |
12 |
||
14076 | 13 |
typedecl i |
14 |
arities i :: "term" |
|
0 | 15 |
|
16 |
consts |
|
17 |
||
14076 | 18 |
"0" :: "i" ("0") --{*the empty set*} |
19 |
Pow :: "i => i" --{*power sets*} |
|
20 |
Inf :: "i" --{*infinite set*} |
|
0 | 21 |
|
14076 | 22 |
text {*Bounded Quantifiers *} |
23 |
consts |
|
13780 | 24 |
Ball :: "[i, i => o] => o" |
25 |
Bex :: "[i, i => o] => o" |
|
0 | 26 |
|
14076 | 27 |
text {*General Union and Intersection *} |
28 |
consts |
|
13780 | 29 |
Union :: "i => i" |
30 |
Inter :: "i => i" |
|
0 | 31 |
|
14076 | 32 |
text {*Variations on Replacement *} |
33 |
consts |
|
13144 | 34 |
PrimReplace :: "[i, [i, i] => o] => i" |
35 |
Replace :: "[i, [i, i] => o] => i" |
|
36 |
RepFun :: "[i, i => i] => i" |
|
37 |
Collect :: "[i, i => o] => i" |
|
0 | 38 |
|
14883 | 39 |
text{*Definite descriptions -- via Replace over the set "1"*} |
14076 | 40 |
consts |
13780 | 41 |
The :: "(i => o) => i" (binder "THE " 10) |
13144 | 42 |
If :: "[o, i, i] => i" ("(if (_)/ then (_)/ else (_))" [10] 10) |
6068 | 43 |
|
44 |
syntax |
|
13144 | 45 |
old_if :: "[o, i, i] => i" ("if '(_,_,_')") |
0 | 46 |
|
6068 | 47 |
translations |
48 |
"if(P,a,b)" => "If(P,a,b)" |
|
49 |
||
50 |
||
14076 | 51 |
text {*Finite Sets *} |
6068 | 52 |
consts |
13780 | 53 |
Upair :: "[i, i] => i" |
54 |
cons :: "[i, i] => i" |
|
55 |
succ :: "i => i" |
|
0 | 56 |
|
14076 | 57 |
text {*Ordered Pairing *} |
58 |
consts |
|
13780 | 59 |
Pair :: "[i, i] => i" |
60 |
fst :: "i => i" |
|
61 |
snd :: "i => i" |
|
14854 | 62 |
split :: "[[i, i] => 'a, i] => 'a::{}" --{*for pattern-matching*} |
0 | 63 |
|
14076 | 64 |
text {*Sigma and Pi Operators *} |
65 |
consts |
|
13780 | 66 |
Sigma :: "[i, i => i] => i" |
67 |
Pi :: "[i, i => i] => i" |
|
0 | 68 |
|
14076 | 69 |
text {*Relations and Functions *} |
70 |
consts |
|
71 |
"domain" :: "i => i" |
|
13144 | 72 |
range :: "i => i" |
73 |
field :: "i => i" |
|
74 |
converse :: "i => i" |
|
14076 | 75 |
relation :: "i => o" --{*recognizes sets of pairs*} |
76 |
function :: "i => o" --{*recognizes functions; can have non-pairs*} |
|
13144 | 77 |
Lambda :: "[i, i => i] => i" |
78 |
restrict :: "[i, i] => i" |
|
0 | 79 |
|
14076 | 80 |
text {*Infixes in order of decreasing precedence *} |
81 |
consts |
|
0 | 82 |
|
14076 | 83 |
"``" :: "[i, i] => i" (infixl 90) --{*image*} |
84 |
"-``" :: "[i, i] => i" (infixl 90) --{*inverse image*} |
|
85 |
"`" :: "[i, i] => i" (infixl 90) --{*function application*} |
|
13780 | 86 |
(*"*" :: "[i, i] => i" (infixr 80) [virtual] Cartesian product*) |
14076 | 87 |
"Int" :: "[i, i] => i" (infixl 70) --{*binary intersection*} |
88 |
"Un" :: "[i, i] => i" (infixl 65) --{*binary union*} |
|
89 |
"-" :: "[i, i] => i" (infixl 65) --{*set difference*} |
|
13780 | 90 |
(*"->" :: "[i, i] => i" (infixr 60) [virtual] function spac\<epsilon>*) |
14076 | 91 |
"<=" :: "[i, i] => o" (infixl 50) --{*subset relation*} |
92 |
":" :: "[i, i] => o" (infixl 50) --{*membership relation*} |
|
13144 | 93 |
(*"~:" :: "[i, i] => o" (infixl 50) (*negated membership relation*)*) |
0 | 94 |
|
95 |
||
13780 | 96 |
nonterminals "is" patterns |
615 | 97 |
|
98 |
syntax |
|
13144 | 99 |
"" :: "i => is" ("_") |
100 |
"@Enum" :: "[i, is] => is" ("_,/ _") |
|
101 |
"~:" :: "[i, i] => o" (infixl 50) |
|
102 |
"@Finset" :: "is => i" ("{(_)}") |
|
103 |
"@Tuple" :: "[i, is] => i" ("<(_,/ _)>") |
|
104 |
"@Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})") |
|
105 |
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})") |
|
106 |
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51]) |
|
107 |
"@INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10) |
|
108 |
"@UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10) |
|
109 |
"@PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10) |
|
110 |
"@SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10) |
|
111 |
"->" :: "[i, i] => i" (infixr 60) |
|
112 |
"*" :: "[i, i] => i" (infixr 80) |
|
113 |
"@lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10) |
|
114 |
"@Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10) |
|
115 |
"@Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10) |
|
1106
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy. Changed
lcp
parents:
690
diff
changeset
|
116 |
|
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy. Changed
lcp
parents:
690
diff
changeset
|
117 |
(** Patterns -- extends pre-defined type "pttrn" used in abstractions **) |
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy. Changed
lcp
parents:
690
diff
changeset
|
118 |
|
13144 | 119 |
"@pattern" :: "patterns => pttrn" ("<_>") |
120 |
"" :: "pttrn => patterns" ("_") |
|
121 |
"@patterns" :: "[pttrn, patterns] => patterns" ("_,/_") |
|
615 | 122 |
|
0 | 123 |
translations |
615 | 124 |
"x ~: y" == "~ (x : y)" |
0 | 125 |
"{x, xs}" == "cons(x, {xs})" |
126 |
"{x}" == "cons(x, 0)" |
|
127 |
"{x:A. P}" == "Collect(A, %x. P)" |
|
128 |
"{y. x:A, Q}" == "Replace(A, %x y. Q)" |
|
615 | 129 |
"{b. x:A}" == "RepFun(A, %x. b)" |
0 | 130 |
"INT x:A. B" == "Inter({B. x:A})" |
131 |
"UN x:A. B" == "Union({B. x:A})" |
|
132 |
"PROD x:A. B" => "Pi(A, %x. B)" |
|
133 |
"SUM x:A. B" => "Sigma(A, %x. B)" |
|
49 | 134 |
"A -> B" => "Pi(A, _K(B))" |
135 |
"A * B" => "Sigma(A, _K(B))" |
|
0 | 136 |
"lam x:A. f" == "Lambda(A, %x. f)" |
137 |
"ALL x:A. P" == "Ball(A, %x. P)" |
|
138 |
"EX x:A. P" == "Bex(A, %x. P)" |
|
37 | 139 |
|
1106
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy. Changed
lcp
parents:
690
diff
changeset
|
140 |
"<x, y, z>" == "<x, <y, z>>" |
62bdb9e5722b
Added pattern-matching code from CHOL/Prod.thy. Changed
lcp
parents:
690
diff
changeset
|
141 |
"<x, y>" == "Pair(x, y)" |
2286 | 142 |
"%<x,y,zs>.b" == "split(%x <y,zs>.b)" |
3840 | 143 |
"%<x,y>.b" == "split(%x y. b)" |
2286 | 144 |
|
0 | 145 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
11322
diff
changeset
|
146 |
syntax (xsymbols) |
13780 | 147 |
"op *" :: "[i, i] => i" (infixr "\<times>" 80) |
148 |
"op Int" :: "[i, i] => i" (infixl "\<inter>" 70) |
|
149 |
"op Un" :: "[i, i] => i" (infixl "\<union>" 65) |
|
150 |
"op ->" :: "[i, i] => i" (infixr "\<rightarrow>" 60) |
|
151 |
"op <=" :: "[i, i] => o" (infixl "\<subseteq>" 50) |
|
152 |
"op :" :: "[i, i] => o" (infixl "\<in>" 50) |
|
153 |
"op ~:" :: "[i, i] => o" (infixl "\<notin>" 50) |
|
154 |
"@Collect" :: "[pttrn, i, o] => i" ("(1{_ \<in> _ ./ _})") |
|
155 |
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \<in> _, _})") |
|
156 |
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ \<in> _})" [51,0,51]) |
|
157 |
"@UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_\<in>_./ _)" 10) |
|
158 |
"@INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_\<in>_./ _)" 10) |
|
159 |
Union :: "i =>i" ("\<Union>_" [90] 90) |
|
160 |
Inter :: "i =>i" ("\<Inter>_" [90] 90) |
|
161 |
"@PROD" :: "[pttrn, i, i] => i" ("(3\<Pi>_\<in>_./ _)" 10) |
|
162 |
"@SUM" :: "[pttrn, i, i] => i" ("(3\<Sigma>_\<in>_./ _)" 10) |
|
163 |
"@lam" :: "[pttrn, i, i] => i" ("(3\<lambda>_\<in>_./ _)" 10) |
|
164 |
"@Ball" :: "[pttrn, i, o] => o" ("(3\<forall>_\<in>_./ _)" 10) |
|
165 |
"@Bex" :: "[pttrn, i, o] => o" ("(3\<exists>_\<in>_./ _)" 10) |
|
166 |
"@Tuple" :: "[i, is] => i" ("\<langle>(_,/ _)\<rangle>") |
|
167 |
"@pattern" :: "patterns => pttrn" ("\<langle>_\<rangle>") |
|
2540 | 168 |
|
6340 | 169 |
syntax (HTML output) |
13780 | 170 |
"op *" :: "[i, i] => i" (infixr "\<times>" 80) |
14565 | 171 |
"op Int" :: "[i, i] => i" (infixl "\<inter>" 70) |
172 |
"op Un" :: "[i, i] => i" (infixl "\<union>" 65) |
|
173 |
"op <=" :: "[i, i] => o" (infixl "\<subseteq>" 50) |
|
174 |
"op :" :: "[i, i] => o" (infixl "\<in>" 50) |
|
175 |
"op ~:" :: "[i, i] => o" (infixl "\<notin>" 50) |
|
176 |
"@Collect" :: "[pttrn, i, o] => i" ("(1{_ \<in> _ ./ _})") |
|
177 |
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ \<in> _, _})") |
|
178 |
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ \<in> _})" [51,0,51]) |
|
179 |
"@UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_\<in>_./ _)" 10) |
|
180 |
"@INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_\<in>_./ _)" 10) |
|
181 |
Union :: "i =>i" ("\<Union>_" [90] 90) |
|
182 |
Inter :: "i =>i" ("\<Inter>_" [90] 90) |
|
183 |
"@PROD" :: "[pttrn, i, i] => i" ("(3\<Pi>_\<in>_./ _)" 10) |
|
184 |
"@SUM" :: "[pttrn, i, i] => i" ("(3\<Sigma>_\<in>_./ _)" 10) |
|
185 |
"@lam" :: "[pttrn, i, i] => i" ("(3\<lambda>_\<in>_./ _)" 10) |
|
186 |
"@Ball" :: "[pttrn, i, o] => o" ("(3\<forall>_\<in>_./ _)" 10) |
|
187 |
"@Bex" :: "[pttrn, i, o] => o" ("(3\<exists>_\<in>_./ _)" 10) |
|
188 |
"@Tuple" :: "[i, is] => i" ("\<langle>(_,/ _)\<rangle>") |
|
189 |
"@pattern" :: "patterns => pttrn" ("\<langle>_\<rangle>") |
|
6340 | 190 |
|
2540 | 191 |
|
14227 | 192 |
finalconsts |
193 |
0 Pow Inf Union PrimReplace |
|
194 |
"op :" |
|
195 |
||
13780 | 196 |
defs |
197 |
(*don't try to use constdefs: the declaration order is tightly constrained*) |
|
0 | 198 |
|
615 | 199 |
(* Bounded Quantifiers *) |
14227 | 200 |
Ball_def: "Ball(A, P) == \<forall>x. x\<in>A --> P(x)" |
201 |
Bex_def: "Bex(A, P) == \<exists>x. x\<in>A & P(x)" |
|
690 | 202 |
|
14227 | 203 |
subset_def: "A <= B == \<forall>x\<in>A. x\<in>B" |
690 | 204 |
|
3906 | 205 |
|
3940 | 206 |
local |
3906 | 207 |
|
13780 | 208 |
axioms |
0 | 209 |
|
615 | 210 |
(* ZF axioms -- see Suppes p.238 |
211 |
Axioms for Union, Pow and Replace state existence only, |
|
212 |
uniqueness is derivable using extensionality. *) |
|
0 | 213 |
|
13780 | 214 |
extension: "A = B <-> A <= B & B <= A" |
14227 | 215 |
Union_iff: "A \<in> Union(C) <-> (\<exists>B\<in>C. A\<in>B)" |
216 |
Pow_iff: "A \<in> Pow(B) <-> A <= B" |
|
0 | 217 |
|
615 | 218 |
(*We may name this set, though it is not uniquely defined.*) |
14227 | 219 |
infinity: "0\<in>Inf & (\<forall>y\<in>Inf. succ(y): Inf)" |
0 | 220 |
|
615 | 221 |
(*This formulation facilitates case analysis on A.*) |
14227 | 222 |
foundation: "A=0 | (\<exists>x\<in>A. \<forall>y\<in>x. y~:A)" |
0 | 223 |
|
615 | 224 |
(*Schema axiom since predicate P is a higher-order variable*) |
14227 | 225 |
replacement: "(\<forall>x\<in>A. \<forall>y z. P(x,y) & P(x,z) --> y=z) ==> |
226 |
b \<in> PrimReplace(A,P) <-> (\<exists>x\<in>A. P(x,b))" |
|
615 | 227 |
|
14883 | 228 |
|
690 | 229 |
defs |
230 |
||
615 | 231 |
(* Derived form of replacement, restricting P to its functional part. |
232 |
The resulting set (for functional P) is the same as with |
|
233 |
PrimReplace, but the rules are simpler. *) |
|
0 | 234 |
|
13780 | 235 |
Replace_def: "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))" |
615 | 236 |
|
237 |
(* Functional form of replacement -- analgous to ML's map functional *) |
|
0 | 238 |
|
14227 | 239 |
RepFun_def: "RepFun(A,f) == {y . x\<in>A, y=f(x)}" |
0 | 240 |
|
615 | 241 |
(* Separation and Pairing can be derived from the Replacement |
242 |
and Powerset Axioms using the following definitions. *) |
|
0 | 243 |
|
14227 | 244 |
Collect_def: "Collect(A,P) == {y . x\<in>A, x=y & P(x)}" |
0 | 245 |
|
615 | 246 |
(*Unordered pairs (Upair) express binary union/intersection and cons; |
247 |
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*) |
|
0 | 248 |
|
14227 | 249 |
Upair_def: "Upair(a,b) == {y. x\<in>Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}" |
13780 | 250 |
cons_def: "cons(a,A) == Upair(a,a) Un A" |
251 |
succ_def: "succ(i) == cons(i, i)" |
|
615 | 252 |
|
2872
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
paulson
parents:
2540
diff
changeset
|
253 |
(* Difference, general intersection, binary union and small intersection *) |
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
paulson
parents:
2540
diff
changeset
|
254 |
|
14227 | 255 |
Diff_def: "A - B == { x\<in>A . ~(x\<in>B) }" |
256 |
Inter_def: "Inter(A) == { x\<in>Union(A) . \<forall>y\<in>A. x\<in>y}" |
|
13780 | 257 |
Un_def: "A Un B == Union(Upair(A,B))" |
258 |
Int_def: "A Int B == Inter(Upair(A,B))" |
|
2872
ac81a17f86f8
Moved definitions (binary intersection, etc.) from upair.thy back to ZF.thy
paulson
parents:
2540
diff
changeset
|
259 |
|
14883 | 260 |
(* definite descriptions *) |
14227 | 261 |
the_def: "The(P) == Union({y . x \<in> {0}, P(y)})" |
13780 | 262 |
if_def: "if(P,a,b) == THE z. P & z=a | ~P & z=b" |
0 | 263 |
|
615 | 264 |
(* this "symmetric" definition works better than {{a}, {a,b}} *) |
13780 | 265 |
Pair_def: "<a,b> == {{a,a}, {a,b}}" |
14227 | 266 |
fst_def: "fst(p) == THE a. \<exists>b. p=<a,b>" |
267 |
snd_def: "snd(p) == THE b. \<exists>a. p=<a,b>" |
|
13780 | 268 |
split_def: "split(c) == %p. c(fst(p), snd(p))" |
14227 | 269 |
Sigma_def: "Sigma(A,B) == \<Union>x\<in>A. \<Union>y\<in>B(x). {<x,y>}" |
0 | 270 |
|
615 | 271 |
(* Operations on relations *) |
0 | 272 |
|
615 | 273 |
(*converse of relation r, inverse of function*) |
14227 | 274 |
converse_def: "converse(r) == {z. w\<in>r, \<exists>x y. w=<x,y> & z=<y,x>}" |
0 | 275 |
|
14227 | 276 |
domain_def: "domain(r) == {x. w\<in>r, \<exists>y. w=<x,y>}" |
13780 | 277 |
range_def: "range(r) == domain(converse(r))" |
278 |
field_def: "field(r) == domain(r) Un range(r)" |
|
14227 | 279 |
relation_def: "relation(r) == \<forall>z\<in>r. \<exists>x y. z = <x,y>" |
13780 | 280 |
function_def: "function(r) == |
14227 | 281 |
\<forall>x y. <x,y>:r --> (\<forall>y'. <x,y'>:r --> y=y')" |
282 |
image_def: "r `` A == {y : range(r) . \<exists>x\<in>A. <x,y> : r}" |
|
13780 | 283 |
vimage_def: "r -`` A == converse(r)``A" |
0 | 284 |
|
615 | 285 |
(* Abstraction, application and Cartesian product of a family of sets *) |
0 | 286 |
|
14227 | 287 |
lam_def: "Lambda(A,b) == {<x,b(x)> . x\<in>A}" |
13780 | 288 |
apply_def: "f`a == Union(f``{a})" |
14227 | 289 |
Pi_def: "Pi(A,B) == {f\<in>Pow(Sigma(A,B)). A<=domain(f) & function(f)}" |
0 | 290 |
|
12891 | 291 |
(* Restrict the relation r to the domain A *) |
14227 | 292 |
restrict_def: "restrict(r,A) == {z : r. \<exists>x\<in>A. \<exists>y. z = <x,y>}" |
13780 | 293 |
|
294 |
(* Pattern-matching and 'Dependent' type operators *) |
|
295 |
||
296 |
print_translation {* |
|
297 |
[("Pi", dependent_tr' ("@PROD", "op ->")), |
|
298 |
("Sigma", dependent_tr' ("@SUM", "op *"))]; |
|
299 |
*} |
|
300 |
||
301 |
subsection {* Substitution*} |
|
302 |
||
303 |
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *) |
|
14227 | 304 |
lemma subst_elem: "[| b\<in>A; a=b |] ==> a\<in>A" |
13780 | 305 |
by (erule ssubst, assumption) |
306 |
||
307 |
||
308 |
subsection{*Bounded universal quantifier*} |
|
309 |
||
14227 | 310 |
lemma ballI [intro!]: "[| !!x. x\<in>A ==> P(x) |] ==> \<forall>x\<in>A. P(x)" |
13780 | 311 |
by (simp add: Ball_def) |
312 |
||
15481 | 313 |
lemmas strip = impI allI ballI |
314 |
||
14227 | 315 |
lemma bspec [dest?]: "[| \<forall>x\<in>A. P(x); x: A |] ==> P(x)" |
13780 | 316 |
by (simp add: Ball_def) |
317 |
||
318 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
319 |
lemma rev_ballE [elim]: |
|
14227 | 320 |
"[| \<forall>x\<in>A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q" |
13780 | 321 |
by (simp add: Ball_def, blast) |
322 |
||
14227 | 323 |
lemma ballE: "[| \<forall>x\<in>A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q" |
13780 | 324 |
by blast |
325 |
||
326 |
(*Used in the datatype package*) |
|
14227 | 327 |
lemma rev_bspec: "[| x: A; \<forall>x\<in>A. P(x) |] ==> P(x)" |
13780 | 328 |
by (simp add: Ball_def) |
329 |
||
14227 | 330 |
(*Trival rewrite rule; (\<forall>x\<in>A.P)<->P holds only if A is nonempty!*) |
331 |
lemma ball_triv [simp]: "(\<forall>x\<in>A. P) <-> ((\<exists>x. x\<in>A) --> P)" |
|
13780 | 332 |
by (simp add: Ball_def) |
333 |
||
334 |
(*Congruence rule for rewriting*) |
|
335 |
lemma ball_cong [cong]: |
|
14227 | 336 |
"[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |] ==> (\<forall>x\<in>A. P(x)) <-> (\<forall>x\<in>A'. P'(x))" |
13780 | 337 |
by (simp add: Ball_def) |
338 |
||
339 |
||
340 |
subsection{*Bounded existential quantifier*} |
|
341 |
||
14227 | 342 |
lemma bexI [intro]: "[| P(x); x: A |] ==> \<exists>x\<in>A. P(x)" |
13780 | 343 |
by (simp add: Bex_def, blast) |
344 |
||
14227 | 345 |
(*The best argument order when there is only one x\<in>A*) |
346 |
lemma rev_bexI: "[| x\<in>A; P(x) |] ==> \<exists>x\<in>A. P(x)" |
|
13780 | 347 |
by blast |
348 |
||
14227 | 349 |
(*Not of the general form for such rules; ~\<exists>has become ALL~ *) |
350 |
lemma bexCI: "[| \<forall>x\<in>A. ~P(x) ==> P(a); a: A |] ==> \<exists>x\<in>A. P(x)" |
|
13780 | 351 |
by blast |
352 |
||
14227 | 353 |
lemma bexE [elim!]: "[| \<exists>x\<in>A. P(x); !!x. [| x\<in>A; P(x) |] ==> Q |] ==> Q" |
13780 | 354 |
by (simp add: Bex_def, blast) |
355 |
||
14227 | 356 |
(*We do not even have (\<exists>x\<in>A. True) <-> True unless A is nonempty!!*) |
357 |
lemma bex_triv [simp]: "(\<exists>x\<in>A. P) <-> ((\<exists>x. x\<in>A) & P)" |
|
13780 | 358 |
by (simp add: Bex_def) |
359 |
||
360 |
lemma bex_cong [cong]: |
|
14227 | 361 |
"[| A=A'; !!x. x\<in>A' ==> P(x) <-> P'(x) |] |
362 |
==> (\<exists>x\<in>A. P(x)) <-> (\<exists>x\<in>A'. P'(x))" |
|
13780 | 363 |
by (simp add: Bex_def cong: conj_cong) |
364 |
||
365 |
||
366 |
||
367 |
subsection{*Rules for subsets*} |
|
368 |
||
369 |
lemma subsetI [intro!]: |
|
14227 | 370 |
"(!!x. x\<in>A ==> x\<in>B) ==> A <= B" |
13780 | 371 |
by (simp add: subset_def) |
372 |
||
373 |
(*Rule in Modus Ponens style [was called subsetE] *) |
|
14227 | 374 |
lemma subsetD [elim]: "[| A <= B; c\<in>A |] ==> c\<in>B" |
13780 | 375 |
apply (unfold subset_def) |
376 |
apply (erule bspec, assumption) |
|
377 |
done |
|
378 |
||
379 |
(*Classical elimination rule*) |
|
380 |
lemma subsetCE [elim]: |
|
14227 | 381 |
"[| A <= B; c~:A ==> P; c\<in>B ==> P |] ==> P" |
13780 | 382 |
by (simp add: subset_def, blast) |
383 |
||
384 |
(*Sometimes useful with premises in this order*) |
|
14227 | 385 |
lemma rev_subsetD: "[| c\<in>A; A<=B |] ==> c\<in>B" |
13780 | 386 |
by blast |
387 |
||
388 |
lemma contra_subsetD: "[| A <= B; c ~: B |] ==> c ~: A" |
|
389 |
by blast |
|
390 |
||
391 |
lemma rev_contra_subsetD: "[| c ~: B; A <= B |] ==> c ~: A" |
|
392 |
by blast |
|
393 |
||
394 |
lemma subset_refl [simp]: "A <= A" |
|
395 |
by blast |
|
396 |
||
397 |
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C" |
|
398 |
by blast |
|
399 |
||
400 |
(*Useful for proving A<=B by rewriting in some cases*) |
|
401 |
lemma subset_iff: |
|
14227 | 402 |
"A<=B <-> (\<forall>x. x\<in>A --> x\<in>B)" |
13780 | 403 |
apply (unfold subset_def Ball_def) |
404 |
apply (rule iff_refl) |
|
405 |
done |
|
406 |
||
407 |
||
408 |
subsection{*Rules for equality*} |
|
409 |
||
410 |
(*Anti-symmetry of the subset relation*) |
|
411 |
lemma equalityI [intro]: "[| A <= B; B <= A |] ==> A = B" |
|
412 |
by (rule extension [THEN iffD2], rule conjI) |
|
413 |
||
414 |
||
14227 | 415 |
lemma equality_iffI: "(!!x. x\<in>A <-> x\<in>B) ==> A = B" |
13780 | 416 |
by (rule equalityI, blast+) |
417 |
||
418 |
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1, standard] |
|
419 |
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2, standard] |
|
420 |
||
421 |
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" |
|
422 |
by (blast dest: equalityD1 equalityD2) |
|
423 |
||
424 |
lemma equalityCE: |
|
14227 | 425 |
"[| A = B; [| c\<in>A; c\<in>B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P" |
13780 | 426 |
by (erule equalityE, blast) |
427 |
||
428 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
429 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
430 |
put universal quantifiers over the free variables in p. |
|
14227 | 431 |
Would it be better to do subgoal_tac "\<forall>z. p = f(z) --> R(z)" ??*) |
13780 | 432 |
lemma setup_induction: "[| p: A; !!z. z: A ==> p=z --> R |] ==> R" |
433 |
by auto |
|
434 |
||
435 |
||
436 |
||
437 |
subsection{*Rules for Replace -- the derived form of replacement*} |
|
438 |
||
439 |
lemma Replace_iff: |
|
14227 | 440 |
"b : {y. x\<in>A, P(x,y)} <-> (\<exists>x\<in>A. P(x,b) & (\<forall>y. P(x,y) --> y=b))" |
13780 | 441 |
apply (unfold Replace_def) |
442 |
apply (rule replacement [THEN iff_trans], blast+) |
|
443 |
done |
|
444 |
||
445 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *) |
|
446 |
lemma ReplaceI [intro]: |
|
447 |
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> |
|
14227 | 448 |
b : {y. x\<in>A, P(x,y)}" |
13780 | 449 |
by (rule Replace_iff [THEN iffD2], blast) |
450 |
||
451 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) |
|
452 |
lemma ReplaceE: |
|
14227 | 453 |
"[| b : {y. x\<in>A, P(x,y)}; |
454 |
!!x. [| x: A; P(x,b); \<forall>y. P(x,y)-->y=b |] ==> R |
|
13780 | 455 |
|] ==> R" |
456 |
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+) |
|
457 |
||
458 |
(*As above but without the (generally useless) 3rd assumption*) |
|
459 |
lemma ReplaceE2 [elim!]: |
|
14227 | 460 |
"[| b : {y. x\<in>A, P(x,y)}; |
13780 | 461 |
!!x. [| x: A; P(x,b) |] ==> R |
462 |
|] ==> R" |
|
463 |
by (erule ReplaceE, blast) |
|
464 |
||
465 |
lemma Replace_cong [cong]: |
|
14227 | 466 |
"[| A=B; !!x y. x\<in>B ==> P(x,y) <-> Q(x,y) |] ==> |
13780 | 467 |
Replace(A,P) = Replace(B,Q)" |
468 |
apply (rule equality_iffI) |
|
469 |
apply (simp add: Replace_iff) |
|
470 |
done |
|
471 |
||
472 |
||
473 |
subsection{*Rules for RepFun*} |
|
474 |
||
14227 | 475 |
lemma RepFunI: "a \<in> A ==> f(a) : {f(x). x\<in>A}" |
13780 | 476 |
by (simp add: RepFun_def Replace_iff, blast) |
477 |
||
478 |
(*Useful for coinduction proofs*) |
|
14227 | 479 |
lemma RepFun_eqI [intro]: "[| b=f(a); a \<in> A |] ==> b : {f(x). x\<in>A}" |
13780 | 480 |
apply (erule ssubst) |
481 |
apply (erule RepFunI) |
|
482 |
done |
|
483 |
||
484 |
lemma RepFunE [elim!]: |
|
14227 | 485 |
"[| b : {f(x). x\<in>A}; |
486 |
!!x.[| x\<in>A; b=f(x) |] ==> P |] ==> |
|
13780 | 487 |
P" |
488 |
by (simp add: RepFun_def Replace_iff, blast) |
|
489 |
||
490 |
lemma RepFun_cong [cong]: |
|
14227 | 491 |
"[| A=B; !!x. x\<in>B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" |
13780 | 492 |
by (simp add: RepFun_def) |
493 |
||
14227 | 494 |
lemma RepFun_iff [simp]: "b : {f(x). x\<in>A} <-> (\<exists>x\<in>A. b=f(x))" |
13780 | 495 |
by (unfold Bex_def, blast) |
496 |
||
14227 | 497 |
lemma triv_RepFun [simp]: "{x. x\<in>A} = A" |
13780 | 498 |
by blast |
499 |
||
500 |
||
501 |
subsection{*Rules for Collect -- forming a subset by separation*} |
|
502 |
||
503 |
(*Separation is derivable from Replacement*) |
|
14227 | 504 |
lemma separation [simp]: "a : {x\<in>A. P(x)} <-> a\<in>A & P(a)" |
13780 | 505 |
by (unfold Collect_def, blast) |
506 |
||
14227 | 507 |
lemma CollectI [intro!]: "[| a\<in>A; P(a) |] ==> a : {x\<in>A. P(x)}" |
13780 | 508 |
by simp |
509 |
||
14227 | 510 |
lemma CollectE [elim!]: "[| a : {x\<in>A. P(x)}; [| a\<in>A; P(a) |] ==> R |] ==> R" |
13780 | 511 |
by simp |
512 |
||
14227 | 513 |
lemma CollectD1: "a : {x\<in>A. P(x)} ==> a\<in>A" |
13780 | 514 |
by (erule CollectE, assumption) |
515 |
||
14227 | 516 |
lemma CollectD2: "a : {x\<in>A. P(x)} ==> P(a)" |
13780 | 517 |
by (erule CollectE, assumption) |
518 |
||
519 |
lemma Collect_cong [cong]: |
|
14227 | 520 |
"[| A=B; !!x. x\<in>B ==> P(x) <-> Q(x) |] |
13780 | 521 |
==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))" |
522 |
by (simp add: Collect_def) |
|
523 |
||
524 |
||
525 |
subsection{*Rules for Unions*} |
|
526 |
||
527 |
declare Union_iff [simp] |
|
528 |
||
529 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
|
530 |
lemma UnionI [intro]: "[| B: C; A: B |] ==> A: Union(C)" |
|
531 |
by (simp, blast) |
|
532 |
||
14227 | 533 |
lemma UnionE [elim!]: "[| A \<in> Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R" |
13780 | 534 |
by (simp, blast) |
535 |
||
536 |
||
537 |
subsection{*Rules for Unions of families*} |
|
14227 | 538 |
(* \<Union>x\<in>A. B(x) abbreviates Union({B(x). x\<in>A}) *) |
13780 | 539 |
|
14227 | 540 |
lemma UN_iff [simp]: "b : (\<Union>x\<in>A. B(x)) <-> (\<exists>x\<in>A. b \<in> B(x))" |
13780 | 541 |
by (simp add: Bex_def, blast) |
542 |
||
543 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
|
14227 | 544 |
lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\<Union>x\<in>A. B(x))" |
13780 | 545 |
by (simp, blast) |
546 |
||
547 |
||
548 |
lemma UN_E [elim!]: |
|
14227 | 549 |
"[| b : (\<Union>x\<in>A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" |
13780 | 550 |
by blast |
551 |
||
552 |
lemma UN_cong: |
|
14227 | 553 |
"[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Union>x\<in>A. C(x)) = (\<Union>x\<in>B. D(x))" |
13780 | 554 |
by simp |
555 |
||
556 |
||
14227 | 557 |
(*No "Addcongs [UN_cong]" because \<Union>is a combination of constants*) |
13780 | 558 |
|
559 |
(* UN_E appears before UnionE so that it is tried first, to avoid expensive |
|
560 |
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge |
|
561 |
the search space.*) |
|
562 |
||
563 |
||
564 |
subsection{*Rules for the empty set*} |
|
565 |
||
14227 | 566 |
(*The set {x\<in>0. False} is empty; by foundation it equals 0 |
13780 | 567 |
See Suppes, page 21.*) |
568 |
lemma not_mem_empty [simp]: "a ~: 0" |
|
569 |
apply (cut_tac foundation) |
|
570 |
apply (best dest: equalityD2) |
|
571 |
done |
|
572 |
||
573 |
lemmas emptyE [elim!] = not_mem_empty [THEN notE, standard] |
|
574 |
||
575 |
||
576 |
lemma empty_subsetI [simp]: "0 <= A" |
|
577 |
by blast |
|
578 |
||
14227 | 579 |
lemma equals0I: "[| !!y. y\<in>A ==> False |] ==> A=0" |
13780 | 580 |
by blast |
581 |
||
582 |
lemma equals0D [dest]: "A=0 ==> a ~: A" |
|
583 |
by blast |
|
584 |
||
585 |
declare sym [THEN equals0D, dest] |
|
586 |
||
14227 | 587 |
lemma not_emptyI: "a\<in>A ==> A ~= 0" |
13780 | 588 |
by blast |
589 |
||
14227 | 590 |
lemma not_emptyE: "[| A ~= 0; !!x. x\<in>A ==> R |] ==> R" |
13780 | 591 |
by blast |
592 |
||
593 |
||
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
594 |
subsection{*Rules for Inter*} |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
595 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
596 |
(*Not obviously useful for proving InterI, InterD, InterE*) |
14227 | 597 |
lemma Inter_iff: "A \<in> Inter(C) <-> (\<forall>x\<in>C. A: x) & C\<noteq>0" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
598 |
by (simp add: Inter_def Ball_def, blast) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
599 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
600 |
(* Intersection is well-behaved only if the family is non-empty! *) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
601 |
lemma InterI [intro!]: |
14227 | 602 |
"[| !!x. x: C ==> A: x; C\<noteq>0 |] ==> A \<in> Inter(C)" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
603 |
by (simp add: Inter_iff) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
604 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
605 |
(*A "destruct" rule -- every B in C contains A as an element, but |
14227 | 606 |
A\<in>B can hold when B\<in>C does not! This rule is analogous to "spec". *) |
607 |
lemma InterD [elim]: "[| A \<in> Inter(C); B \<in> C |] ==> A \<in> B" |
|
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
608 |
by (unfold Inter_def, blast) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
609 |
|
14227 | 610 |
(*"Classical" elimination rule -- does not require exhibiting B\<in>C *) |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
611 |
lemma InterE [elim]: |
14227 | 612 |
"[| A \<in> Inter(C); B~:C ==> R; A\<in>B ==> R |] ==> R" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
613 |
by (simp add: Inter_def, blast) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
614 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
615 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
616 |
subsection{*Rules for Intersections of families*} |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
617 |
|
14227 | 618 |
(* \<Inter>x\<in>A. B(x) abbreviates Inter({B(x). x\<in>A}) *) |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
619 |
|
14227 | 620 |
lemma INT_iff: "b : (\<Inter>x\<in>A. B(x)) <-> (\<forall>x\<in>A. b \<in> B(x)) & A\<noteq>0" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
621 |
by (force simp add: Inter_def) |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
622 |
|
14227 | 623 |
lemma INT_I: "[| !!x. x: A ==> b: B(x); A\<noteq>0 |] ==> b: (\<Inter>x\<in>A. B(x))" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
624 |
by blast |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
625 |
|
14227 | 626 |
lemma INT_E: "[| b : (\<Inter>x\<in>A. B(x)); a: A |] ==> b \<in> B(a)" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
627 |
by blast |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
628 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
629 |
lemma INT_cong: |
14227 | 630 |
"[| A=B; !!x. x\<in>B ==> C(x)=D(x) |] ==> (\<Inter>x\<in>A. C(x)) = (\<Inter>x\<in>B. D(x))" |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
631 |
by simp |
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
632 |
|
14227 | 633 |
(*No "Addcongs [INT_cong]" because \<Inter>is a combination of constants*) |
14095
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
634 |
|
a1ba833d6b61
Changed many Intersection rules from i:I to I~=0 to avoid introducing a new
paulson
parents:
14076
diff
changeset
|
635 |
|
13780 | 636 |
subsection{*Rules for Powersets*} |
637 |
||
14227 | 638 |
lemma PowI: "A <= B ==> A \<in> Pow(B)" |
13780 | 639 |
by (erule Pow_iff [THEN iffD2]) |
640 |
||
14227 | 641 |
lemma PowD: "A \<in> Pow(B) ==> A<=B" |
13780 | 642 |
by (erule Pow_iff [THEN iffD1]) |
643 |
||
644 |
declare Pow_iff [iff] |
|
645 |
||
14227 | 646 |
lemmas Pow_bottom = empty_subsetI [THEN PowI] (* 0 \<in> Pow(B) *) |
647 |
lemmas Pow_top = subset_refl [THEN PowI] (* A \<in> Pow(A) *) |
|
13780 | 648 |
|
649 |
||
650 |
subsection{*Cantor's Theorem: There is no surjection from a set to its powerset.*} |
|
651 |
||
652 |
(*The search is undirected. Allowing redundant introduction rules may |
|
653 |
make it diverge. Variable b represents ANY map, such as |
|
14227 | 654 |
(lam x\<in>A.b(x)): A->Pow(A). *) |
655 |
lemma cantor: "\<exists>S \<in> Pow(A). \<forall>x\<in>A. b(x) ~= S" |
|
13780 | 656 |
by (best elim!: equalityCE del: ReplaceI RepFun_eqI) |
657 |
||
658 |
ML |
|
659 |
{* |
|
660 |
val lam_def = thm "lam_def"; |
|
661 |
val domain_def = thm "domain_def"; |
|
662 |
val range_def = thm "range_def"; |
|
663 |
val image_def = thm "image_def"; |
|
664 |
val vimage_def = thm "vimage_def"; |
|
665 |
val field_def = thm "field_def"; |
|
666 |
val Inter_def = thm "Inter_def"; |
|
667 |
val Ball_def = thm "Ball_def"; |
|
668 |
val Bex_def = thm "Bex_def"; |
|
669 |
||
670 |
val ballI = thm "ballI"; |
|
671 |
val bspec = thm "bspec"; |
|
672 |
val rev_ballE = thm "rev_ballE"; |
|
673 |
val ballE = thm "ballE"; |
|
674 |
val rev_bspec = thm "rev_bspec"; |
|
675 |
val ball_triv = thm "ball_triv"; |
|
676 |
val ball_cong = thm "ball_cong"; |
|
677 |
val bexI = thm "bexI"; |
|
678 |
val rev_bexI = thm "rev_bexI"; |
|
679 |
val bexCI = thm "bexCI"; |
|
680 |
val bexE = thm "bexE"; |
|
681 |
val bex_triv = thm "bex_triv"; |
|
682 |
val bex_cong = thm "bex_cong"; |
|
683 |
val subst_elem = thm "subst_elem"; |
|
684 |
val subsetI = thm "subsetI"; |
|
685 |
val subsetD = thm "subsetD"; |
|
686 |
val subsetCE = thm "subsetCE"; |
|
687 |
val rev_subsetD = thm "rev_subsetD"; |
|
688 |
val contra_subsetD = thm "contra_subsetD"; |
|
689 |
val rev_contra_subsetD = thm "rev_contra_subsetD"; |
|
690 |
val subset_refl = thm "subset_refl"; |
|
691 |
val subset_trans = thm "subset_trans"; |
|
692 |
val subset_iff = thm "subset_iff"; |
|
693 |
val equalityI = thm "equalityI"; |
|
694 |
val equality_iffI = thm "equality_iffI"; |
|
695 |
val equalityD1 = thm "equalityD1"; |
|
696 |
val equalityD2 = thm "equalityD2"; |
|
697 |
val equalityE = thm "equalityE"; |
|
698 |
val equalityCE = thm "equalityCE"; |
|
699 |
val setup_induction = thm "setup_induction"; |
|
700 |
val Replace_iff = thm "Replace_iff"; |
|
701 |
val ReplaceI = thm "ReplaceI"; |
|
702 |
val ReplaceE = thm "ReplaceE"; |
|
703 |
val ReplaceE2 = thm "ReplaceE2"; |
|
704 |
val Replace_cong = thm "Replace_cong"; |
|
705 |
val RepFunI = thm "RepFunI"; |
|
706 |
val RepFun_eqI = thm "RepFun_eqI"; |
|
707 |
val RepFunE = thm "RepFunE"; |
|
708 |
val RepFun_cong = thm "RepFun_cong"; |
|
709 |
val RepFun_iff = thm "RepFun_iff"; |
|
710 |
val triv_RepFun = thm "triv_RepFun"; |
|
711 |
val separation = thm "separation"; |
|
712 |
val CollectI = thm "CollectI"; |
|
713 |
val CollectE = thm "CollectE"; |
|
714 |
val CollectD1 = thm "CollectD1"; |
|
715 |
val CollectD2 = thm "CollectD2"; |
|
716 |
val Collect_cong = thm "Collect_cong"; |
|
717 |
val UnionI = thm "UnionI"; |
|
718 |
val UnionE = thm "UnionE"; |
|
719 |
val UN_iff = thm "UN_iff"; |
|
720 |
val UN_I = thm "UN_I"; |
|
721 |
val UN_E = thm "UN_E"; |
|
722 |
val UN_cong = thm "UN_cong"; |
|
723 |
val Inter_iff = thm "Inter_iff"; |
|
724 |
val InterI = thm "InterI"; |
|
725 |
val InterD = thm "InterD"; |
|
726 |
val InterE = thm "InterE"; |
|
727 |
val INT_iff = thm "INT_iff"; |
|
728 |
val INT_I = thm "INT_I"; |
|
729 |
val INT_E = thm "INT_E"; |
|
730 |
val INT_cong = thm "INT_cong"; |
|
731 |
val PowI = thm "PowI"; |
|
732 |
val PowD = thm "PowD"; |
|
733 |
val Pow_bottom = thm "Pow_bottom"; |
|
734 |
val Pow_top = thm "Pow_top"; |
|
735 |
val not_mem_empty = thm "not_mem_empty"; |
|
736 |
val emptyE = thm "emptyE"; |
|
737 |
val empty_subsetI = thm "empty_subsetI"; |
|
738 |
val equals0I = thm "equals0I"; |
|
739 |
val equals0D = thm "equals0D"; |
|
740 |
val not_emptyI = thm "not_emptyI"; |
|
741 |
val not_emptyE = thm "not_emptyE"; |
|
742 |
val cantor = thm "cantor"; |
|
743 |
*} |
|
744 |
||
745 |
(*Functions for ML scripts*) |
|
746 |
ML |
|
747 |
{* |
|
14227 | 748 |
(*Converts A<=B to x\<in>A ==> x\<in>B*) |
13780 | 749 |
fun impOfSubs th = th RSN (2, rev_subsetD); |
750 |
||
14227 | 751 |
(*Takes assumptions \<forall>x\<in>A.P(x) and a\<in>A; creates assumption P(a)*) |
13780 | 752 |
val ball_tac = dtac bspec THEN' assume_tac |
753 |
*} |
|
0 | 754 |
|
755 |
end |
|
756 |