| author | blanchet | 
| Sat, 08 Sep 2012 21:30:31 +0200 | |
| changeset 49222 | cbe8c859817c | 
| parent 47255 | 30a1692557b0 | 
| child 49824 | c26665a197dc | 
| permissions | -rw-r--r-- | 
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 1 | (* Title: HOL/Power.thy | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 3 | Copyright 1997 University of Cambridge | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 4 | *) | 
| 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 5 | |
| 30960 | 6 | header {* Exponentiation *}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 7 | |
| 15131 | 8 | theory Power | 
| 47191 | 9 | imports Num | 
| 15131 | 10 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 11 | |
| 30960 | 12 | subsection {* Powers for Arbitrary Monoids *}
 | 
| 13 | ||
| 30996 | 14 | class power = one + times | 
| 30960 | 15 | begin | 
| 24996 | 16 | |
| 30960 | 17 | primrec power :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^" 80) where | 
| 18 | power_0: "a ^ 0 = 1" | |
| 19 | | power_Suc: "a ^ Suc n = a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 20 | |
| 30996 | 21 | notation (latex output) | 
| 22 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 23 | ||
| 24 | notation (HTML output) | |
| 25 |   power ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 26 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 27 | text {* Special syntax for squares. *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 28 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 29 | abbreviation (xsymbols) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 30 |   power2 :: "'a \<Rightarrow> 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 31 | "x\<twosuperior> \<equiv> x ^ 2" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 32 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 33 | notation (latex output) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 34 |   power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 35 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 36 | notation (HTML output) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 37 |   power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 38 | |
| 30960 | 39 | end | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 40 | |
| 30996 | 41 | context monoid_mult | 
| 42 | begin | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 43 | |
| 39438 
c5ece2a7a86e
Isar "default" step needs to fail for solved problems, for clear distinction of '.' and '..' for example -- amending lapse introduced in 9de4d64eee3b (April 2004);
 wenzelm parents: 
36409diff
changeset | 44 | subclass power . | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 45 | |
| 30996 | 46 | lemma power_one [simp]: | 
| 47 | "1 ^ n = 1" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 48 | by (induct n) simp_all | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 49 | |
| 30996 | 50 | lemma power_one_right [simp]: | 
| 31001 | 51 | "a ^ 1 = a" | 
| 30996 | 52 | by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 53 | |
| 30996 | 54 | lemma power_commutes: | 
| 55 | "a ^ n * a = a * a ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 56 | by (induct n) (simp_all add: mult_assoc) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
17149diff
changeset | 57 | |
| 30996 | 58 | lemma power_Suc2: | 
| 59 | "a ^ Suc n = a ^ n * a" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 60 | by (simp add: power_commutes) | 
| 28131 
3130d7b3149d
add lemma power_Suc2; generalize power_minus from class comm_ring_1 to ring_1
 huffman parents: 
25874diff
changeset | 61 | |
| 30996 | 62 | lemma power_add: | 
| 63 | "a ^ (m + n) = a ^ m * a ^ n" | |
| 64 | by (induct m) (simp_all add: algebra_simps) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 65 | |
| 30996 | 66 | lemma power_mult: | 
| 67 | "a ^ (m * n) = (a ^ m) ^ n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 68 | by (induct n) (simp_all add: power_add) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 69 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 70 | lemma power2_eq_square: "a\<twosuperior> = a * a" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 71 | by (simp add: numeral_2_eq_2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 72 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 73 | lemma power3_eq_cube: "a ^ 3 = a * a * a" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 74 | by (simp add: numeral_3_eq_3 mult_assoc) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 75 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 76 | lemma power_even_eq: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 77 | "a ^ (2*n) = (a ^ n) ^ 2" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 78 | by (subst mult_commute) (simp add: power_mult) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 79 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 80 | lemma power_odd_eq: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 81 | "a ^ Suc (2*n) = a * (a ^ n) ^ 2" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 82 | by (simp add: power_even_eq) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 83 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 84 | lemma power_numeral_even: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 85 | "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 86 | unfolding numeral_Bit0 power_add Let_def .. | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 87 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 88 | lemma power_numeral_odd: | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 89 | "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 90 | unfolding numeral_Bit1 One_nat_def add_Suc_right add_0_right | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 91 | unfolding power_Suc power_add Let_def mult_assoc .. | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 92 | |
| 30996 | 93 | end | 
| 94 | ||
| 95 | context comm_monoid_mult | |
| 96 | begin | |
| 97 | ||
| 98 | lemma power_mult_distrib: | |
| 99 | "(a * b) ^ n = (a ^ n) * (b ^ n)" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 100 | by (induct n) (simp_all add: mult_ac) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 101 | |
| 30996 | 102 | end | 
| 103 | ||
| 47191 | 104 | context semiring_numeral | 
| 105 | begin | |
| 106 | ||
| 107 | lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k" | |
| 108 | by (simp only: sqr_conv_mult numeral_mult) | |
| 109 | ||
| 110 | lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l" | |
| 111 | by (induct l, simp_all only: numeral_class.numeral.simps pow.simps | |
| 112 | numeral_sqr numeral_mult power_add power_one_right) | |
| 113 | ||
| 114 | lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)" | |
| 115 | by (rule numeral_pow [symmetric]) | |
| 116 | ||
| 117 | end | |
| 118 | ||
| 30996 | 119 | context semiring_1 | 
| 120 | begin | |
| 121 | ||
| 122 | lemma of_nat_power: | |
| 123 | "of_nat (m ^ n) = of_nat m ^ n" | |
| 124 | by (induct n) (simp_all add: of_nat_mult) | |
| 125 | ||
| 47191 | 126 | lemma power_zero_numeral [simp]: "(0::'a) ^ numeral k = 0" | 
| 47209 
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
 huffman parents: 
47192diff
changeset | 127 | by (simp add: numeral_eq_Suc) | 
| 47191 | 128 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 129 | lemma zero_power2: "0\<twosuperior> = 0" (* delete? *) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 130 | by (rule power_zero_numeral) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 131 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 132 | lemma one_power2: "1\<twosuperior> = 1" (* delete? *) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 133 | by (rule power_one) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 134 | |
| 30996 | 135 | end | 
| 136 | ||
| 137 | context comm_semiring_1 | |
| 138 | begin | |
| 139 | ||
| 140 | text {* The divides relation *}
 | |
| 141 | ||
| 142 | lemma le_imp_power_dvd: | |
| 143 | assumes "m \<le> n" shows "a ^ m dvd a ^ n" | |
| 144 | proof | |
| 145 | have "a ^ n = a ^ (m + (n - m))" | |
| 146 | using `m \<le> n` by simp | |
| 147 | also have "\<dots> = a ^ m * a ^ (n - m)" | |
| 148 | by (rule power_add) | |
| 149 | finally show "a ^ n = a ^ m * a ^ (n - m)" . | |
| 150 | qed | |
| 151 | ||
| 152 | lemma power_le_dvd: | |
| 153 | "a ^ n dvd b \<Longrightarrow> m \<le> n \<Longrightarrow> a ^ m dvd b" | |
| 154 | by (rule dvd_trans [OF le_imp_power_dvd]) | |
| 155 | ||
| 156 | lemma dvd_power_same: | |
| 157 | "x dvd y \<Longrightarrow> x ^ n dvd y ^ n" | |
| 158 | by (induct n) (auto simp add: mult_dvd_mono) | |
| 159 | ||
| 160 | lemma dvd_power_le: | |
| 161 | "x dvd y \<Longrightarrow> m \<ge> n \<Longrightarrow> x ^ n dvd y ^ m" | |
| 162 | by (rule power_le_dvd [OF dvd_power_same]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 163 | |
| 30996 | 164 | lemma dvd_power [simp]: | 
| 165 | assumes "n > (0::nat) \<or> x = 1" | |
| 166 | shows "x dvd (x ^ n)" | |
| 167 | using assms proof | |
| 168 | assume "0 < n" | |
| 169 | then have "x ^ n = x ^ Suc (n - 1)" by simp | |
| 170 | then show "x dvd (x ^ n)" by simp | |
| 171 | next | |
| 172 | assume "x = 1" | |
| 173 | then show "x dvd (x ^ n)" by simp | |
| 174 | qed | |
| 175 | ||
| 176 | end | |
| 177 | ||
| 178 | context ring_1 | |
| 179 | begin | |
| 180 | ||
| 181 | lemma power_minus: | |
| 182 | "(- a) ^ n = (- 1) ^ n * a ^ n" | |
| 183 | proof (induct n) | |
| 184 | case 0 show ?case by simp | |
| 185 | next | |
| 186 | case (Suc n) then show ?case | |
| 187 | by (simp del: power_Suc add: power_Suc2 mult_assoc) | |
| 188 | qed | |
| 189 | ||
| 47191 | 190 | lemma power_minus_Bit0: | 
| 191 | "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)" | |
| 192 | by (induct k, simp_all only: numeral_class.numeral.simps power_add | |
| 193 | power_one_right mult_minus_left mult_minus_right minus_minus) | |
| 194 | ||
| 195 | lemma power_minus_Bit1: | |
| 196 | "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))" | |
| 47220 
52426c62b5d0
replace lemmas eval_nat_numeral with a simpler reformulation
 huffman parents: 
47209diff
changeset | 197 | by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left) | 
| 47191 | 198 | |
| 199 | lemma power_neg_numeral_Bit0 [simp]: | |
| 200 | "neg_numeral k ^ numeral (Num.Bit0 l) = numeral (Num.pow k (Num.Bit0 l))" | |
| 201 | by (simp only: neg_numeral_def power_minus_Bit0 power_numeral) | |
| 202 | ||
| 203 | lemma power_neg_numeral_Bit1 [simp]: | |
| 204 | "neg_numeral k ^ numeral (Num.Bit1 l) = neg_numeral (Num.pow k (Num.Bit1 l))" | |
| 205 | by (simp only: neg_numeral_def power_minus_Bit1 power_numeral pow.simps) | |
| 206 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 207 | lemma power2_minus [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 208 | "(- a)\<twosuperior> = a\<twosuperior>" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 209 | by (rule power_minus_Bit0) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 210 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 211 | lemma power_minus1_even [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 212 | "-1 ^ (2*n) = 1" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 213 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 214 | case 0 show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 215 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 216 | case (Suc n) then show ?case by (simp add: power_add power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 217 | qed | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 218 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 219 | lemma power_minus1_odd: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 220 | "-1 ^ Suc (2*n) = -1" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 221 | by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 222 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 223 | lemma power_minus_even [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 224 | "(-a) ^ (2*n) = a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 225 | by (simp add: power_minus [of a]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 226 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 227 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 228 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 229 | context ring_1_no_zero_divisors | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 230 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 231 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 232 | lemma field_power_not_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 233 | "a \<noteq> 0 \<Longrightarrow> a ^ n \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 234 | by (induct n) auto | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 235 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 236 | lemma zero_eq_power2 [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 237 | "a\<twosuperior> = 0 \<longleftrightarrow> a = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 238 | unfolding power2_eq_square by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 239 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 240 | lemma power2_eq_1_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 241 | "a\<twosuperior> = 1 \<longleftrightarrow> a = 1 \<or> a = - 1" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 242 | unfolding power2_eq_square by (rule square_eq_1_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 243 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 244 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 245 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 246 | context idom | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 247 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 248 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 249 | lemma power2_eq_iff: "x\<twosuperior> = y\<twosuperior> \<longleftrightarrow> x = y \<or> x = - y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 250 | unfolding power2_eq_square by (rule square_eq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 251 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 252 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 253 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 254 | context division_ring | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 255 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 256 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 257 | text {* FIXME reorient or rename to @{text nonzero_inverse_power} *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 258 | lemma nonzero_power_inverse: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 259 | "a \<noteq> 0 \<Longrightarrow> inverse (a ^ n) = (inverse a) ^ n" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 260 | by (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 261 | (simp_all add: nonzero_inverse_mult_distrib power_commutes field_power_not_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 262 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 263 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 264 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 265 | context field | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 266 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 267 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 268 | lemma nonzero_power_divide: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 269 | "b \<noteq> 0 \<Longrightarrow> (a / b) ^ n = a ^ n / b ^ n" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 270 | by (simp add: divide_inverse power_mult_distrib nonzero_power_inverse) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 271 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 272 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 273 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 274 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 275 | subsection {* Exponentiation on ordered types *}
 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 276 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 277 | context linordered_ring (* TODO: move *) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 278 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 279 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 280 | lemma sum_squares_ge_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 281 | "0 \<le> x * x + y * y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 282 | by (intro add_nonneg_nonneg zero_le_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 283 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 284 | lemma not_sum_squares_lt_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 285 | "\<not> x * x + y * y < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 286 | by (simp add: not_less sum_squares_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 287 | |
| 30996 | 288 | end | 
| 289 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 290 | context linordered_semidom | 
| 30996 | 291 | begin | 
| 292 | ||
| 293 | lemma zero_less_power [simp]: | |
| 294 | "0 < a \<Longrightarrow> 0 < a ^ n" | |
| 295 | by (induct n) (simp_all add: mult_pos_pos) | |
| 296 | ||
| 297 | lemma zero_le_power [simp]: | |
| 298 | "0 \<le> a \<Longrightarrow> 0 \<le> a ^ n" | |
| 299 | by (induct n) (simp_all add: mult_nonneg_nonneg) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 300 | |
| 47241 | 301 | lemma power_mono: | 
| 302 | "a \<le> b \<Longrightarrow> 0 \<le> a \<Longrightarrow> a ^ n \<le> b ^ n" | |
| 303 | by (induct n) (auto intro: mult_mono order_trans [of 0 a b]) | |
| 304 | ||
| 305 | lemma one_le_power [simp]: "1 \<le> a \<Longrightarrow> 1 \<le> a ^ n" | |
| 306 | using power_mono [of 1 a n] by simp | |
| 307 | ||
| 308 | lemma power_le_one: "\<lbrakk>0 \<le> a; a \<le> 1\<rbrakk> \<Longrightarrow> a ^ n \<le> 1" | |
| 309 | using power_mono [of a 1 n] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 310 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 311 | lemma power_gt1_lemma: | 
| 30996 | 312 | assumes gt1: "1 < a" | 
| 313 | shows "1 < a * a ^ n" | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 314 | proof - | 
| 30996 | 315 | from gt1 have "0 \<le> a" | 
| 316 | by (fact order_trans [OF zero_le_one less_imp_le]) | |
| 317 | have "1 * 1 < a * 1" using gt1 by simp | |
| 318 | also have "\<dots> \<le> a * a ^ n" using gt1 | |
| 319 | by (simp only: mult_mono `0 \<le> a` one_le_power order_less_imp_le | |
| 14577 | 320 | zero_le_one order_refl) | 
| 321 | finally show ?thesis by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 322 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 323 | |
| 30996 | 324 | lemma power_gt1: | 
| 325 | "1 < a \<Longrightarrow> 1 < a ^ Suc n" | |
| 326 | by (simp add: power_gt1_lemma) | |
| 24376 | 327 | |
| 30996 | 328 | lemma one_less_power [simp]: | 
| 329 | "1 < a \<Longrightarrow> 0 < n \<Longrightarrow> 1 < a ^ n" | |
| 330 | by (cases n) (simp_all add: power_gt1_lemma) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 331 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 332 | lemma power_le_imp_le_exp: | 
| 30996 | 333 | assumes gt1: "1 < a" | 
| 334 | shows "a ^ m \<le> a ^ n \<Longrightarrow> m \<le> n" | |
| 335 | proof (induct m arbitrary: n) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 336 | case 0 | 
| 14577 | 337 | show ?case by simp | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 338 | next | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 339 | case (Suc m) | 
| 14577 | 340 | show ?case | 
| 341 | proof (cases n) | |
| 342 | case 0 | |
| 30996 | 343 | with Suc.prems Suc.hyps have "a * a ^ m \<le> 1" by simp | 
| 14577 | 344 | with gt1 show ?thesis | 
| 345 | by (force simp only: power_gt1_lemma | |
| 30996 | 346 | not_less [symmetric]) | 
| 14577 | 347 | next | 
| 348 | case (Suc n) | |
| 30996 | 349 | with Suc.prems Suc.hyps show ?thesis | 
| 14577 | 350 | by (force dest: mult_left_le_imp_le | 
| 30996 | 351 | simp add: less_trans [OF zero_less_one gt1]) | 
| 14577 | 352 | qed | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 353 | qed | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 354 | |
| 14577 | 355 | text{*Surely we can strengthen this? It holds for @{text "0<a<1"} too.*}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 356 | lemma power_inject_exp [simp]: | 
| 30996 | 357 | "1 < a \<Longrightarrow> a ^ m = a ^ n \<longleftrightarrow> m = n" | 
| 14577 | 358 | by (force simp add: order_antisym power_le_imp_le_exp) | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 359 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 360 | text{*Can relax the first premise to @{term "0<a"} in the case of the
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 361 | natural numbers.*} | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 362 | lemma power_less_imp_less_exp: | 
| 30996 | 363 | "1 < a \<Longrightarrow> a ^ m < a ^ n \<Longrightarrow> m < n" | 
| 364 | by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] | |
| 365 | power_le_imp_le_exp) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 366 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 367 | lemma power_strict_mono [rule_format]: | 
| 30996 | 368 | "a < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<longrightarrow> a ^ n < b ^ n" | 
| 369 | by (induct n) | |
| 370 | (auto simp add: mult_strict_mono le_less_trans [of 0 a b]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 371 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 372 | text{*Lemma for @{text power_strict_decreasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 373 | lemma power_Suc_less: | 
| 30996 | 374 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a * a ^ n < a ^ n" | 
| 375 | by (induct n) | |
| 376 | (auto simp add: mult_strict_left_mono) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 377 | |
| 30996 | 378 | lemma power_strict_decreasing [rule_format]: | 
| 379 | "n < N \<Longrightarrow> 0 < a \<Longrightarrow> a < 1 \<longrightarrow> a ^ N < a ^ n" | |
| 380 | proof (induct N) | |
| 381 | case 0 then show ?case by simp | |
| 382 | next | |
| 383 | case (Suc N) then show ?case | |
| 384 | apply (auto simp add: power_Suc_less less_Suc_eq) | |
| 385 | apply (subgoal_tac "a * a^N < 1 * a^n") | |
| 386 | apply simp | |
| 387 | apply (rule mult_strict_mono) apply auto | |
| 388 | done | |
| 389 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 390 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 391 | text{*Proof resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 392 | lemma power_decreasing [rule_format]: | 
| 393 | "n \<le> N \<Longrightarrow> 0 \<le> a \<Longrightarrow> a \<le> 1 \<longrightarrow> a ^ N \<le> a ^ n" | |
| 394 | proof (induct N) | |
| 395 | case 0 then show ?case by simp | |
| 396 | next | |
| 397 | case (Suc N) then show ?case | |
| 398 | apply (auto simp add: le_Suc_eq) | |
| 399 | apply (subgoal_tac "a * a^N \<le> 1 * a^n", simp) | |
| 400 | apply (rule mult_mono) apply auto | |
| 401 | done | |
| 402 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 403 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 404 | lemma power_Suc_less_one: | 
| 30996 | 405 | "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> a ^ Suc n < 1" | 
| 406 | using power_strict_decreasing [of 0 "Suc n" a] by simp | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 407 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 408 | text{*Proof again resembles that of @{text power_strict_decreasing}*}
 | 
| 30996 | 409 | lemma power_increasing [rule_format]: | 
| 410 | "n \<le> N \<Longrightarrow> 1 \<le> a \<Longrightarrow> a ^ n \<le> a ^ N" | |
| 411 | proof (induct N) | |
| 412 | case 0 then show ?case by simp | |
| 413 | next | |
| 414 | case (Suc N) then show ?case | |
| 415 | apply (auto simp add: le_Suc_eq) | |
| 416 | apply (subgoal_tac "1 * a^n \<le> a * a^N", simp) | |
| 417 | apply (rule mult_mono) apply (auto simp add: order_trans [OF zero_le_one]) | |
| 418 | done | |
| 419 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 420 | |
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 421 | text{*Lemma for @{text power_strict_increasing}*}
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 422 | lemma power_less_power_Suc: | 
| 30996 | 423 | "1 < a \<Longrightarrow> a ^ n < a * a ^ n" | 
| 424 | by (induct n) (auto simp add: mult_strict_left_mono less_trans [OF zero_less_one]) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 425 | |
| 30996 | 426 | lemma power_strict_increasing [rule_format]: | 
| 427 | "n < N \<Longrightarrow> 1 < a \<longrightarrow> a ^ n < a ^ N" | |
| 428 | proof (induct N) | |
| 429 | case 0 then show ?case by simp | |
| 430 | next | |
| 431 | case (Suc N) then show ?case | |
| 432 | apply (auto simp add: power_less_power_Suc less_Suc_eq) | |
| 433 | apply (subgoal_tac "1 * a^n < a * a^N", simp) | |
| 434 | apply (rule mult_strict_mono) apply (auto simp add: less_trans [OF zero_less_one] less_imp_le) | |
| 435 | done | |
| 436 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 437 | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 438 | lemma power_increasing_iff [simp]: | 
| 30996 | 439 | "1 < b \<Longrightarrow> b ^ x \<le> b ^ y \<longleftrightarrow> x \<le> y" | 
| 440 | by (blast intro: power_le_imp_le_exp power_increasing less_imp_le) | |
| 15066 | 441 | |
| 442 | lemma power_strict_increasing_iff [simp]: | |
| 30996 | 443 | "1 < b \<Longrightarrow> b ^ x < b ^ y \<longleftrightarrow> x < y" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 444 | by (blast intro: power_less_imp_less_exp power_strict_increasing) | 
| 15066 | 445 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 446 | lemma power_le_imp_le_base: | 
| 30996 | 447 | assumes le: "a ^ Suc n \<le> b ^ Suc n" | 
| 448 | and ynonneg: "0 \<le> b" | |
| 449 | shows "a \<le> b" | |
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 450 | proof (rule ccontr) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 451 | assume "~ a \<le> b" | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 452 | then have "b < a" by (simp only: linorder_not_le) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 453 | then have "b ^ Suc n < a ^ Suc n" | 
| 41550 | 454 | by (simp only: assms power_strict_mono) | 
| 30996 | 455 | from le and this show False | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 456 | by (simp add: linorder_not_less [symmetric]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25062diff
changeset | 457 | qed | 
| 14577 | 458 | |
| 22853 | 459 | lemma power_less_imp_less_base: | 
| 460 | assumes less: "a ^ n < b ^ n" | |
| 461 | assumes nonneg: "0 \<le> b" | |
| 462 | shows "a < b" | |
| 463 | proof (rule contrapos_pp [OF less]) | |
| 464 | assume "~ a < b" | |
| 465 | hence "b \<le> a" by (simp only: linorder_not_less) | |
| 466 | hence "b ^ n \<le> a ^ n" using nonneg by (rule power_mono) | |
| 30996 | 467 | thus "\<not> a ^ n < b ^ n" by (simp only: linorder_not_less) | 
| 22853 | 468 | qed | 
| 469 | ||
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 470 | lemma power_inject_base: | 
| 30996 | 471 | "a ^ Suc n = b ^ Suc n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a = b" | 
| 472 | by (blast intro: power_le_imp_le_base antisym eq_refl sym) | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 473 | |
| 22955 | 474 | lemma power_eq_imp_eq_base: | 
| 30996 | 475 | "a ^ n = b ^ n \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 < n \<Longrightarrow> a = b" | 
| 476 | by (cases n) (simp_all del: power_Suc, rule power_inject_base) | |
| 22955 | 477 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 478 | lemma power2_le_imp_le: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 479 | "x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 480 | unfolding numeral_2_eq_2 by (rule power_le_imp_le_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 481 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 482 | lemma power2_less_imp_less: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 483 | "x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 484 | by (rule power_less_imp_less_base) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 485 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 486 | lemma power2_eq_imp_eq: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 487 | "x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 488 | unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 489 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 490 | end | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 491 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 492 | context linordered_ring_strict | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 493 | begin | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 494 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 495 | lemma sum_squares_eq_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 496 | "x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 497 | by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 498 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 499 | lemma sum_squares_le_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 500 | "x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 501 | by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 502 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 503 | lemma sum_squares_gt_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 504 | "0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 505 | by (simp add: not_le [symmetric] sum_squares_le_zero_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 506 | |
| 30996 | 507 | end | 
| 508 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33364diff
changeset | 509 | context linordered_idom | 
| 30996 | 510 | begin | 
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 511 | |
| 30996 | 512 | lemma power_abs: | 
| 513 | "abs (a ^ n) = abs a ^ n" | |
| 514 | by (induct n) (auto simp add: abs_mult) | |
| 515 | ||
| 516 | lemma abs_power_minus [simp]: | |
| 517 | "abs ((-a) ^ n) = abs (a ^ n)" | |
| 35216 | 518 | by (simp add: power_abs) | 
| 30996 | 519 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35216diff
changeset | 520 | lemma zero_less_power_abs_iff [simp, no_atp]: | 
| 30996 | 521 | "0 < abs a ^ n \<longleftrightarrow> a \<noteq> 0 \<or> n = 0" | 
| 522 | proof (induct n) | |
| 523 | case 0 show ?case by simp | |
| 524 | next | |
| 525 | case (Suc n) show ?case by (auto simp add: Suc zero_less_mult_iff) | |
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 526 | qed | 
| 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 527 | |
| 30996 | 528 | lemma zero_le_power_abs [simp]: | 
| 529 | "0 \<le> abs a ^ n" | |
| 530 | by (rule zero_le_power [OF abs_ge_zero]) | |
| 531 | ||
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 532 | lemma zero_le_power2 [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 533 | "0 \<le> a\<twosuperior>" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 534 | by (simp add: power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 535 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 536 | lemma zero_less_power2 [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 537 | "0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 538 | by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 539 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 540 | lemma power2_less_0 [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 541 | "\<not> a\<twosuperior> < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 542 | by (force simp add: power2_eq_square mult_less_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 543 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 544 | lemma abs_power2 [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 545 | "abs (a\<twosuperior>) = a\<twosuperior>" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 546 | by (simp add: power2_eq_square abs_mult abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 547 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 548 | lemma power2_abs [simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 549 | "(abs a)\<twosuperior> = a\<twosuperior>" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 550 | by (simp add: power2_eq_square abs_mult_self) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 551 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 552 | lemma odd_power_less_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 553 | "a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 554 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 555 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 556 | then show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 557 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 558 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 559 | have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 560 | by (simp add: mult_ac power_add power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 561 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 562 | by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 563 | qed | 
| 30996 | 564 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 565 | lemma odd_0_le_power_imp_0_le: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 566 | "0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 567 | using odd_power_less_zero [of a n] | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 568 | by (force simp add: linorder_not_less [symmetric]) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 569 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 570 | lemma zero_le_even_power'[simp]: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 571 | "0 \<le> a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 572 | proof (induct n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 573 | case 0 | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 574 | show ?case by simp | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 575 | next | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 576 | case (Suc n) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 577 | have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 578 | by (simp add: mult_ac power_add power2_eq_square) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 579 | thus ?case | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 580 | by (simp add: Suc zero_le_mult_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 581 | qed | 
| 30996 | 582 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 583 | lemma sum_power2_ge_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 584 | "0 \<le> x\<twosuperior> + y\<twosuperior>" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 585 | by (intro add_nonneg_nonneg zero_le_power2) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 586 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 587 | lemma not_sum_power2_lt_zero: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 588 | "\<not> x\<twosuperior> + y\<twosuperior> < 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 589 | unfolding not_less by (rule sum_power2_ge_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 590 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 591 | lemma sum_power2_eq_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 592 | "x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 593 | unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 594 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 595 | lemma sum_power2_le_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 596 | "x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 597 | by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero) | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 598 | |
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 599 | lemma sum_power2_gt_zero_iff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 600 | "0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 601 | unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff) | 
| 30996 | 602 | |
| 603 | end | |
| 604 | ||
| 29978 
33df3c4eb629
generalize le_imp_power_dvd and power_le_dvd; move from Divides to Power
 huffman parents: 
29608diff
changeset | 605 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 606 | subsection {* Miscellaneous rules *}
 | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 607 | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 608 | lemma power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))" | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 609 | unfolding One_nat_def by (cases m) simp_all | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 610 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 611 | lemma power2_sum: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 612 | fixes x y :: "'a::comm_semiring_1" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 613 | shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 614 | by (simp add: algebra_simps power2_eq_square mult_2_right) | 
| 30996 | 615 | |
| 47192 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 616 | lemma power2_diff: | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 617 | fixes x y :: "'a::comm_ring_1" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 618 | shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y" | 
| 
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
 huffman parents: 
47191diff
changeset | 619 | by (simp add: ring_distribs power2_eq_square mult_2) (rule mult_commute) | 
| 30996 | 620 | |
| 621 | lemma power_0_Suc [simp]: | |
| 622 |   "(0::'a::{power, semiring_0}) ^ Suc n = 0"
 | |
| 623 | by simp | |
| 30313 | 624 | |
| 30996 | 625 | text{*It looks plausible as a simprule, but its effect can be strange.*}
 | 
| 626 | lemma power_0_left: | |
| 627 |   "0 ^ n = (if n = 0 then 1 else (0::'a::{power, semiring_0}))"
 | |
| 628 | by (induct n) simp_all | |
| 629 | ||
| 630 | lemma power_eq_0_iff [simp]: | |
| 631 | "a ^ n = 0 \<longleftrightarrow> | |
| 632 |      a = (0::'a::{mult_zero,zero_neq_one,no_zero_divisors,power}) \<and> n \<noteq> 0"
 | |
| 633 | by (induct n) | |
| 634 | (auto simp add: no_zero_divisors elim: contrapos_pp) | |
| 635 | ||
| 36409 | 636 | lemma (in field) power_diff: | 
| 30996 | 637 | assumes nz: "a \<noteq> 0" | 
| 638 | shows "n \<le> m \<Longrightarrow> a ^ (m - n) = a ^ m / a ^ n" | |
| 36409 | 639 | by (induct m n rule: diff_induct) (simp_all add: nz field_power_not_zero) | 
| 30313 | 640 | |
| 30996 | 641 | text{*Perhaps these should be simprules.*}
 | 
| 642 | lemma power_inverse: | |
| 36409 | 643 | fixes a :: "'a::division_ring_inverse_zero" | 
| 644 | shows "inverse (a ^ n) = inverse a ^ n" | |
| 30996 | 645 | apply (cases "a = 0") | 
| 646 | apply (simp add: power_0_left) | |
| 647 | apply (simp add: nonzero_power_inverse) | |
| 648 | done (* TODO: reorient or rename to inverse_power *) | |
| 649 | ||
| 650 | lemma power_one_over: | |
| 36409 | 651 |   "1 / (a::'a::{field_inverse_zero, power}) ^ n =  (1 / a) ^ n"
 | 
| 30996 | 652 | by (simp add: divide_inverse) (rule power_inverse) | 
| 653 | ||
| 654 | lemma power_divide: | |
| 36409 | 655 | "(a / b) ^ n = (a::'a::field_inverse_zero) ^ n / b ^ n" | 
| 30996 | 656 | apply (cases "b = 0") | 
| 657 | apply (simp add: power_0_left) | |
| 658 | apply (rule nonzero_power_divide) | |
| 659 | apply assumption | |
| 30313 | 660 | done | 
| 661 | ||
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 662 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 663 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 664 | lemmas zero_compare_simps = | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 665 | add_strict_increasing add_strict_increasing2 add_increasing | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 666 | zero_le_mult_iff zero_le_divide_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 667 | zero_less_mult_iff zero_less_divide_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 668 | mult_le_0_iff divide_le_0_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 669 | mult_less_0_iff divide_less_0_iff | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 670 | zero_le_power2 power2_less_0 | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47241diff
changeset | 671 | |
| 30313 | 672 | |
| 30960 | 673 | subsection {* Exponentiation for the Natural Numbers *}
 | 
| 14577 | 674 | |
| 30996 | 675 | lemma nat_one_le_power [simp]: | 
| 676 | "Suc 0 \<le> i \<Longrightarrow> Suc 0 \<le> i ^ n" | |
| 677 | by (rule one_le_power [of i n, unfolded One_nat_def]) | |
| 23305 | 678 | |
| 30996 | 679 | lemma nat_zero_less_power_iff [simp]: | 
| 680 | "x ^ n > 0 \<longleftrightarrow> x > (0::nat) \<or> n = 0" | |
| 681 | by (induct n) auto | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 682 | |
| 30056 | 683 | lemma nat_power_eq_Suc_0_iff [simp]: | 
| 30996 | 684 | "x ^ m = Suc 0 \<longleftrightarrow> m = 0 \<or> x = Suc 0" | 
| 685 | by (induct m) auto | |
| 30056 | 686 | |
| 30996 | 687 | lemma power_Suc_0 [simp]: | 
| 688 | "Suc 0 ^ n = Suc 0" | |
| 689 | by simp | |
| 30056 | 690 | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 691 | text{*Valid for the naturals, but what if @{text"0<i<1"}?
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 692 | Premises cannot be weakened: consider the case where @{term "i=0"},
 | 
| 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 693 | @{term "m=1"} and @{term "n=0"}.*}
 | 
| 21413 | 694 | lemma nat_power_less_imp_less: | 
| 695 | assumes nonneg: "0 < (i\<Colon>nat)" | |
| 30996 | 696 | assumes less: "i ^ m < i ^ n" | 
| 21413 | 697 | shows "m < n" | 
| 698 | proof (cases "i = 1") | |
| 699 | case True with less power_one [where 'a = nat] show ?thesis by simp | |
| 700 | next | |
| 701 | case False with nonneg have "1 < i" by auto | |
| 702 | from power_strict_increasing_iff [OF this] less show ?thesis .. | |
| 703 | qed | |
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
8844diff
changeset | 704 | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 705 | lemma power_dvd_imp_le: | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 706 | "i ^ m dvd i ^ n \<Longrightarrow> (1::nat) < i \<Longrightarrow> m \<le> n" | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 707 | apply (rule power_le_imp_le_exp, assumption) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 708 | apply (erule dvd_imp_le, simp) | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 709 | done | 
| 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
31998diff
changeset | 710 | |
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 711 | |
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 712 | subsection {* Code generator tweak *}
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 713 | |
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
41550diff
changeset | 714 | lemma power_power_power [code]: | 
| 31155 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 715 |   "power = power.power (1::'a::{power}) (op *)"
 | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 716 | unfolding power_def power.power_def .. | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 717 | |
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 718 | declare power.power.simps [code] | 
| 
92d8ff6af82c
monomorphic code generation for power operations
 haftmann parents: 
31021diff
changeset | 719 | |
| 33364 | 720 | code_modulename SML | 
| 721 | Power Arith | |
| 722 | ||
| 723 | code_modulename OCaml | |
| 724 | Power Arith | |
| 725 | ||
| 726 | code_modulename Haskell | |
| 727 | Power Arith | |
| 728 | ||
| 3390 
0c7625196d95
New theory "Power" of exponentiation (and binomial coefficients)
 paulson parents: diff
changeset | 729 | end |