| author | blanchet | 
| Sat, 08 Sep 2012 21:30:31 +0200 | |
| changeset 49222 | cbe8c859817c | 
| parent 45694 | 4a8743618257 | 
| child 49834 | b27bbb021df1 | 
| permissions | -rw-r--r-- | 
| 10213 | 1 | (* Title: HOL/Sum_Type.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | Copyright 1992 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 6 | header{*The Disjoint Sum of Two Types*}
 | 
| 10213 | 7 | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 8 | theory Sum_Type | 
| 33961 | 9 | imports Typedef Inductive Fun | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 10 | begin | 
| 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 11 | |
| 33962 | 12 | subsection {* Construction of the sum type and its basic abstract operations *}
 | 
| 10213 | 13 | |
| 33962 | 14 | definition Inl_Rep :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where | 
| 15 | "Inl_Rep a x y p \<longleftrightarrow> x = a \<and> p" | |
| 10213 | 16 | |
| 33962 | 17 | definition Inr_Rep :: "'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool \<Rightarrow> bool" where | 
| 18 | "Inr_Rep b x y p \<longleftrightarrow> y = b \<and> \<not> p" | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 19 | |
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45204diff
changeset | 20 | definition "sum = {f. (\<exists>a. f = Inl_Rep (a::'a)) \<or> (\<exists>b. f = Inr_Rep (b::'b))}"
 | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45204diff
changeset | 21 | |
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45204diff
changeset | 22 | typedef (open) ('a, 'b) sum (infixr "+" 10) = "sum :: ('a => 'b => bool => bool) set"
 | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45204diff
changeset | 23 | unfolding sum_def by auto | 
| 10213 | 24 | |
| 37388 | 25 | lemma Inl_RepI: "Inl_Rep a \<in> sum" | 
| 26 | by (auto simp add: sum_def) | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 27 | |
| 37388 | 28 | lemma Inr_RepI: "Inr_Rep b \<in> sum" | 
| 29 | by (auto simp add: sum_def) | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 30 | |
| 37388 | 31 | lemma inj_on_Abs_sum: "A \<subseteq> sum \<Longrightarrow> inj_on Abs_sum A" | 
| 32 | by (rule inj_on_inverseI, rule Abs_sum_inverse) auto | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 33 | |
| 33962 | 34 | lemma Inl_Rep_inject: "inj_on Inl_Rep A" | 
| 35 | proof (rule inj_onI) | |
| 36 | show "\<And>a c. Inl_Rep a = Inl_Rep c \<Longrightarrow> a = c" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 37 | by (auto simp add: Inl_Rep_def fun_eq_iff) | 
| 33962 | 38 | qed | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 39 | |
| 33962 | 40 | lemma Inr_Rep_inject: "inj_on Inr_Rep A" | 
| 41 | proof (rule inj_onI) | |
| 42 | show "\<And>b d. Inr_Rep b = Inr_Rep d \<Longrightarrow> b = d" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 43 | by (auto simp add: Inr_Rep_def fun_eq_iff) | 
| 33962 | 44 | qed | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 45 | |
| 33962 | 46 | lemma Inl_Rep_not_Inr_Rep: "Inl_Rep a \<noteq> Inr_Rep b" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 47 | by (auto simp add: Inl_Rep_def Inr_Rep_def fun_eq_iff) | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 48 | |
| 33962 | 49 | definition Inl :: "'a \<Rightarrow> 'a + 'b" where | 
| 37388 | 50 | "Inl = Abs_sum \<circ> Inl_Rep" | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 51 | |
| 33962 | 52 | definition Inr :: "'b \<Rightarrow> 'a + 'b" where | 
| 37388 | 53 | "Inr = Abs_sum \<circ> Inr_Rep" | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 54 | |
| 29025 
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
 huffman parents: 
28524diff
changeset | 55 | lemma inj_Inl [simp]: "inj_on Inl A" | 
| 37388 | 56 | by (auto simp add: Inl_def intro!: comp_inj_on Inl_Rep_inject inj_on_Abs_sum Inl_RepI) | 
| 29025 
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
 huffman parents: 
28524diff
changeset | 57 | |
| 33962 | 58 | lemma Inl_inject: "Inl x = Inl y \<Longrightarrow> x = y" | 
| 59 | using inj_Inl by (rule injD) | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 60 | |
| 29025 
8c8859c0d734
move lemmas from Numeral_Type.thy to other theories
 huffman parents: 
28524diff
changeset | 61 | lemma inj_Inr [simp]: "inj_on Inr A" | 
| 37388 | 62 | by (auto simp add: Inr_def intro!: comp_inj_on Inr_Rep_inject inj_on_Abs_sum Inr_RepI) | 
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 63 | |
| 33962 | 64 | lemma Inr_inject: "Inr x = Inr y \<Longrightarrow> x = y" | 
| 65 | using inj_Inr by (rule injD) | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 66 | |
| 33962 | 67 | lemma Inl_not_Inr: "Inl a \<noteq> Inr b" | 
| 68 | proof - | |
| 37388 | 69 |   from Inl_RepI [of a] Inr_RepI [of b] have "{Inl_Rep a, Inr_Rep b} \<subseteq> sum" by auto
 | 
| 70 |   with inj_on_Abs_sum have "inj_on Abs_sum {Inl_Rep a, Inr_Rep b}" .
 | |
| 71 | with Inl_Rep_not_Inr_Rep [of a b] inj_on_contraD have "Abs_sum (Inl_Rep a) \<noteq> Abs_sum (Inr_Rep b)" by auto | |
| 33962 | 72 | then show ?thesis by (simp add: Inl_def Inr_def) | 
| 73 | qed | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 74 | |
| 33962 | 75 | lemma Inr_not_Inl: "Inr b \<noteq> Inl a" | 
| 76 | using Inl_not_Inr by (rule not_sym) | |
| 15391 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 77 | |
| 
797ed46d724b
converted Sum_Type to new-style theory: Inl, Inr are NO LONGER global
 paulson parents: 
11609diff
changeset | 78 | lemma sumE: | 
| 33962 | 79 | assumes "\<And>x::'a. s = Inl x \<Longrightarrow> P" | 
| 80 | and "\<And>y::'b. s = Inr y \<Longrightarrow> P" | |
| 81 | shows P | |
| 37388 | 82 | proof (rule Abs_sum_cases [of s]) | 
| 33962 | 83 | fix f | 
| 37388 | 84 | assume "s = Abs_sum f" and "f \<in> sum" | 
| 85 | with assms show P by (auto simp add: sum_def Inl_def Inr_def) | |
| 33962 | 86 | qed | 
| 33961 | 87 | |
| 37678 
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
 haftmann parents: 
37388diff
changeset | 88 | rep_datatype Inl Inr | 
| 33961 | 89 | proof - | 
| 90 | fix P | |
| 91 | fix s :: "'a + 'b" | |
| 92 | assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)" | |
| 93 | then show "P s" by (auto intro: sumE [of s]) | |
| 33962 | 94 | qed (auto dest: Inl_inject Inr_inject simp add: Inl_not_Inr) | 
| 95 | ||
| 40610 | 96 | primrec sum_map :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> 'a + 'b \<Rightarrow> 'c + 'd" where
 | 
| 97 | "sum_map f1 f2 (Inl a) = Inl (f1 a)" | |
| 98 | | "sum_map f1 f2 (Inr a) = Inr (f2 a)" | |
| 99 | ||
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 100 | enriched_type sum_map: sum_map proof - | 
| 41372 | 101 | fix f g h i | 
| 102 | show "sum_map f g \<circ> sum_map h i = sum_map (f \<circ> h) (g \<circ> i)" | |
| 103 | proof | |
| 104 | fix s | |
| 105 | show "(sum_map f g \<circ> sum_map h i) s = sum_map (f \<circ> h) (g \<circ> i) s" | |
| 106 | by (cases s) simp_all | |
| 107 | qed | |
| 40610 | 108 | next | 
| 109 | fix s | |
| 41372 | 110 | show "sum_map id id = id" | 
| 111 | proof | |
| 112 | fix s | |
| 113 | show "sum_map id id s = id s" | |
| 114 | by (cases s) simp_all | |
| 115 | qed | |
| 40610 | 116 | qed | 
| 117 | ||
| 33961 | 118 | |
| 33962 | 119 | subsection {* Projections *}
 | 
| 120 | ||
| 121 | lemma sum_case_KK [simp]: "sum_case (\<lambda>x. a) (\<lambda>x. a) = (\<lambda>x. a)" | |
| 33961 | 122 | by (rule ext) (simp split: sum.split) | 
| 123 | ||
| 33962 | 124 | lemma surjective_sum: "sum_case (\<lambda>x::'a. f (Inl x)) (\<lambda>y::'b. f (Inr y)) = f" | 
| 125 | proof | |
| 126 | fix s :: "'a + 'b" | |
| 127 | show "(case s of Inl (x\<Colon>'a) \<Rightarrow> f (Inl x) | Inr (y\<Colon>'b) \<Rightarrow> f (Inr y)) = f s" | |
| 128 | by (cases s) simp_all | |
| 129 | qed | |
| 33961 | 130 | |
| 33962 | 131 | lemma sum_case_inject: | 
| 132 | assumes a: "sum_case f1 f2 = sum_case g1 g2" | |
| 133 | assumes r: "f1 = g1 \<Longrightarrow> f2 = g2 \<Longrightarrow> P" | |
| 134 | shows P | |
| 135 | proof (rule r) | |
| 136 | show "f1 = g1" proof | |
| 137 | fix x :: 'a | |
| 138 | from a have "sum_case f1 f2 (Inl x) = sum_case g1 g2 (Inl x)" by simp | |
| 139 | then show "f1 x = g1 x" by simp | |
| 140 | qed | |
| 141 | show "f2 = g2" proof | |
| 142 | fix y :: 'b | |
| 143 | from a have "sum_case f1 f2 (Inr y) = sum_case g1 g2 (Inr y)" by simp | |
| 144 | then show "f2 y = g2 y" by simp | |
| 145 | qed | |
| 146 | qed | |
| 147 | ||
| 148 | lemma sum_case_weak_cong: | |
| 149 | "s = t \<Longrightarrow> sum_case f g s = sum_case f g t" | |
| 33961 | 150 |   -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
 | 
| 151 | by simp | |
| 152 | ||
| 33962 | 153 | primrec Projl :: "'a + 'b \<Rightarrow> 'a" where | 
| 154 | Projl_Inl: "Projl (Inl x) = x" | |
| 155 | ||
| 156 | primrec Projr :: "'a + 'b \<Rightarrow> 'b" where | |
| 157 | Projr_Inr: "Projr (Inr x) = x" | |
| 158 | ||
| 159 | primrec Suml :: "('a \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
 | |
| 160 | "Suml f (Inl x) = f x" | |
| 161 | ||
| 162 | primrec Sumr :: "('b \<Rightarrow> 'c) \<Rightarrow> 'a + 'b \<Rightarrow> 'c" where
 | |
| 163 | "Sumr f (Inr x) = f x" | |
| 164 | ||
| 165 | lemma Suml_inject: | |
| 166 | assumes "Suml f = Suml g" shows "f = g" | |
| 167 | proof | |
| 168 | fix x :: 'a | |
| 169 | let ?s = "Inl x \<Colon> 'a + 'b" | |
| 170 | from assms have "Suml f ?s = Suml g ?s" by simp | |
| 171 | then show "f x = g x" by simp | |
| 33961 | 172 | qed | 
| 173 | ||
| 33962 | 174 | lemma Sumr_inject: | 
| 175 | assumes "Sumr f = Sumr g" shows "f = g" | |
| 176 | proof | |
| 177 | fix x :: 'b | |
| 178 | let ?s = "Inr x \<Colon> 'a + 'b" | |
| 179 | from assms have "Sumr f ?s = Sumr g ?s" by simp | |
| 180 | then show "f x = g x" by simp | |
| 181 | qed | |
| 33961 | 182 | |
| 33995 | 183 | |
| 33962 | 184 | subsection {* The Disjoint Sum of Sets *}
 | 
| 33961 | 185 | |
| 33962 | 186 | definition Plus :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a + 'b) set" (infixr "<+>" 65) where
 | 
| 187 | "A <+> B = Inl ` A \<union> Inr ` B" | |
| 188 | ||
| 40271 | 189 | hide_const (open) Plus --"Valuable identifier" | 
| 190 | ||
| 33962 | 191 | lemma InlI [intro!]: "a \<in> A \<Longrightarrow> Inl a \<in> A <+> B" | 
| 192 | by (simp add: Plus_def) | |
| 33961 | 193 | |
| 33962 | 194 | lemma InrI [intro!]: "b \<in> B \<Longrightarrow> Inr b \<in> A <+> B" | 
| 195 | by (simp add: Plus_def) | |
| 33961 | 196 | |
| 33962 | 197 | text {* Exhaustion rule for sums, a degenerate form of induction *}
 | 
| 198 | ||
| 199 | lemma PlusE [elim!]: | |
| 200 | "u \<in> A <+> B \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> u = Inl x \<Longrightarrow> P) \<Longrightarrow> (\<And>y. y \<in> B \<Longrightarrow> u = Inr y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 201 | by (auto simp add: Plus_def) | |
| 33961 | 202 | |
| 33962 | 203 | lemma Plus_eq_empty_conv [simp]: "A <+> B = {} \<longleftrightarrow> A = {} \<and> B = {}"
 | 
| 204 | by auto | |
| 33961 | 205 | |
| 33962 | 206 | lemma UNIV_Plus_UNIV [simp]: "UNIV <+> UNIV = UNIV" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 207 | proof (rule set_eqI) | 
| 33962 | 208 | fix u :: "'a + 'b" | 
| 209 | show "u \<in> UNIV <+> UNIV \<longleftrightarrow> u \<in> UNIV" by (cases u) auto | |
| 210 | qed | |
| 33961 | 211 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
33995diff
changeset | 212 | hide_const (open) Suml Sumr Projl Projr | 
| 33961 | 213 | |
| 45204 
5e4a1270c000
hide typedef-generated constants Product_Type.prod and Sum_Type.sum
 huffman parents: 
41505diff
changeset | 214 | hide_const (open) sum | 
| 
5e4a1270c000
hide typedef-generated constants Product_Type.prod and Sum_Type.sum
 huffman parents: 
41505diff
changeset | 215 | |
| 10213 | 216 | end |