| author | paulson <lp15@cam.ac.uk> | 
| Fri, 28 Feb 2025 13:50:18 +0000 | |
| changeset 82218 | cbf9f856d3e0 | 
| parent 72990 | db8f94656024 | 
| permissions | -rw-r--r-- | 
| 41959 | 1  | 
(* Title: HOL/Hoare/SepLogHeap.thy  | 
| 14074 | 2  | 
Author: Tobias Nipkow  | 
3  | 
Copyright 2002 TUM  | 
|
4  | 
*)  | 
|
5  | 
||
| 72990 | 6  | 
section \<open>Heap abstractions for Separation Logic\<close>  | 
7  | 
||
8  | 
text \<open>(at the moment only Path and List)\<close>  | 
|
9  | 
||
| 18576 | 10  | 
theory SepLogHeap  | 
| 72990 | 11  | 
imports Main  | 
| 18576 | 12  | 
begin  | 
| 18447 | 13  | 
|
| 42174 | 14  | 
type_synonym heap = "(nat \<Rightarrow> nat option)"  | 
| 14074 | 15  | 
|
| 62042 | 16  | 
text\<open>\<open>Some\<close> means allocated, \<open>None\<close> means  | 
17  | 
free. Address \<open>0\<close> serves as the null reference.\<close>  | 
|
| 14074 | 18  | 
|
| 72990 | 19  | 
|
| 14074 | 20  | 
subsection "Paths in the heap"  | 
21  | 
||
| 38353 | 22  | 
primrec Path :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> nat \<Rightarrow> bool"  | 
23  | 
where  | 
|
24  | 
"Path h x [] y = (x = y)"  | 
|
25  | 
| "Path h x (a#as) y = (x\<noteq>0 \<and> a=x \<and> (\<exists>b. h x = Some b \<and> Path h b as y))"  | 
|
| 14074 | 26  | 
|
27  | 
lemma [iff]: "Path h 0 xs y = (xs = [] \<and> y = 0)"  | 
|
| 16972 | 28  | 
by (cases xs) simp_all  | 
| 14074 | 29  | 
|
30  | 
lemma [simp]: "x\<noteq>0 \<Longrightarrow> Path h x as z =  | 
|
31  | 
(as = [] \<and> z = x \<or> (\<exists>y bs. as = x#bs \<and> h x = Some y & Path h y bs z))"  | 
|
| 16972 | 32  | 
by (cases as) auto  | 
| 14074 | 33  | 
|
34  | 
lemma [simp]: "\<And>x. Path f x (as@bs) z = (\<exists>y. Path f x as y \<and> Path f y bs z)"  | 
|
| 16972 | 35  | 
by (induct as) auto  | 
| 14074 | 36  | 
|
37  | 
lemma Path_upd[simp]:  | 
|
38  | 
"\<And>x. u \<notin> set as \<Longrightarrow> Path (f(u := v)) x as y = Path f x as y"  | 
|
| 16972 | 39  | 
by (induct as) simp_all  | 
| 14074 | 40  | 
|
41  | 
||
42  | 
subsection "Lists on the heap"  | 
|
43  | 
||
| 38353 | 44  | 
definition List :: "heap \<Rightarrow> nat \<Rightarrow> nat list \<Rightarrow> bool"  | 
45  | 
where "List h x as = Path h x as 0"  | 
|
| 14074 | 46  | 
|
47  | 
lemma [simp]: "List h x [] = (x = 0)"  | 
|
| 16972 | 48  | 
by (simp add: List_def)  | 
| 14074 | 49  | 
|
50  | 
lemma [simp]:  | 
|
51  | 
"List h x (a#as) = (x\<noteq>0 \<and> a=x \<and> (\<exists>y. h x = Some y \<and> List h y as))"  | 
|
| 16972 | 52  | 
by (simp add: List_def)  | 
| 14074 | 53  | 
|
54  | 
lemma [simp]: "List h 0 as = (as = [])"  | 
|
| 16972 | 55  | 
by (cases as) simp_all  | 
| 14074 | 56  | 
|
57  | 
lemma List_non_null: "a\<noteq>0 \<Longrightarrow>  | 
|
58  | 
List h a as = (\<exists>b bs. as = a#bs \<and> h a = Some b \<and> List h b bs)"  | 
|
| 16972 | 59  | 
by (cases as) simp_all  | 
| 14074 | 60  | 
|
61  | 
theorem notin_List_update[simp]:  | 
|
62  | 
"\<And>x. a \<notin> set as \<Longrightarrow> List (h(a := y)) x as = List h x as"  | 
|
| 16972 | 63  | 
by (induct as) simp_all  | 
| 14074 | 64  | 
|
65  | 
lemma List_unique: "\<And>x bs. List h x as \<Longrightarrow> List h x bs \<Longrightarrow> as = bs"  | 
|
| 16972 | 66  | 
by (induct as) (auto simp add:List_non_null)  | 
| 14074 | 67  | 
|
68  | 
lemma List_unique1: "List h p as \<Longrightarrow> \<exists>!as. List h p as"  | 
|
| 16972 | 69  | 
by (blast intro: List_unique)  | 
| 14074 | 70  | 
|
71  | 
lemma List_app: "\<And>x. List h x (as@bs) = (\<exists>y. Path h x as y \<and> List h y bs)"  | 
|
| 16972 | 72  | 
by (induct as) auto  | 
| 14074 | 73  | 
|
74  | 
lemma List_hd_not_in_tl[simp]: "List h b as \<Longrightarrow> h a = Some b \<Longrightarrow> a \<notin> set as"  | 
|
75  | 
apply (clarsimp simp add:in_set_conv_decomp)  | 
|
76  | 
apply(frule List_app[THEN iffD1])  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
42174 
diff
changeset
 | 
77  | 
apply(fastforce dest: List_unique)  | 
| 14074 | 78  | 
done  | 
79  | 
||
80  | 
lemma List_distinct[simp]: "\<And>x. List h x as \<Longrightarrow> distinct as"  | 
|
| 16972 | 81  | 
by (induct as) (auto dest:List_hd_not_in_tl)  | 
| 14074 | 82  | 
|
83  | 
lemma list_in_heap: "\<And>p. List h p ps \<Longrightarrow> set ps \<subseteq> dom h"  | 
|
| 16972 | 84  | 
by (induct ps) auto  | 
| 14074 | 85  | 
|
86  | 
lemma list_ortho_sum1[simp]:  | 
|
87  | 
 "\<And>p. \<lbrakk> List h1 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
 | 
|
| 16972 | 88  | 
by (induct ps) (auto simp add:map_add_def split:option.split)  | 
| 14074 | 89  | 
|
| 18447 | 90  | 
|
| 14074 | 91  | 
lemma list_ortho_sum2[simp]:  | 
92  | 
 "\<And>p. \<lbrakk> List h2 p ps; dom h1 \<inter> dom h2 = {}\<rbrakk> \<Longrightarrow> List (h1++h2) p ps"
 | 
|
| 16972 | 93  | 
by (induct ps) (auto simp add:map_add_def split:option.split)  | 
| 14074 | 94  | 
|
95  | 
end  |