| author | blanchet | 
| Sat, 08 Sep 2012 21:30:31 +0200 | |
| changeset 49222 | cbe8c859817c | 
| parent 47399 | b72fa7bf9a10 | 
| child 51112 | da97167e03f7 | 
| permissions | -rw-r--r-- | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Predicate.thy | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 2 | Author: Lukas Bulwahn and Florian Haftmann, TU Muenchen | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 3 | *) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 4 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 5 | header {* Predicates as enumerations *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 6 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 7 | theory Predicate | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 8 | imports List | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 9 | begin | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 10 | |
| 30328 | 11 | notation | 
| 41082 | 12 |   bot ("\<bottom>") and
 | 
| 13 |   top ("\<top>") and
 | |
| 30328 | 14 | inf (infixl "\<sqinter>" 70) and | 
| 15 | sup (infixl "\<squnion>" 65) and | |
| 16 |   Inf ("\<Sqinter>_" [900] 900) and
 | |
| 41082 | 17 |   Sup ("\<Squnion>_" [900] 900)
 | 
| 30328 | 18 | |
| 41080 | 19 | syntax (xsymbols) | 
| 41082 | 20 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 21 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 41080 | 22 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 23 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 24 | ||
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 25 | subsection {* The type of predicate enumerations (a monad) *}
 | 
| 30328 | 26 | |
| 27 | datatype 'a pred = Pred "'a \<Rightarrow> bool" | |
| 28 | ||
| 29 | primrec eval :: "'a pred \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 30 | eval_pred: "eval (Pred f) = f" | |
| 31 | ||
| 32 | lemma Pred_eval [simp]: | |
| 33 | "Pred (eval x) = x" | |
| 34 | by (cases x) simp | |
| 35 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 36 | lemma pred_eqI: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 37 | "(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 38 | by (cases P, cases Q) (auto simp add: fun_eq_iff) | 
| 30328 | 39 | |
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 40 | lemma pred_eq_iff: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 41 | "P = Q \<Longrightarrow> (\<And>w. eval P w \<longleftrightarrow> eval Q w)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 42 | by (simp add: pred_eqI) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 43 | |
| 44033 | 44 | instantiation pred :: (type) complete_lattice | 
| 30328 | 45 | begin | 
| 46 | ||
| 47 | definition | |
| 48 | "P \<le> Q \<longleftrightarrow> eval P \<le> eval Q" | |
| 49 | ||
| 50 | definition | |
| 51 | "P < Q \<longleftrightarrow> eval P < eval Q" | |
| 52 | ||
| 53 | definition | |
| 54 | "\<bottom> = Pred \<bottom>" | |
| 55 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 56 | lemma eval_bot [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 57 | "eval \<bottom> = \<bottom>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 58 | by (simp add: bot_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 59 | |
| 30328 | 60 | definition | 
| 61 | "\<top> = Pred \<top>" | |
| 62 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 63 | lemma eval_top [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 64 | "eval \<top> = \<top>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 65 | by (simp add: top_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 66 | |
| 30328 | 67 | definition | 
| 68 | "P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)" | |
| 69 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 70 | lemma eval_inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 71 | "eval (P \<sqinter> Q) = eval P \<sqinter> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 72 | by (simp add: inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 73 | |
| 30328 | 74 | definition | 
| 75 | "P \<squnion> Q = Pred (eval P \<squnion> eval Q)" | |
| 76 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 77 | lemma eval_sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 78 | "eval (P \<squnion> Q) = eval P \<squnion> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 79 | by (simp add: sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 80 | |
| 30328 | 81 | definition | 
| 37767 | 82 | "\<Sqinter>A = Pred (INFI A eval)" | 
| 30328 | 83 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 84 | lemma eval_Inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 85 | "eval (\<Sqinter>A) = INFI A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 86 | by (simp add: Inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 87 | |
| 30328 | 88 | definition | 
| 37767 | 89 | "\<Squnion>A = Pred (SUPR A eval)" | 
| 30328 | 90 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 91 | lemma eval_Sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 92 | "eval (\<Squnion>A) = SUPR A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 93 | by (simp add: Sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 94 | |
| 44033 | 95 | instance proof | 
| 44415 | 96 | qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def le_fun_def less_fun_def) | 
| 44033 | 97 | |
| 98 | end | |
| 99 | ||
| 100 | lemma eval_INFI [simp]: | |
| 101 | "eval (INFI A f) = INFI A (eval \<circ> f)" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44415diff
changeset | 102 | by (simp only: INF_def eval_Inf image_compose) | 
| 44033 | 103 | |
| 104 | lemma eval_SUPR [simp]: | |
| 105 | "eval (SUPR A f) = SUPR A (eval \<circ> f)" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44415diff
changeset | 106 | by (simp only: SUP_def eval_Sup image_compose) | 
| 44033 | 107 | |
| 108 | instantiation pred :: (type) complete_boolean_algebra | |
| 109 | begin | |
| 110 | ||
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 111 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 112 | "- P = Pred (- eval P)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 113 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 114 | lemma eval_compl [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 115 | "eval (- P) = - eval P" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 116 | by (simp add: uminus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 117 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 118 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 119 | "P - Q = Pred (eval P - eval Q)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 120 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 121 | lemma eval_minus [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 122 | "eval (P - Q) = eval P - eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 123 | by (simp add: minus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 124 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 125 | instance proof | 
| 46884 | 126 | qed (auto intro!: pred_eqI) | 
| 30328 | 127 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 128 | end | 
| 30328 | 129 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 130 | definition single :: "'a \<Rightarrow> 'a pred" where | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 131 | "single x = Pred ((op =) x)" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 132 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 133 | lemma eval_single [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 134 | "eval (single x) = (op =) x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 135 | by (simp add: single_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 136 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 137 | definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
 | 
| 41080 | 138 |   "P \<guillemotright>= f = (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 139 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 140 | lemma eval_bind [simp]: | 
| 41080 | 141 |   "eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 142 | by (simp add: bind_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 143 | |
| 30328 | 144 | lemma bind_bind: | 
| 145 | "(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)" | |
| 46884 | 146 | by (rule pred_eqI) auto | 
| 30328 | 147 | |
| 148 | lemma bind_single: | |
| 149 | "P \<guillemotright>= single = P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 150 | by (rule pred_eqI) auto | 
| 30328 | 151 | |
| 152 | lemma single_bind: | |
| 153 | "single x \<guillemotright>= P = P x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 154 | by (rule pred_eqI) auto | 
| 30328 | 155 | |
| 156 | lemma bottom_bind: | |
| 157 | "\<bottom> \<guillemotright>= P = \<bottom>" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 158 | by (rule pred_eqI) auto | 
| 30328 | 159 | |
| 160 | lemma sup_bind: | |
| 161 | "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 162 | by (rule pred_eqI) auto | 
| 30328 | 163 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 164 | lemma Sup_bind: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 165 | "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)" | 
| 46884 | 166 | by (rule pred_eqI) auto | 
| 30328 | 167 | |
| 168 | lemma pred_iffI: | |
| 169 | assumes "\<And>x. eval A x \<Longrightarrow> eval B x" | |
| 170 | and "\<And>x. eval B x \<Longrightarrow> eval A x" | |
| 171 | shows "A = B" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 172 | using assms by (auto intro: pred_eqI) | 
| 30328 | 173 | |
| 174 | lemma singleI: "eval (single x) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 175 | by simp | 
| 30328 | 176 | |
| 177 | lemma singleI_unit: "eval (single ()) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 178 | by simp | 
| 30328 | 179 | |
| 180 | lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 181 | by simp | 
| 30328 | 182 | |
| 183 | lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 184 | by simp | 
| 30328 | 185 | |
| 186 | lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 187 | by auto | 
| 30328 | 188 | |
| 189 | lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 190 | by auto | 
| 30328 | 191 | |
| 192 | lemma botE: "eval \<bottom> x \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 193 | by auto | 
| 30328 | 194 | |
| 195 | lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 196 | by auto | 
| 30328 | 197 | |
| 198 | lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 199 | by auto | 
| 30328 | 200 | |
| 201 | lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 202 | by auto | 
| 30328 | 203 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 204 | lemma single_not_bot [simp]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 205 | "single x \<noteq> \<bottom>" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 206 | by (auto simp add: single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 207 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 208 | lemma not_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 209 | assumes "A \<noteq> \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 210 | obtains x where "eval A x" | 
| 45970 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 haftmann parents: 
45630diff
changeset | 211 | using assms by (cases A) (auto simp add: bot_pred_def) | 
| 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 haftmann parents: 
45630diff
changeset | 212 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 213 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 214 | subsection {* Emptiness check and definite choice *}
 | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 215 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 216 | definition is_empty :: "'a pred \<Rightarrow> bool" where | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 217 | "is_empty A \<longleftrightarrow> A = \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 218 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 219 | lemma is_empty_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 220 | "is_empty \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 221 | by (simp add: is_empty_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 222 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 223 | lemma not_is_empty_single: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 224 | "\<not> is_empty (single x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 225 | by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 226 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 227 | lemma is_empty_sup: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 228 | "is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B" | 
| 36008 | 229 | by (auto simp add: is_empty_def) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 230 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 231 | definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where | 
| 33111 | 232 | "singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 233 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 234 | lemma singleton_eqI: | 
| 33110 | 235 | "\<exists>!x. eval A x \<Longrightarrow> eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 236 | by (auto simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 237 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 238 | lemma eval_singletonI: | 
| 33110 | 239 | "\<exists>!x. eval A x \<Longrightarrow> eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 240 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 241 | assume assm: "\<exists>!x. eval A x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 242 | then obtain x where "eval A x" .. | 
| 33110 | 243 | moreover with assm have "singleton dfault A = x" by (rule singleton_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 244 | ultimately show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 245 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 246 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 247 | lemma single_singleton: | 
| 33110 | 248 | "\<exists>!x. eval A x \<Longrightarrow> single (singleton dfault A) = A" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 249 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 250 | assume assm: "\<exists>!x. eval A x" | 
| 33110 | 251 | then have "eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 252 | by (rule eval_singletonI) | 
| 33110 | 253 | moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 254 | by (rule singleton_eqI) | 
| 33110 | 255 | ultimately have "eval (single (singleton dfault A)) = eval A" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 256 | by (simp (no_asm_use) add: single_def fun_eq_iff) blast | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 257 | then have "\<And>x. eval (single (singleton dfault A)) x = eval A x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 258 | by simp | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 259 | then show ?thesis by (rule pred_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 260 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 261 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 262 | lemma singleton_undefinedI: | 
| 33111 | 263 | "\<not> (\<exists>!x. eval A x) \<Longrightarrow> singleton dfault A = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 264 | by (simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 265 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 266 | lemma singleton_bot: | 
| 33111 | 267 | "singleton dfault \<bottom> = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 268 | by (auto simp add: bot_pred_def intro: singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 269 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 270 | lemma singleton_single: | 
| 33110 | 271 | "singleton dfault (single x) = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 272 | by (auto simp add: intro: singleton_eqI singleI elim: singleE) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 273 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 274 | lemma singleton_sup_single_single: | 
| 33111 | 275 | "singleton dfault (single x \<squnion> single y) = (if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 276 | proof (cases "x = y") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 277 | case True then show ?thesis by (simp add: singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 278 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 279 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 280 | have "eval (single x \<squnion> single y) x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 281 | and "eval (single x \<squnion> single y) y" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 282 | by (auto intro: supI1 supI2 singleI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 283 | with False have "\<not> (\<exists>!z. eval (single x \<squnion> single y) z)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 284 | by blast | 
| 33111 | 285 | then have "singleton dfault (single x \<squnion> single y) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 286 | by (rule singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 287 | with False show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 288 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 289 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 290 | lemma singleton_sup_aux: | 
| 33110 | 291 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 292 | else if B = \<bottom> then singleton dfault A | |
| 293 | else singleton dfault | |
| 294 | (single (singleton dfault A) \<squnion> single (singleton dfault B)))" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 295 | proof (cases "(\<exists>!x. eval A x) \<and> (\<exists>!y. eval B y)") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 296 | case True then show ?thesis by (simp add: single_singleton) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 297 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 298 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 299 | from False have A_or_B: | 
| 33111 | 300 | "singleton dfault A = dfault () \<or> singleton dfault B = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 301 | by (auto intro!: singleton_undefinedI) | 
| 33110 | 302 | then have rhs: "singleton dfault | 
| 33111 | 303 | (single (singleton dfault A) \<squnion> single (singleton dfault B)) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 304 | by (auto simp add: singleton_sup_single_single singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 305 | from False have not_unique: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 306 | "\<not> (\<exists>!x. eval A x) \<or> \<not> (\<exists>!y. eval B y)" by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 307 | show ?thesis proof (cases "A \<noteq> \<bottom> \<and> B \<noteq> \<bottom>") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 308 | case True | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 309 | then obtain a b where a: "eval A a" and b: "eval B b" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 310 | by (blast elim: not_bot) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 311 | with True not_unique have "\<not> (\<exists>!x. eval (A \<squnion> B) x)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 312 | by (auto simp add: sup_pred_def bot_pred_def) | 
| 33111 | 313 | then have "singleton dfault (A \<squnion> B) = dfault ()" by (rule singleton_undefinedI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 314 | with True rhs show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 315 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 316 | case False then show ?thesis by auto | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 317 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 318 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 319 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 320 | lemma singleton_sup: | 
| 33110 | 321 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 322 | else if B = \<bottom> then singleton dfault A | |
| 33111 | 323 | else if singleton dfault A = singleton dfault B then singleton dfault A else dfault ())" | 
| 33110 | 324 | using singleton_sup_aux [of dfault A B] by (simp only: singleton_sup_single_single) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 325 | |
| 30328 | 326 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 327 | subsection {* Derived operations *}
 | 
| 30328 | 328 | |
| 329 | definition if_pred :: "bool \<Rightarrow> unit pred" where | |
| 330 | if_pred_eq: "if_pred b = (if b then single () else \<bottom>)" | |
| 331 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 332 | definition holds :: "unit pred \<Rightarrow> bool" where | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 333 | holds_eq: "holds P = eval P ()" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 334 | |
| 30328 | 335 | definition not_pred :: "unit pred \<Rightarrow> unit pred" where | 
| 336 | not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())" | |
| 337 | ||
| 338 | lemma if_predI: "P \<Longrightarrow> eval (if_pred P) ()" | |
| 339 | unfolding if_pred_eq by (auto intro: singleI) | |
| 340 | ||
| 341 | lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P" | |
| 342 | unfolding if_pred_eq by (cases b) (auto elim: botE) | |
| 343 | ||
| 344 | lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()" | |
| 345 | unfolding not_pred_eq eval_pred by (auto intro: singleI) | |
| 346 | ||
| 347 | lemma not_predI': "\<not> eval P () \<Longrightarrow> eval (not_pred P) ()" | |
| 348 | unfolding not_pred_eq by (auto intro: singleI) | |
| 349 | ||
| 350 | lemma not_predE: "eval (not_pred (Pred (\<lambda>u. P))) x \<Longrightarrow> (\<not> P \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 351 | unfolding not_pred_eq | |
| 352 | by (auto split: split_if_asm elim: botE) | |
| 353 | ||
| 354 | lemma not_predE': "eval (not_pred P) x \<Longrightarrow> (\<not> eval P x \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 355 | unfolding not_pred_eq | |
| 356 | by (auto split: split_if_asm elim: botE) | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 357 | lemma "f () = False \<or> f () = True" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 358 | by simp | 
| 30328 | 359 | |
| 37549 | 360 | lemma closure_of_bool_cases [no_atp]: | 
| 44007 | 361 | fixes f :: "unit \<Rightarrow> bool" | 
| 362 | assumes "f = (\<lambda>u. False) \<Longrightarrow> P f" | |
| 363 | assumes "f = (\<lambda>u. True) \<Longrightarrow> P f" | |
| 364 | shows "P f" | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 365 | proof - | 
| 44007 | 366 | have "f = (\<lambda>u. False) \<or> f = (\<lambda>u. True)" | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 367 | apply (cases "f ()") | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 368 | apply (rule disjI2) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 369 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 370 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 371 | apply (rule disjI1) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 372 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 373 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 374 | done | 
| 41550 | 375 | from this assms show ?thesis by blast | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 376 | qed | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 377 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 378 | lemma unit_pred_cases: | 
| 44007 | 379 | assumes "P \<bottom>" | 
| 380 | assumes "P (single ())" | |
| 381 | shows "P Q" | |
| 44415 | 382 | using assms unfolding bot_pred_def bot_fun_def bot_bool_def empty_def single_def proof (cases Q) | 
| 44007 | 383 | fix f | 
| 384 | assume "P (Pred (\<lambda>u. False))" "P (Pred (\<lambda>u. () = u))" | |
| 385 | then have "P (Pred f)" | |
| 386 | by (cases _ f rule: closure_of_bool_cases) simp_all | |
| 387 | moreover assume "Q = Pred f" | |
| 388 | ultimately show "P Q" by simp | |
| 389 | qed | |
| 390 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 391 | lemma holds_if_pred: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 392 | "holds (if_pred b) = b" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 393 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 394 | by (cases b) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 395 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 396 | lemma if_pred_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 397 | "if_pred (holds P) = P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 398 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 399 | by (rule unit_pred_cases) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 400 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 401 | lemma is_empty_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 402 | "is_empty P \<longleftrightarrow> \<not> holds P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 403 | unfolding is_empty_def holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 404 | by (rule unit_pred_cases) (auto elim: botE intro: singleI) | 
| 30328 | 405 | |
| 41311 | 406 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pred \<Rightarrow> 'b pred" where
 | 
| 407 | "map f P = P \<guillemotright>= (single o f)" | |
| 408 | ||
| 409 | lemma eval_map [simp]: | |
| 44363 | 410 |   "eval (map f P) = (\<Squnion>x\<in>{x. eval P x}. (\<lambda>y. f x = y))"
 | 
| 44415 | 411 | by (auto simp add: map_def comp_def) | 
| 41311 | 412 | |
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 413 | enriched_type map: map | 
| 44363 | 414 | by (rule ext, rule pred_eqI, auto)+ | 
| 41311 | 415 | |
| 416 | ||
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 417 | subsection {* Implementation *}
 | 
| 30328 | 418 | |
| 419 | datatype 'a seq = Empty | Insert "'a" "'a pred" | Join "'a pred" "'a seq" | |
| 420 | ||
| 421 | primrec pred_of_seq :: "'a seq \<Rightarrow> 'a pred" where | |
| 44414 | 422 | "pred_of_seq Empty = \<bottom>" | 
| 423 | | "pred_of_seq (Insert x P) = single x \<squnion> P" | |
| 424 | | "pred_of_seq (Join P xq) = P \<squnion> pred_of_seq xq" | |
| 30328 | 425 | |
| 426 | definition Seq :: "(unit \<Rightarrow> 'a seq) \<Rightarrow> 'a pred" where | |
| 427 | "Seq f = pred_of_seq (f ())" | |
| 428 | ||
| 429 | code_datatype Seq | |
| 430 | ||
| 431 | primrec member :: "'a seq \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 432 | "member Empty x \<longleftrightarrow> False" | |
| 44414 | 433 | | "member (Insert y P) x \<longleftrightarrow> x = y \<or> eval P x" | 
| 434 | | "member (Join P xq) x \<longleftrightarrow> eval P x \<or> member xq x" | |
| 30328 | 435 | |
| 436 | lemma eval_member: | |
| 437 | "member xq = eval (pred_of_seq xq)" | |
| 438 | proof (induct xq) | |
| 439 | case Empty show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 440 | by (auto simp add: fun_eq_iff elim: botE) | 
| 30328 | 441 | next | 
| 442 | case Insert show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 443 | by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI) | 
| 30328 | 444 | next | 
| 445 | case Join then show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 446 | by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2) | 
| 30328 | 447 | qed | 
| 448 | ||
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 449 | lemma eval_code [(* FIXME declare simp *)code]: "eval (Seq f) = member (f ())" | 
| 30328 | 450 | unfolding Seq_def by (rule sym, rule eval_member) | 
| 451 | ||
| 452 | lemma single_code [code]: | |
| 453 | "single x = Seq (\<lambda>u. Insert x \<bottom>)" | |
| 454 | unfolding Seq_def by simp | |
| 455 | ||
| 41080 | 456 | primrec "apply" :: "('a \<Rightarrow> 'b pred) \<Rightarrow> 'a seq \<Rightarrow> 'b seq" where
 | 
| 44415 | 457 | "apply f Empty = Empty" | 
| 458 | | "apply f (Insert x P) = Join (f x) (Join (P \<guillemotright>= f) Empty)" | |
| 459 | | "apply f (Join P xq) = Join (P \<guillemotright>= f) (apply f xq)" | |
| 30328 | 460 | |
| 461 | lemma apply_bind: | |
| 462 | "pred_of_seq (apply f xq) = pred_of_seq xq \<guillemotright>= f" | |
| 463 | proof (induct xq) | |
| 464 | case Empty show ?case | |
| 465 | by (simp add: bottom_bind) | |
| 466 | next | |
| 467 | case Insert show ?case | |
| 468 | by (simp add: single_bind sup_bind) | |
| 469 | next | |
| 470 | case Join then show ?case | |
| 471 | by (simp add: sup_bind) | |
| 472 | qed | |
| 473 | ||
| 474 | lemma bind_code [code]: | |
| 475 | "Seq g \<guillemotright>= f = Seq (\<lambda>u. apply f (g ()))" | |
| 476 | unfolding Seq_def by (rule sym, rule apply_bind) | |
| 477 | ||
| 478 | lemma bot_set_code [code]: | |
| 479 | "\<bottom> = Seq (\<lambda>u. Empty)" | |
| 480 | unfolding Seq_def by simp | |
| 481 | ||
| 30376 | 482 | primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where | 
| 44415 | 483 | "adjunct P Empty = Join P Empty" | 
| 484 | | "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)" | |
| 485 | | "adjunct P (Join Q xq) = Join Q (adjunct P xq)" | |
| 30376 | 486 | |
| 487 | lemma adjunct_sup: | |
| 488 | "pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq" | |
| 489 | by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute) | |
| 490 | ||
| 30328 | 491 | lemma sup_code [code]: | 
| 492 | "Seq f \<squnion> Seq g = Seq (\<lambda>u. case f () | |
| 493 | of Empty \<Rightarrow> g () | |
| 494 | | Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g) | |
| 30376 | 495 | | Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))" | 
| 30328 | 496 | proof (cases "f ()") | 
| 497 | case Empty | |
| 498 | thus ?thesis | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33988diff
changeset | 499 | unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"]) | 
| 30328 | 500 | next | 
| 501 | case Insert | |
| 502 | thus ?thesis | |
| 503 | unfolding Seq_def by (simp add: sup_assoc) | |
| 504 | next | |
| 505 | case Join | |
| 506 | thus ?thesis | |
| 30376 | 507 | unfolding Seq_def | 
| 508 | by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute) | |
| 30328 | 509 | qed | 
| 510 | ||
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 511 | lemma [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 512 | "size (P :: 'a Predicate.pred) = 0" by (cases P) simp | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 513 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 514 | lemma [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 515 | "pred_size f P = 0" by (cases P) simp | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 516 | |
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 517 | primrec contained :: "'a seq \<Rightarrow> 'a pred \<Rightarrow> bool" where | 
| 44415 | 518 | "contained Empty Q \<longleftrightarrow> True" | 
| 519 | | "contained (Insert x P) Q \<longleftrightarrow> eval Q x \<and> P \<le> Q" | |
| 520 | | "contained (Join P xq) Q \<longleftrightarrow> P \<le> Q \<and> contained xq Q" | |
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 521 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 522 | lemma single_less_eq_eval: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 523 | "single x \<le> P \<longleftrightarrow> eval P x" | 
| 44415 | 524 | by (auto simp add: less_eq_pred_def le_fun_def) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 525 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 526 | lemma contained_less_eq: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 527 | "contained xq Q \<longleftrightarrow> pred_of_seq xq \<le> Q" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 528 | by (induct xq) (simp_all add: single_less_eq_eval) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 529 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 530 | lemma less_eq_pred_code [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 531 | "Seq f \<le> Q = (case f () | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 532 | of Empty \<Rightarrow> True | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 533 | | Insert x P \<Rightarrow> eval Q x \<and> P \<le> Q | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 534 | | Join P xq \<Rightarrow> P \<le> Q \<and> contained xq Q)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 535 | by (cases "f ()") | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 536 | (simp_all add: Seq_def single_less_eq_eval contained_less_eq) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 537 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 538 | lemma eq_pred_code [code]: | 
| 31133 | 539 | fixes P Q :: "'a pred" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 540 | shows "HOL.equal P Q \<longleftrightarrow> P \<le> Q \<and> Q \<le> P" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 541 | by (auto simp add: equal) | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 542 | |
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 543 | lemma [code nbe]: | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 544 | "HOL.equal (x :: 'a pred) x \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 545 | by (fact equal_refl) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 546 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 547 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 548 | "pred_case f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 549 | by (cases P) simp | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 550 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 551 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 552 | "pred_rec f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 553 | by (cases P) simp | 
| 30328 | 554 | |
| 31105 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 555 | inductive eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "eq x x" | 
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 556 | |
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 557 | lemma eq_is_eq: "eq x y \<equiv> (x = y)" | 
| 31108 | 558 | by (rule eq_reflection) (auto intro: eq.intros elim: eq.cases) | 
| 30948 | 559 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 560 | primrec null :: "'a seq \<Rightarrow> bool" where | 
| 44415 | 561 | "null Empty \<longleftrightarrow> True" | 
| 562 | | "null (Insert x P) \<longleftrightarrow> False" | |
| 563 | | "null (Join P xq) \<longleftrightarrow> is_empty P \<and> null xq" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 564 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 565 | lemma null_is_empty: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 566 | "null xq \<longleftrightarrow> is_empty (pred_of_seq xq)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 567 | by (induct xq) (simp_all add: is_empty_bot not_is_empty_single is_empty_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 568 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 569 | lemma is_empty_code [code]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 570 | "is_empty (Seq f) \<longleftrightarrow> null (f ())" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 571 | by (simp add: null_is_empty Seq_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 572 | |
| 33111 | 573 | primrec the_only :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a seq \<Rightarrow> 'a" where | 
| 574 | [code del]: "the_only dfault Empty = dfault ()" | |
| 44415 | 575 | | "the_only dfault (Insert x P) = (if is_empty P then x else let y = singleton dfault P in if x = y then x else dfault ())" | 
| 576 | | "the_only dfault (Join P xq) = (if is_empty P then the_only dfault xq else if null xq then singleton dfault P | |
| 33110 | 577 | else let x = singleton dfault P; y = the_only dfault xq in | 
| 33111 | 578 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 579 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 580 | lemma the_only_singleton: | 
| 33110 | 581 | "the_only dfault xq = singleton dfault (pred_of_seq xq)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 582 | by (induct xq) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 583 | (auto simp add: singleton_bot singleton_single is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 584 | null_is_empty Let_def singleton_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 585 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 586 | lemma singleton_code [code]: | 
| 33110 | 587 | "singleton dfault (Seq f) = (case f () | 
| 33111 | 588 | of Empty \<Rightarrow> dfault () | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 589 | | Insert x P \<Rightarrow> if is_empty P then x | 
| 33110 | 590 | else let y = singleton dfault P in | 
| 33111 | 591 | if x = y then x else dfault () | 
| 33110 | 592 | | Join P xq \<Rightarrow> if is_empty P then the_only dfault xq | 
| 593 | else if null xq then singleton dfault P | |
| 594 | else let x = singleton dfault P; y = the_only dfault xq in | |
| 33111 | 595 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 596 | by (cases "f ()") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 597 | (auto simp add: Seq_def the_only_singleton is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 598 | null_is_empty singleton_bot singleton_single singleton_sup Let_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 599 | |
| 44414 | 600 | definition the :: "'a pred \<Rightarrow> 'a" where | 
| 37767 | 601 | "the A = (THE x. eval A x)" | 
| 33111 | 602 | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 603 | lemma the_eqI: | 
| 41080 | 604 | "(THE x. eval P x) = x \<Longrightarrow> the P = x" | 
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 605 | by (simp add: the_def) | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 606 | |
| 44414 | 607 | definition not_unique :: "'a pred \<Rightarrow> 'a" where | 
| 608 | [code del]: "not_unique A = (THE x. eval A x)" | |
| 609 | ||
| 610 | code_abort not_unique | |
| 611 | ||
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 612 | lemma the_eq [code]: "the A = singleton (\<lambda>x. not_unique A) A" | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 613 | by (rule the_eqI) (simp add: singleton_def not_unique_def) | 
| 33110 | 614 | |
| 36531 
19f6e3b0d9b6
code_reflect: specify module name directly after keyword
 haftmann parents: 
36513diff
changeset | 615 | code_reflect Predicate | 
| 36513 | 616 | datatypes pred = Seq and seq = Empty | Insert | Join | 
| 617 | functions map | |
| 618 | ||
| 30948 | 619 | ML {*
 | 
| 620 | signature PREDICATE = | |
| 621 | sig | |
| 622 | datatype 'a pred = Seq of (unit -> 'a seq) | |
| 623 | and 'a seq = Empty | Insert of 'a * 'a pred | Join of 'a pred * 'a seq | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 624 |   val yield: 'a pred -> ('a * 'a pred) option
 | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 625 | val yieldn: int -> 'a pred -> 'a list * 'a pred | 
| 31222 | 626 |   val map: ('a -> 'b) -> 'a pred -> 'b pred
 | 
| 30948 | 627 | end; | 
| 628 | ||
| 629 | structure Predicate : PREDICATE = | |
| 630 | struct | |
| 631 | ||
| 36513 | 632 | datatype pred = datatype Predicate.pred | 
| 633 | datatype seq = datatype Predicate.seq | |
| 634 | ||
| 635 | fun map f = Predicate.map f; | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 636 | |
| 36513 | 637 | fun yield (Seq f) = next (f ()) | 
| 638 | and next Empty = NONE | |
| 639 | | next (Insert (x, P)) = SOME (x, P) | |
| 640 | | next (Join (P, xq)) = (case yield P | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 641 | of NONE => next xq | 
| 36513 | 642 | | SOME (x, Q) => SOME (x, Seq (fn _ => Join (Q, xq)))); | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 643 | |
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 644 | fun anamorph f k x = (if k = 0 then ([], x) | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 645 | else case f x | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 646 | of NONE => ([], x) | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 647 | | SOME (v, y) => let | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 648 | val (vs, z) = anamorph f (k - 1) y | 
| 33607 | 649 | in (v :: vs, z) end); | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 650 | |
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 651 | fun yieldn P = anamorph yield P; | 
| 30948 | 652 | |
| 653 | end; | |
| 654 | *} | |
| 655 | ||
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 656 | text {* Conversion from and to sets *}
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 657 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 658 | definition pred_of_set :: "'a set \<Rightarrow> 'a pred" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 659 | "pred_of_set = Pred \<circ> (\<lambda>A x. x \<in> A)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 660 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 661 | lemma eval_pred_of_set [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 662 | "eval (pred_of_set A) x \<longleftrightarrow> x \<in>A" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 663 | by (simp add: pred_of_set_def) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 664 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 665 | definition set_of_pred :: "'a pred \<Rightarrow> 'a set" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 666 | "set_of_pred = Collect \<circ> eval" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 667 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 668 | lemma member_set_of_pred [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 669 | "x \<in> set_of_pred P \<longleftrightarrow> Predicate.eval P x" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 670 | by (simp add: set_of_pred_def) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 671 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 672 | definition set_of_seq :: "'a seq \<Rightarrow> 'a set" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 673 | "set_of_seq = set_of_pred \<circ> pred_of_seq" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 674 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 675 | lemma member_set_of_seq [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 676 | "x \<in> set_of_seq xq = Predicate.member xq x" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 677 | by (simp add: set_of_seq_def eval_member) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 678 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 679 | lemma of_pred_code [code]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 680 | "set_of_pred (Predicate.Seq f) = (case f () of | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 681 |      Predicate.Empty \<Rightarrow> {}
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 682 | | Predicate.Insert x P \<Rightarrow> insert x (set_of_pred P) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 683 | | Predicate.Join P xq \<Rightarrow> set_of_pred P \<union> set_of_seq xq)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 684 | by (auto split: seq.split simp add: eval_code) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 685 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 686 | lemma of_seq_code [code]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 687 |   "set_of_seq Predicate.Empty = {}"
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 688 | "set_of_seq (Predicate.Insert x P) = insert x (set_of_pred P)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 689 | "set_of_seq (Predicate.Join P xq) = set_of_pred P \<union> set_of_seq xq" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 690 | by auto | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 691 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 692 | text {* Lazy Evaluation of an indexed function *}
 | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 693 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 694 | function iterate_upto :: "(code_numeral \<Rightarrow> 'a) \<Rightarrow> code_numeral \<Rightarrow> code_numeral \<Rightarrow> 'a Predicate.pred" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 695 | where | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 696 | "iterate_upto f n m = | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 697 | Predicate.Seq (%u. if n > m then Predicate.Empty | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 698 | else Predicate.Insert (f n) (iterate_upto f (n + 1) m))" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 699 | by pat_completeness auto | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 700 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 701 | termination by (relation "measure (%(f, n, m). Code_Numeral.nat_of (m + 1 - n))") auto | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 702 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 703 | text {* Misc *}
 | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 704 | |
| 47399 | 705 | declare Inf_set_fold [where 'a = "'a Predicate.pred", code] | 
| 706 | declare Sup_set_fold [where 'a = "'a Predicate.pred", code] | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 707 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 708 | (* FIXME: better implement conversion by bisection *) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 709 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 710 | lemma pred_of_set_fold_sup: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 711 | assumes "finite A" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 712 | shows "pred_of_set A = Finite_Set.fold sup bot (Predicate.single ` A)" (is "?lhs = ?rhs") | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 713 | proof (rule sym) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 714 | interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 715 | by (fact comp_fun_idem_sup) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 716 | from `finite A` show "?rhs = ?lhs" by (induct A) (auto intro!: pred_eqI) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 717 | qed | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 718 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 719 | lemma pred_of_set_set_fold_sup: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 720 | "pred_of_set (set xs) = fold sup (List.map Predicate.single xs) bot" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 721 | proof - | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 722 | interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 723 | by (fact comp_fun_idem_sup) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 724 | show ?thesis by (simp add: pred_of_set_fold_sup fold_set_fold [symmetric]) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 725 | qed | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 726 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 727 | lemma pred_of_set_set_foldr_sup [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 728 | "pred_of_set (set xs) = foldr sup (List.map Predicate.single xs) bot" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 729 | by (simp add: pred_of_set_set_fold_sup ac_simps foldr_fold fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 730 | |
| 30328 | 731 | no_notation | 
| 41082 | 732 |   bot ("\<bottom>") and
 | 
| 733 |   top ("\<top>") and
 | |
| 30328 | 734 | inf (infixl "\<sqinter>" 70) and | 
| 735 | sup (infixl "\<squnion>" 65) and | |
| 736 |   Inf ("\<Sqinter>_" [900] 900) and
 | |
| 737 |   Sup ("\<Squnion>_" [900] 900) and
 | |
| 738 | bind (infixl "\<guillemotright>=" 70) | |
| 739 | ||
| 41080 | 740 | no_syntax (xsymbols) | 
| 41082 | 741 |   "_INF1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Sqinter>_./ _)" [0, 10] 10)
 | 
| 742 |   "_INF"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Sqinter>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 41080 | 743 |   "_SUP1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3\<Squnion>_./ _)" [0, 10] 10)
 | 
| 744 |   "_SUP"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3\<Squnion>_\<in>_./ _)" [0, 0, 10] 10)
 | |
| 745 | ||
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 746 | hide_type (open) pred seq | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 747 | hide_const (open) Pred eval single bind is_empty singleton if_pred not_pred holds | 
| 33111 | 748 | Empty Insert Join Seq member pred_of_seq "apply" adjunct null the_only eq map not_unique the | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 749 | iterate_upto | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 750 | hide_fact (open) null_def member_def | 
| 30328 | 751 | |
| 752 | end | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 753 |