17481
|
1 |
(* Title: Sequents/LK/Nat.thy
|
7091
|
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
7095
|
3 |
Copyright 1999 University of Cambridge
|
7091
|
4 |
*)
|
|
5 |
|
17481
|
6 |
header {* Theory of the natural numbers: Peano's axioms, primitive recursion *}
|
|
7 |
|
|
8 |
theory Nat
|
55229
|
9 |
imports "../LK"
|
17481
|
10 |
begin
|
|
11 |
|
|
12 |
typedecl nat
|
|
13 |
arities nat :: "term"
|
7091
|
14 |
|
51309
|
15 |
axiomatization
|
|
16 |
Zero :: nat ("0") and
|
|
17 |
Suc :: "nat=>nat" and
|
|
18 |
rec :: "[nat, 'a, [nat,'a]=>'a] => 'a"
|
|
19 |
where
|
17481
|
20 |
induct: "[| $H |- $E, P(0), $F;
|
51309
|
21 |
!!x. $H, P(x) |- $E, P(Suc(x)), $F |] ==> $H |- $E, P(n), $F" and
|
7095
|
22 |
|
51309
|
23 |
Suc_inject: "|- Suc(m)=Suc(n) --> m=n" and
|
|
24 |
Suc_neq_0: "|- Suc(m) ~= 0" and
|
|
25 |
rec_0: "|- rec(0,a,f) = a" and
|
17481
|
26 |
rec_Suc: "|- rec(Suc(m), a, f) = f(m, rec(m,a,f))"
|
51309
|
27 |
|
|
28 |
definition add :: "[nat, nat] => nat" (infixl "+" 60)
|
|
29 |
where "m + n == rec(m, n, %x y. Suc(y))"
|
17481
|
30 |
|
21426
|
31 |
|
|
32 |
declare Suc_neq_0 [simp]
|
|
33 |
|
|
34 |
lemma Suc_inject_rule: "$H, $G, m = n |- $E \<Longrightarrow> $H, Suc(m) = Suc(n), $G |- $E"
|
|
35 |
by (rule L_of_imp [OF Suc_inject])
|
|
36 |
|
|
37 |
lemma Suc_n_not_n: "|- Suc(k) ~= k"
|
|
38 |
apply (rule_tac n = k in induct)
|
55230
|
39 |
apply simp
|
55228
|
40 |
apply (fast add!: Suc_inject_rule)
|
21426
|
41 |
done
|
|
42 |
|
|
43 |
lemma add_0: "|- 0+n = n"
|
|
44 |
apply (unfold add_def)
|
|
45 |
apply (rule rec_0)
|
|
46 |
done
|
|
47 |
|
|
48 |
lemma add_Suc: "|- Suc(m)+n = Suc(m+n)"
|
|
49 |
apply (unfold add_def)
|
|
50 |
apply (rule rec_Suc)
|
|
51 |
done
|
|
52 |
|
|
53 |
declare add_0 [simp] add_Suc [simp]
|
|
54 |
|
|
55 |
lemma add_assoc: "|- (k+m)+n = k+(m+n)"
|
|
56 |
apply (rule_tac n = "k" in induct)
|
55230
|
57 |
apply simp_all
|
21426
|
58 |
done
|
|
59 |
|
|
60 |
lemma add_0_right: "|- m+0 = m"
|
|
61 |
apply (rule_tac n = "m" in induct)
|
55230
|
62 |
apply simp_all
|
21426
|
63 |
done
|
|
64 |
|
|
65 |
lemma add_Suc_right: "|- m+Suc(n) = Suc(m+n)"
|
|
66 |
apply (rule_tac n = "m" in induct)
|
55230
|
67 |
apply simp_all
|
21426
|
68 |
done
|
|
69 |
|
|
70 |
lemma "(!!n. |- f(Suc(n)) = Suc(f(n))) ==> |- f(i+j) = i+f(j)"
|
|
71 |
apply (rule_tac n = "i" in induct)
|
55230
|
72 |
apply simp_all
|
21426
|
73 |
done
|
17481
|
74 |
|
7091
|
75 |
end
|