| author | bulwahn | 
| Wed, 23 Sep 2009 16:20:12 +0200 | |
| changeset 32670 | cc0bae788b7e | 
| parent 32069 | 6d28bbd33e2c | 
| child 33296 | a3924d1069e5 | 
| permissions | -rw-r--r-- | 
| 30925 | 1  | 
(* Title: HOL/Nat_Numeral.thy  | 
| 23164 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
Copyright 1999 University of Cambridge  | 
|
4  | 
*)  | 
|
5  | 
||
| 30925 | 6  | 
header {* Binary numerals for the natural numbers *}
 | 
| 23164 | 7  | 
|
| 30925 | 8  | 
theory Nat_Numeral  | 
| 23164 | 9  | 
imports IntDiv  | 
| 
31068
 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 
haftmann 
parents: 
31034 
diff
changeset
 | 
10  | 
uses ("Tools/nat_numeral_simprocs.ML")
 | 
| 23164 | 11  | 
begin  | 
12  | 
||
| 31014 | 13  | 
subsection {* Numerals for natural numbers *}
 | 
14  | 
||
| 23164 | 15  | 
text {*
 | 
16  | 
Arithmetic for naturals is reduced to that for the non-negative integers.  | 
|
17  | 
*}  | 
|
18  | 
||
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
19  | 
instantiation nat :: number  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
20  | 
begin  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
21  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
22  | 
definition  | 
| 
32069
 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 
haftmann 
parents: 
31998 
diff
changeset
 | 
23  | 
nat_number_of_def [code_unfold, code del]: "number_of v = nat (number_of v)"  | 
| 
25571
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
24  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
25  | 
instance ..  | 
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
26  | 
|
| 
 
c9e39eafc7a0
instantiation target rather than legacy instance
 
haftmann 
parents: 
25481 
diff
changeset
 | 
27  | 
end  | 
| 23164 | 28  | 
|
| 
31998
 
2c7a24f74db9
code attributes use common underscore convention
 
haftmann 
parents: 
31790 
diff
changeset
 | 
29  | 
lemma [code_post]:  | 
| 25965 | 30  | 
"nat (number_of v) = number_of v"  | 
31  | 
unfolding nat_number_of_def ..  | 
|
32  | 
||
| 31014 | 33  | 
|
34  | 
subsection {* Special case: squares and cubes *}
 | 
|
35  | 
||
36  | 
lemma numeral_2_eq_2: "2 = Suc (Suc 0)"  | 
|
37  | 
by (simp add: nat_number_of_def)  | 
|
38  | 
||
39  | 
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))"  | 
|
40  | 
by (simp add: nat_number_of_def)  | 
|
41  | 
||
42  | 
context power  | 
|
| 30960 | 43  | 
begin  | 
44  | 
||
| 23164 | 45  | 
abbreviation (xsymbols)  | 
| 30960 | 46  | 
  power2 :: "'a \<Rightarrow> 'a"  ("(_\<twosuperior>)" [1000] 999) where
 | 
47  | 
"x\<twosuperior> \<equiv> x ^ 2"  | 
|
| 23164 | 48  | 
|
49  | 
notation (latex output)  | 
|
| 
29401
 
94fd5dd918f5
rename abbreviation square -> power2, to match theorem names
 
huffman 
parents: 
29045 
diff
changeset
 | 
50  | 
  power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 23164 | 51  | 
|
52  | 
notation (HTML output)  | 
|
| 
29401
 
94fd5dd918f5
rename abbreviation square -> power2, to match theorem names
 
huffman 
parents: 
29045 
diff
changeset
 | 
53  | 
  power2  ("(_\<twosuperior>)" [1000] 999)
 | 
| 23164 | 54  | 
|
| 30960 | 55  | 
end  | 
56  | 
||
| 31014 | 57  | 
context monoid_mult  | 
58  | 
begin  | 
|
59  | 
||
60  | 
lemma power2_eq_square: "a\<twosuperior> = a * a"  | 
|
61  | 
by (simp add: numeral_2_eq_2)  | 
|
62  | 
||
63  | 
lemma power3_eq_cube: "a ^ 3 = a * a * a"  | 
|
64  | 
by (simp add: numeral_3_eq_3 mult_assoc)  | 
|
65  | 
||
66  | 
lemma power_even_eq:  | 
|
67  | 
"a ^ (2*n) = (a ^ n) ^ 2"  | 
|
68  | 
by (subst OrderedGroup.mult_commute) (simp add: power_mult)  | 
|
69  | 
||
70  | 
lemma power_odd_eq:  | 
|
71  | 
"a ^ Suc (2*n) = a * (a ^ n) ^ 2"  | 
|
72  | 
by (simp add: power_even_eq)  | 
|
73  | 
||
74  | 
end  | 
|
75  | 
||
76  | 
context semiring_1  | 
|
77  | 
begin  | 
|
78  | 
||
79  | 
lemma zero_power2 [simp]: "0\<twosuperior> = 0"  | 
|
80  | 
by (simp add: power2_eq_square)  | 
|
81  | 
||
82  | 
lemma one_power2 [simp]: "1\<twosuperior> = 1"  | 
|
83  | 
by (simp add: power2_eq_square)  | 
|
84  | 
||
85  | 
end  | 
|
86  | 
||
87  | 
context comm_ring_1  | 
|
88  | 
begin  | 
|
89  | 
||
90  | 
lemma power2_minus [simp]:  | 
|
91  | 
"(- a)\<twosuperior> = a\<twosuperior>"  | 
|
92  | 
by (simp add: power2_eq_square)  | 
|
93  | 
||
94  | 
text{*
 | 
|
95  | 
  We cannot prove general results about the numeral @{term "-1"},
 | 
|
96  | 
  so we have to use @{term "- 1"} instead.
 | 
|
97  | 
*}  | 
|
98  | 
||
99  | 
lemma power_minus1_even [simp]:  | 
|
100  | 
"(- 1) ^ (2*n) = 1"  | 
|
101  | 
proof (induct n)  | 
|
102  | 
case 0 show ?case by simp  | 
|
103  | 
next  | 
|
104  | 
case (Suc n) then show ?case by (simp add: power_add)  | 
|
105  | 
qed  | 
|
106  | 
||
107  | 
lemma power_minus1_odd:  | 
|
108  | 
"(- 1) ^ Suc (2*n) = - 1"  | 
|
109  | 
by simp  | 
|
110  | 
||
111  | 
lemma power_minus_even [simp]:  | 
|
112  | 
"(-a) ^ (2*n) = a ^ (2*n)"  | 
|
113  | 
by (simp add: power_minus [of a])  | 
|
114  | 
||
115  | 
end  | 
|
116  | 
||
117  | 
context ordered_ring_strict  | 
|
118  | 
begin  | 
|
119  | 
||
120  | 
lemma sum_squares_ge_zero:  | 
|
121  | 
"0 \<le> x * x + y * y"  | 
|
122  | 
by (intro add_nonneg_nonneg zero_le_square)  | 
|
123  | 
||
124  | 
lemma not_sum_squares_lt_zero:  | 
|
125  | 
"\<not> x * x + y * y < 0"  | 
|
126  | 
by (simp add: not_less sum_squares_ge_zero)  | 
|
127  | 
||
128  | 
lemma sum_squares_eq_zero_iff:  | 
|
129  | 
"x * x + y * y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
|
| 31034 | 130  | 
by (simp add: add_nonneg_eq_0_iff)  | 
| 31014 | 131  | 
|
132  | 
lemma sum_squares_le_zero_iff:  | 
|
133  | 
"x * x + y * y \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
|
134  | 
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)  | 
|
135  | 
||
136  | 
lemma sum_squares_gt_zero_iff:  | 
|
137  | 
"0 < x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
|
138  | 
proof -  | 
|
139  | 
have "x * x + y * y \<noteq> 0 \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
|
140  | 
by (simp add: sum_squares_eq_zero_iff)  | 
|
141  | 
then have "0 \<noteq> x * x + y * y \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
|
142  | 
by auto  | 
|
143  | 
then show ?thesis  | 
|
144  | 
by (simp add: less_le sum_squares_ge_zero)  | 
|
145  | 
qed  | 
|
146  | 
||
147  | 
end  | 
|
148  | 
||
149  | 
context ordered_semidom  | 
|
150  | 
begin  | 
|
151  | 
||
152  | 
lemma power2_le_imp_le:  | 
|
153  | 
"x\<twosuperior> \<le> y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x \<le> y"  | 
|
154  | 
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)  | 
|
155  | 
||
156  | 
lemma power2_less_imp_less:  | 
|
157  | 
"x\<twosuperior> < y\<twosuperior> \<Longrightarrow> 0 \<le> y \<Longrightarrow> x < y"  | 
|
158  | 
by (rule power_less_imp_less_base)  | 
|
159  | 
||
160  | 
lemma power2_eq_imp_eq:  | 
|
161  | 
"x\<twosuperior> = y\<twosuperior> \<Longrightarrow> 0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> x = y"  | 
|
162  | 
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp  | 
|
163  | 
||
164  | 
end  | 
|
165  | 
||
166  | 
context ordered_idom  | 
|
167  | 
begin  | 
|
168  | 
||
169  | 
lemma zero_eq_power2 [simp]:  | 
|
170  | 
"a\<twosuperior> = 0 \<longleftrightarrow> a = 0"  | 
|
171  | 
by (force simp add: power2_eq_square)  | 
|
172  | 
||
173  | 
lemma zero_le_power2 [simp]:  | 
|
174  | 
"0 \<le> a\<twosuperior>"  | 
|
175  | 
by (simp add: power2_eq_square)  | 
|
176  | 
||
177  | 
lemma zero_less_power2 [simp]:  | 
|
178  | 
"0 < a\<twosuperior> \<longleftrightarrow> a \<noteq> 0"  | 
|
179  | 
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)  | 
|
180  | 
||
181  | 
lemma power2_less_0 [simp]:  | 
|
182  | 
"\<not> a\<twosuperior> < 0"  | 
|
183  | 
by (force simp add: power2_eq_square mult_less_0_iff)  | 
|
184  | 
||
185  | 
lemma abs_power2 [simp]:  | 
|
186  | 
"abs (a\<twosuperior>) = a\<twosuperior>"  | 
|
187  | 
by (simp add: power2_eq_square abs_mult abs_mult_self)  | 
|
188  | 
||
189  | 
lemma power2_abs [simp]:  | 
|
190  | 
"(abs a)\<twosuperior> = a\<twosuperior>"  | 
|
191  | 
by (simp add: power2_eq_square abs_mult_self)  | 
|
192  | 
||
193  | 
lemma odd_power_less_zero:  | 
|
194  | 
"a < 0 \<Longrightarrow> a ^ Suc (2*n) < 0"  | 
|
195  | 
proof (induct n)  | 
|
196  | 
case 0  | 
|
197  | 
then show ?case by simp  | 
|
198  | 
next  | 
|
199  | 
case (Suc n)  | 
|
200  | 
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"  | 
|
201  | 
by (simp add: mult_ac power_add power2_eq_square)  | 
|
202  | 
thus ?case  | 
|
203  | 
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)  | 
|
204  | 
qed  | 
|
205  | 
||
206  | 
lemma odd_0_le_power_imp_0_le:  | 
|
207  | 
"0 \<le> a ^ Suc (2*n) \<Longrightarrow> 0 \<le> a"  | 
|
208  | 
using odd_power_less_zero [of a n]  | 
|
209  | 
by (force simp add: linorder_not_less [symmetric])  | 
|
210  | 
||
211  | 
lemma zero_le_even_power'[simp]:  | 
|
212  | 
"0 \<le> a ^ (2*n)"  | 
|
213  | 
proof (induct n)  | 
|
214  | 
case 0  | 
|
215  | 
show ?case by (simp add: zero_le_one)  | 
|
216  | 
next  | 
|
217  | 
case (Suc n)  | 
|
218  | 
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"  | 
|
219  | 
by (simp add: mult_ac power_add power2_eq_square)  | 
|
220  | 
thus ?case  | 
|
221  | 
by (simp add: Suc zero_le_mult_iff)  | 
|
222  | 
qed  | 
|
223  | 
||
224  | 
lemma sum_power2_ge_zero:  | 
|
225  | 
"0 \<le> x\<twosuperior> + y\<twosuperior>"  | 
|
226  | 
unfolding power2_eq_square by (rule sum_squares_ge_zero)  | 
|
227  | 
||
228  | 
lemma not_sum_power2_lt_zero:  | 
|
229  | 
"\<not> x\<twosuperior> + y\<twosuperior> < 0"  | 
|
230  | 
unfolding power2_eq_square by (rule not_sum_squares_lt_zero)  | 
|
231  | 
||
232  | 
lemma sum_power2_eq_zero_iff:  | 
|
233  | 
"x\<twosuperior> + y\<twosuperior> = 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
|
234  | 
unfolding power2_eq_square by (rule sum_squares_eq_zero_iff)  | 
|
235  | 
||
236  | 
lemma sum_power2_le_zero_iff:  | 
|
237  | 
"x\<twosuperior> + y\<twosuperior> \<le> 0 \<longleftrightarrow> x = 0 \<and> y = 0"  | 
|
238  | 
unfolding power2_eq_square by (rule sum_squares_le_zero_iff)  | 
|
239  | 
||
240  | 
lemma sum_power2_gt_zero_iff:  | 
|
241  | 
"0 < x\<twosuperior> + y\<twosuperior> \<longleftrightarrow> x \<noteq> 0 \<or> y \<noteq> 0"  | 
|
242  | 
unfolding power2_eq_square by (rule sum_squares_gt_zero_iff)  | 
|
243  | 
||
244  | 
end  | 
|
245  | 
||
246  | 
lemma power2_sum:  | 
|
247  | 
fixes x y :: "'a::number_ring"  | 
|
248  | 
shows "(x + y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> + 2 * x * y"  | 
|
249  | 
by (simp add: ring_distribs power2_eq_square)  | 
|
250  | 
||
251  | 
lemma power2_diff:  | 
|
252  | 
fixes x y :: "'a::number_ring"  | 
|
253  | 
shows "(x - y)\<twosuperior> = x\<twosuperior> + y\<twosuperior> - 2 * x * y"  | 
|
254  | 
by (simp add: ring_distribs power2_eq_square)  | 
|
255  | 
||
| 23164 | 256  | 
|
| 
29040
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
257  | 
subsection {* Predicate for negative binary numbers *}
 | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
258  | 
|
| 
30652
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
259  | 
definition neg :: "int \<Rightarrow> bool" where  | 
| 
29040
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
260  | 
"neg Z \<longleftrightarrow> Z < 0"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
261  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
262  | 
lemma not_neg_int [simp]: "~ neg (of_nat n)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
263  | 
by (simp add: neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
264  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
265  | 
lemma neg_zminus_int [simp]: "neg (- (of_nat (Suc n)))"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
266  | 
by (simp add: neg_def neg_less_0_iff_less del: of_nat_Suc)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
267  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
268  | 
lemmas neg_eq_less_0 = neg_def  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
269  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
270  | 
lemma not_neg_eq_ge_0: "(~neg x) = (0 \<le> x)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
271  | 
by (simp add: neg_def linorder_not_less)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
272  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
273  | 
text{*To simplify inequalities when Numeral1 can get simplified to 1*}
 | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
274  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
275  | 
lemma not_neg_0: "~ neg 0"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
276  | 
by (simp add: One_int_def neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
277  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
278  | 
lemma not_neg_1: "~ neg 1"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
279  | 
by (simp add: neg_def linorder_not_less zero_le_one)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
280  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
281  | 
lemma neg_nat: "neg z ==> nat z = 0"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
282  | 
by (simp add: neg_def order_less_imp_le)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
283  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
284  | 
lemma not_neg_nat: "~ neg z ==> of_nat (nat z) = z"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
285  | 
by (simp add: linorder_not_less neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
286  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
287  | 
text {*
 | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
288  | 
  If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
 | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
289  | 
  @{term Numeral0} IS @{term "number_of Pls"}
 | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
290  | 
*}  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
291  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
292  | 
lemma not_neg_number_of_Pls: "~ neg (number_of Int.Pls)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
293  | 
by (simp add: neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
294  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
295  | 
lemma neg_number_of_Min: "neg (number_of Int.Min)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
296  | 
by (simp add: neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
297  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
298  | 
lemma neg_number_of_Bit0:  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
299  | 
"neg (number_of (Int.Bit0 w)) = neg (number_of w)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
300  | 
by (simp add: neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
301  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
302  | 
lemma neg_number_of_Bit1:  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
303  | 
"neg (number_of (Int.Bit1 w)) = neg (number_of w)"  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
304  | 
by (simp add: neg_def)  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
305  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
306  | 
lemmas neg_simps [simp] =  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
307  | 
not_neg_0 not_neg_1  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
308  | 
not_neg_number_of_Pls neg_number_of_Min  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
309  | 
neg_number_of_Bit0 neg_number_of_Bit1  | 
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
310  | 
|
| 
 
286c669d3a7a
move all neg-related lemmas to NatBin; make type of neg specific to int
 
huffman 
parents: 
29039 
diff
changeset
 | 
311  | 
|
| 23164 | 312  | 
subsection{*Function @{term nat}: Coercion from Type @{typ int} to @{typ nat}*}
 | 
313  | 
||
314  | 
declare nat_0 [simp] nat_1 [simp]  | 
|
315  | 
||
316  | 
lemma nat_number_of [simp]: "nat (number_of w) = number_of w"  | 
|
317  | 
by (simp add: nat_number_of_def)  | 
|
318  | 
||
| 
31998
 
2c7a24f74db9
code attributes use common underscore convention
 
haftmann 
parents: 
31790 
diff
changeset
 | 
319  | 
lemma nat_numeral_0_eq_0 [simp, code_post]: "Numeral0 = (0::nat)"  | 
| 23164 | 320  | 
by (simp add: nat_number_of_def)  | 
321  | 
||
322  | 
lemma nat_numeral_1_eq_1 [simp]: "Numeral1 = (1::nat)"  | 
|
323  | 
by (simp add: nat_1 nat_number_of_def)  | 
|
324  | 
||
| 
31998
 
2c7a24f74db9
code attributes use common underscore convention
 
haftmann 
parents: 
31790 
diff
changeset
 | 
325  | 
lemma numeral_1_eq_Suc_0 [code_post]: "Numeral1 = Suc 0"  | 
| 23164 | 326  | 
by (simp add: nat_numeral_1_eq_1)  | 
327  | 
||
328  | 
||
329  | 
subsection{*Function @{term int}: Coercion from Type @{typ nat} to @{typ int}*}
 | 
|
330  | 
||
331  | 
lemma int_nat_number_of [simp]:  | 
|
| 23365 | 332  | 
"int (number_of v) =  | 
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
333  | 
(if neg (number_of v :: int) then 0  | 
| 
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
334  | 
else (number_of v :: int))"  | 
| 28984 | 335  | 
unfolding nat_number_of_def number_of_is_id neg_def  | 
336  | 
by simp  | 
|
| 
23307
 
2fe3345035c7
modify proofs to avoid referring to int::nat=>int
 
huffman 
parents: 
23294 
diff
changeset
 | 
337  | 
|
| 23164 | 338  | 
|
339  | 
subsubsection{*Successor *}
 | 
|
340  | 
||
341  | 
lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)"  | 
|
342  | 
apply (rule sym)  | 
|
343  | 
apply (simp add: nat_eq_iff int_Suc)  | 
|
344  | 
done  | 
|
345  | 
||
346  | 
lemma Suc_nat_number_of_add:  | 
|
347  | 
"Suc (number_of v + n) =  | 
|
| 28984 | 348  | 
(if neg (number_of v :: int) then 1+n else number_of (Int.succ v) + n)"  | 
349  | 
unfolding nat_number_of_def number_of_is_id neg_def numeral_simps  | 
|
350  | 
by (simp add: Suc_nat_eq_nat_zadd1 add_ac)  | 
|
| 23164 | 351  | 
|
352  | 
lemma Suc_nat_number_of [simp]:  | 
|
353  | 
"Suc (number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
354  | 
(if neg (number_of v :: int) then 1 else number_of (Int.succ v))"  | 
| 23164 | 355  | 
apply (cut_tac n = 0 in Suc_nat_number_of_add)  | 
356  | 
apply (simp cong del: if_weak_cong)  | 
|
357  | 
done  | 
|
358  | 
||
359  | 
||
360  | 
subsubsection{*Addition *}
 | 
|
361  | 
||
362  | 
lemma add_nat_number_of [simp]:  | 
|
363  | 
"(number_of v :: nat) + number_of v' =  | 
|
| 29012 | 364  | 
(if v < Int.Pls then number_of v'  | 
365  | 
else if v' < Int.Pls then number_of v  | 
|
| 23164 | 366  | 
else number_of (v + v'))"  | 
| 29012 | 367  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
| 28984 | 368  | 
by (simp add: nat_add_distrib)  | 
| 23164 | 369  | 
|
| 30081 | 370  | 
lemma nat_number_of_add_1 [simp]:  | 
371  | 
"number_of v + (1::nat) =  | 
|
372  | 
(if v < Int.Pls then 1 else number_of (Int.succ v))"  | 
|
373  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
374  | 
by (simp add: nat_add_distrib)  | 
|
375  | 
||
376  | 
lemma nat_1_add_number_of [simp]:  | 
|
377  | 
"(1::nat) + number_of v =  | 
|
378  | 
(if v < Int.Pls then 1 else number_of (Int.succ v))"  | 
|
379  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
380  | 
by (simp add: nat_add_distrib)  | 
|
381  | 
||
382  | 
lemma nat_1_add_1 [simp]: "1 + 1 = (2::nat)"  | 
|
383  | 
by (rule int_int_eq [THEN iffD1]) simp  | 
|
384  | 
||
| 23164 | 385  | 
|
386  | 
subsubsection{*Subtraction *}
 | 
|
387  | 
||
388  | 
lemma diff_nat_eq_if:  | 
|
389  | 
"nat z - nat z' =  | 
|
390  | 
(if neg z' then nat z  | 
|
391  | 
else let d = z-z' in  | 
|
392  | 
if neg d then 0 else nat d)"  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26342 
diff
changeset
 | 
393  | 
by (simp add: Let_def nat_diff_distrib [symmetric] neg_eq_less_0 not_neg_eq_ge_0)  | 
| 
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26342 
diff
changeset
 | 
394  | 
|
| 23164 | 395  | 
|
396  | 
lemma diff_nat_number_of [simp]:  | 
|
397  | 
"(number_of v :: nat) - number_of v' =  | 
|
| 29012 | 398  | 
(if v' < Int.Pls then number_of v  | 
| 23164 | 399  | 
else let d = number_of (v + uminus v') in  | 
400  | 
if neg d then 0 else nat d)"  | 
|
| 29012 | 401  | 
unfolding nat_number_of_def number_of_is_id numeral_simps neg_def  | 
402  | 
by auto  | 
|
| 23164 | 403  | 
|
| 30081 | 404  | 
lemma nat_number_of_diff_1 [simp]:  | 
405  | 
"number_of v - (1::nat) =  | 
|
406  | 
(if v \<le> Int.Pls then 0 else number_of (Int.pred v))"  | 
|
407  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
408  | 
by auto  | 
|
409  | 
||
| 23164 | 410  | 
|
411  | 
subsubsection{*Multiplication *}
 | 
|
412  | 
||
413  | 
lemma mult_nat_number_of [simp]:  | 
|
414  | 
"(number_of v :: nat) * number_of v' =  | 
|
| 29012 | 415  | 
(if v < Int.Pls then 0 else number_of (v * v'))"  | 
416  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
| 28984 | 417  | 
by (simp add: nat_mult_distrib)  | 
| 23164 | 418  | 
|
419  | 
||
420  | 
subsubsection{*Quotient *}
 | 
|
421  | 
||
422  | 
lemma div_nat_number_of [simp]:  | 
|
423  | 
"(number_of v :: nat) div number_of v' =  | 
|
424  | 
(if neg (number_of v :: int) then 0  | 
|
425  | 
else nat (number_of v div number_of v'))"  | 
|
| 28984 | 426  | 
unfolding nat_number_of_def number_of_is_id neg_def  | 
427  | 
by (simp add: nat_div_distrib)  | 
|
| 23164 | 428  | 
|
429  | 
lemma one_div_nat_number_of [simp]:  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26342 
diff
changeset
 | 
430  | 
"Suc 0 div number_of v' = nat (1 div number_of v')"  | 
| 23164 | 431  | 
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric])  | 
432  | 
||
433  | 
||
434  | 
subsubsection{*Remainder *}
 | 
|
435  | 
||
436  | 
lemma mod_nat_number_of [simp]:  | 
|
437  | 
"(number_of v :: nat) mod number_of v' =  | 
|
438  | 
(if neg (number_of v :: int) then 0  | 
|
439  | 
else if neg (number_of v' :: int) then number_of v  | 
|
440  | 
else nat (number_of v mod number_of v'))"  | 
|
| 28984 | 441  | 
unfolding nat_number_of_def number_of_is_id neg_def  | 
442  | 
by (simp add: nat_mod_distrib)  | 
|
| 23164 | 443  | 
|
444  | 
lemma one_mod_nat_number_of [simp]:  | 
|
| 
27651
 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 
haftmann 
parents: 
26342 
diff
changeset
 | 
445  | 
"Suc 0 mod number_of v' =  | 
| 23164 | 446  | 
(if neg (number_of v' :: int) then Suc 0  | 
447  | 
else nat (1 mod number_of v'))"  | 
|
448  | 
by (simp del: nat_numeral_1_eq_1 add: numeral_1_eq_Suc_0 [symmetric])  | 
|
449  | 
||
450  | 
||
451  | 
subsubsection{* Divisibility *}
 | 
|
452  | 
||
453  | 
lemmas dvd_eq_mod_eq_0_number_of =  | 
|
454  | 
dvd_eq_mod_eq_0 [of "number_of x" "number_of y", standard]  | 
|
455  | 
||
456  | 
declare dvd_eq_mod_eq_0_number_of [simp]  | 
|
457  | 
||
458  | 
||
459  | 
subsection{*Comparisons*}
 | 
|
460  | 
||
461  | 
subsubsection{*Equals (=) *}
 | 
|
462  | 
||
463  | 
lemma eq_nat_nat_iff:  | 
|
464  | 
"[| (0::int) <= z; 0 <= z' |] ==> (nat z = nat z') = (z=z')"  | 
|
465  | 
by (auto elim!: nonneg_eq_int)  | 
|
466  | 
||
467  | 
lemma eq_nat_number_of [simp]:  | 
|
468  | 
"((number_of v :: nat) = number_of v') =  | 
|
| 28969 | 469  | 
(if neg (number_of v :: int) then (number_of v' :: int) \<le> 0  | 
470  | 
else if neg (number_of v' :: int) then (number_of v :: int) = 0  | 
|
471  | 
else v = v')"  | 
|
472  | 
unfolding nat_number_of_def number_of_is_id neg_def  | 
|
473  | 
by auto  | 
|
| 23164 | 474  | 
|
475  | 
||
476  | 
subsubsection{*Less-than (<) *}
 | 
|
477  | 
||
478  | 
lemma less_nat_number_of [simp]:  | 
|
| 29011 | 479  | 
"(number_of v :: nat) < number_of v' \<longleftrightarrow>  | 
480  | 
(if v < v' then Int.Pls < v' else False)"  | 
|
481  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
| 28961 | 482  | 
by auto  | 
| 23164 | 483  | 
|
484  | 
||
| 29010 | 485  | 
subsubsection{*Less-than-or-equal *}
 | 
486  | 
||
487  | 
lemma le_nat_number_of [simp]:  | 
|
488  | 
"(number_of v :: nat) \<le> number_of v' \<longleftrightarrow>  | 
|
489  | 
(if v \<le> v' then True else v \<le> Int.Pls)"  | 
|
490  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
491  | 
by auto  | 
|
492  | 
||
| 23164 | 493  | 
(*Maps #n to n for n = 0, 1, 2*)  | 
494  | 
lemmas numerals = nat_numeral_0_eq_0 nat_numeral_1_eq_1 numeral_2_eq_2  | 
|
495  | 
||
496  | 
||
497  | 
subsection{*Powers with Numeric Exponents*}
 | 
|
498  | 
||
499  | 
text{*Squares of literal numerals will be evaluated.*}
 | 
|
| 31014 | 500  | 
lemmas power2_eq_square_number_of [simp] =  | 
| 23164 | 501  | 
power2_eq_square [of "number_of w", standard]  | 
502  | 
||
503  | 
||
504  | 
text{*Simprules for comparisons where common factors can be cancelled.*}
 | 
|
505  | 
lemmas zero_compare_simps =  | 
|
506  | 
add_strict_increasing add_strict_increasing2 add_increasing  | 
|
507  | 
zero_le_mult_iff zero_le_divide_iff  | 
|
508  | 
zero_less_mult_iff zero_less_divide_iff  | 
|
509  | 
mult_le_0_iff divide_le_0_iff  | 
|
510  | 
mult_less_0_iff divide_less_0_iff  | 
|
511  | 
zero_le_power2 power2_less_0  | 
|
512  | 
||
513  | 
subsubsection{*Nat *}
 | 
|
514  | 
||
515  | 
lemma Suc_pred': "0 < n ==> n = Suc(n - 1)"  | 
|
516  | 
by (simp add: numerals)  | 
|
517  | 
||
518  | 
(*Expresses a natural number constant as the Suc of another one.  | 
|
519  | 
NOT suitable for rewriting because n recurs in the condition.*)  | 
|
520  | 
lemmas expand_Suc = Suc_pred' [of "number_of v", standard]  | 
|
521  | 
||
522  | 
subsubsection{*Arith *}
 | 
|
523  | 
||
| 31790 | 524  | 
lemma Suc_eq_plus1: "Suc n = n + 1"  | 
| 23164 | 525  | 
by (simp add: numerals)  | 
526  | 
||
| 31790 | 527  | 
lemma Suc_eq_plus1_left: "Suc n = 1 + n"  | 
| 23164 | 528  | 
by (simp add: numerals)  | 
529  | 
||
530  | 
(* These two can be useful when m = number_of... *)  | 
|
531  | 
||
532  | 
lemma add_eq_if: "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))"  | 
|
| 
30079
 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 
huffman 
parents: 
29958 
diff
changeset
 | 
533  | 
unfolding One_nat_def by (cases m) simp_all  | 
| 23164 | 534  | 
|
535  | 
lemma mult_eq_if: "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))"  | 
|
| 
30079
 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 
huffman 
parents: 
29958 
diff
changeset
 | 
536  | 
unfolding One_nat_def by (cases m) simp_all  | 
| 23164 | 537  | 
|
538  | 
lemma power_eq_if: "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))"  | 
|
| 
30079
 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 
huffman 
parents: 
29958 
diff
changeset
 | 
539  | 
unfolding One_nat_def by (cases m) simp_all  | 
| 23164 | 540  | 
|
541  | 
||
542  | 
subsection{*Comparisons involving (0::nat) *}
 | 
|
543  | 
||
544  | 
text{*Simplification already does @{term "n<0"}, @{term "n\<le>0"} and @{term "0\<le>n"}.*}
 | 
|
545  | 
||
546  | 
lemma eq_number_of_0 [simp]:  | 
|
| 29012 | 547  | 
"number_of v = (0::nat) \<longleftrightarrow> v \<le> Int.Pls"  | 
548  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
549  | 
by auto  | 
|
| 23164 | 550  | 
|
551  | 
lemma eq_0_number_of [simp]:  | 
|
| 29012 | 552  | 
"(0::nat) = number_of v \<longleftrightarrow> v \<le> Int.Pls"  | 
| 23164 | 553  | 
by (rule trans [OF eq_sym_conv eq_number_of_0])  | 
554  | 
||
555  | 
lemma less_0_number_of [simp]:  | 
|
| 29012 | 556  | 
"(0::nat) < number_of v \<longleftrightarrow> Int.Pls < v"  | 
557  | 
unfolding nat_number_of_def number_of_is_id numeral_simps  | 
|
558  | 
by simp  | 
|
| 23164 | 559  | 
|
560  | 
lemma neg_imp_number_of_eq_0: "neg (number_of v :: int) ==> number_of v = (0::nat)"  | 
|
| 28969 | 561  | 
by (simp del: nat_numeral_0_eq_0 add: nat_numeral_0_eq_0 [symmetric])  | 
| 23164 | 562  | 
|
563  | 
||
564  | 
||
565  | 
subsection{*Comparisons involving  @{term Suc} *}
 | 
|
566  | 
||
567  | 
lemma eq_number_of_Suc [simp]:  | 
|
568  | 
"(number_of v = Suc n) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
569  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 570  | 
if neg pv then False else nat pv = n)"  | 
571  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
572  | 
number_of_pred nat_number_of_def  | 
|
573  | 
split add: split_if)  | 
|
574  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
575  | 
apply (auto simp add: nat_eq_iff)  | 
|
576  | 
done  | 
|
577  | 
||
578  | 
lemma Suc_eq_number_of [simp]:  | 
|
579  | 
"(Suc n = number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
580  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 581  | 
if neg pv then False else nat pv = n)"  | 
582  | 
by (rule trans [OF eq_sym_conv eq_number_of_Suc])  | 
|
583  | 
||
584  | 
lemma less_number_of_Suc [simp]:  | 
|
585  | 
"(number_of v < Suc n) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
586  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 587  | 
if neg pv then True else nat pv < n)"  | 
588  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
589  | 
number_of_pred nat_number_of_def  | 
|
590  | 
split add: split_if)  | 
|
591  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
592  | 
apply (auto simp add: nat_less_iff)  | 
|
593  | 
done  | 
|
594  | 
||
595  | 
lemma less_Suc_number_of [simp]:  | 
|
596  | 
"(Suc n < number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
597  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 598  | 
if neg pv then False else n < nat pv)"  | 
599  | 
apply (simp only: simp_thms Let_def neg_eq_less_0 linorder_not_less  | 
|
600  | 
number_of_pred nat_number_of_def  | 
|
601  | 
split add: split_if)  | 
|
602  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
603  | 
apply (auto simp add: zless_nat_eq_int_zless)  | 
|
604  | 
done  | 
|
605  | 
||
606  | 
lemma le_number_of_Suc [simp]:  | 
|
607  | 
"(number_of v <= Suc n) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
608  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 609  | 
if neg pv then True else nat pv <= n)"  | 
610  | 
by (simp add: Let_def less_Suc_number_of linorder_not_less [symmetric])  | 
|
611  | 
||
612  | 
lemma le_Suc_number_of [simp]:  | 
|
613  | 
"(Suc n <= number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
614  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 615  | 
if neg pv then False else n <= nat pv)"  | 
616  | 
by (simp add: Let_def less_number_of_Suc linorder_not_less [symmetric])  | 
|
617  | 
||
618  | 
||
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
619  | 
lemma eq_number_of_Pls_Min: "(Numeral0 ::int) ~= number_of Int.Min"  | 
| 23164 | 620  | 
by auto  | 
621  | 
||
622  | 
||
623  | 
||
624  | 
subsection{*Max and Min Combined with @{term Suc} *}
 | 
|
625  | 
||
626  | 
lemma max_number_of_Suc [simp]:  | 
|
627  | 
"max (Suc n) (number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
628  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 629  | 
if neg pv then Suc n else Suc(max n (nat pv)))"  | 
630  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
631  | 
split add: split_if nat.split)  | 
|
632  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
633  | 
apply auto  | 
|
634  | 
done  | 
|
635  | 
||
636  | 
lemma max_Suc_number_of [simp]:  | 
|
637  | 
"max (number_of v) (Suc n) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
638  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 639  | 
if neg pv then Suc n else Suc(max (nat pv) n))"  | 
640  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
641  | 
split add: split_if nat.split)  | 
|
642  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
643  | 
apply auto  | 
|
644  | 
done  | 
|
645  | 
||
646  | 
lemma min_number_of_Suc [simp]:  | 
|
647  | 
"min (Suc n) (number_of v) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
648  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 649  | 
if neg pv then 0 else Suc(min n (nat pv)))"  | 
650  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
651  | 
split add: split_if nat.split)  | 
|
652  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
653  | 
apply auto  | 
|
654  | 
done  | 
|
655  | 
||
656  | 
lemma min_Suc_number_of [simp]:  | 
|
657  | 
"min (number_of v) (Suc n) =  | 
|
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
658  | 
(let pv = number_of (Int.pred v) in  | 
| 23164 | 659  | 
if neg pv then 0 else Suc(min (nat pv) n))"  | 
660  | 
apply (simp only: Let_def neg_eq_less_0 number_of_pred nat_number_of_def  | 
|
661  | 
split add: split_if nat.split)  | 
|
662  | 
apply (rule_tac x = "number_of v" in spec)  | 
|
663  | 
apply auto  | 
|
664  | 
done  | 
|
665  | 
||
666  | 
subsection{*Literal arithmetic involving powers*}
 | 
|
667  | 
||
668  | 
lemma nat_power_eq: "(0::int) <= z ==> nat (z^n) = nat z ^ n"  | 
|
669  | 
apply (induct "n")  | 
|
670  | 
apply (simp_all (no_asm_simp) add: nat_mult_distrib)  | 
|
671  | 
done  | 
|
672  | 
||
673  | 
lemma power_nat_number_of:  | 
|
674  | 
"(number_of v :: nat) ^ n =  | 
|
675  | 
(if neg (number_of v :: int) then 0^n else nat ((number_of v :: int) ^ n))"  | 
|
676  | 
by (simp only: simp_thms neg_nat not_neg_eq_ge_0 nat_number_of_def nat_power_eq  | 
|
677  | 
split add: split_if cong: imp_cong)  | 
|
678  | 
||
679  | 
||
680  | 
lemmas power_nat_number_of_number_of = power_nat_number_of [of _ "number_of w", standard]  | 
|
681  | 
declare power_nat_number_of_number_of [simp]  | 
|
682  | 
||
683  | 
||
684  | 
||
| 23294 | 685  | 
text{*For arbitrary rings*}
 | 
| 23164 | 686  | 
|
| 23294 | 687  | 
lemma power_number_of_even:  | 
| 31014 | 688  | 
fixes z :: "'a::number_ring"  | 
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
689  | 
shows "z ^ number_of (Int.Bit0 w) = (let w = z ^ (number_of w) in w * w)"  | 
| 
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
690  | 
unfolding Let_def nat_number_of_def number_of_Bit0  | 
| 23164 | 691  | 
apply (rule_tac x = "number_of w" in spec, clarify)  | 
692  | 
apply (case_tac " (0::int) <= x")  | 
|
693  | 
apply (auto simp add: nat_mult_distrib power_even_eq power2_eq_square)  | 
|
694  | 
done  | 
|
695  | 
||
| 23294 | 696  | 
lemma power_number_of_odd:  | 
| 31014 | 697  | 
fixes z :: "'a::number_ring"  | 
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
698  | 
shows "z ^ number_of (Int.Bit1 w) = (if (0::int) <= number_of w  | 
| 23164 | 699  | 
then (let w = z ^ (number_of w) in z * w * w) else 1)"  | 
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
700  | 
unfolding Let_def nat_number_of_def number_of_Bit1  | 
| 23164 | 701  | 
apply (rule_tac x = "number_of w" in spec, auto)  | 
702  | 
apply (simp only: nat_add_distrib nat_mult_distrib)  | 
|
703  | 
apply simp  | 
|
| 23294 | 704  | 
apply (auto simp add: nat_add_distrib nat_mult_distrib power_even_eq power2_eq_square neg_nat power_Suc)  | 
| 23164 | 705  | 
done  | 
706  | 
||
| 23294 | 707  | 
lemmas zpower_number_of_even = power_number_of_even [where 'a=int]  | 
708  | 
lemmas zpower_number_of_odd = power_number_of_odd [where 'a=int]  | 
|
| 23164 | 709  | 
|
| 23294 | 710  | 
lemmas power_number_of_even_number_of [simp] =  | 
711  | 
power_number_of_even [of "number_of v", standard]  | 
|
| 23164 | 712  | 
|
| 23294 | 713  | 
lemmas power_number_of_odd_number_of [simp] =  | 
714  | 
power_number_of_odd [of "number_of v", standard]  | 
|
| 23164 | 715  | 
|
716  | 
||
717  | 
(* Enable arith to deal with div/mod k where k is a numeral: *)  | 
|
718  | 
declare split_div[of _ _ "number_of k", standard, arith_split]  | 
|
719  | 
declare split_mod[of _ _ "number_of k", standard, arith_split]  | 
|
720  | 
||
721  | 
lemma nat_number_of_Pls: "Numeral0 = (0::nat)"  | 
|
722  | 
by (simp add: number_of_Pls nat_number_of_def)  | 
|
723  | 
||
| 
25919
 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 
haftmann 
parents: 
25571 
diff
changeset
 | 
724  | 
lemma nat_number_of_Min: "number_of Int.Min = (0::nat)"  | 
| 23164 | 725  | 
apply (simp only: number_of_Min nat_number_of_def nat_zminus_int)  | 
726  | 
done  | 
|
727  | 
||
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
728  | 
lemma nat_number_of_Bit0:  | 
| 
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
729  | 
"number_of (Int.Bit0 w) = (let n::nat = number_of w in n + n)"  | 
| 28969 | 730  | 
unfolding nat_number_of_def number_of_is_id numeral_simps Let_def  | 
731  | 
by auto  | 
|
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
732  | 
|
| 
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
733  | 
lemma nat_number_of_Bit1:  | 
| 
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
734  | 
"number_of (Int.Bit1 w) =  | 
| 23164 | 735  | 
(if neg (number_of w :: int) then 0  | 
736  | 
else let n = number_of w in Suc (n + n))"  | 
|
| 28969 | 737  | 
unfolding nat_number_of_def number_of_is_id numeral_simps neg_def Let_def  | 
| 28968 | 738  | 
by auto  | 
| 23164 | 739  | 
|
740  | 
lemmas nat_number =  | 
|
741  | 
nat_number_of_Pls nat_number_of_Min  | 
|
| 
26086
 
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
 
huffman 
parents: 
25965 
diff
changeset
 | 
742  | 
nat_number_of_Bit0 nat_number_of_Bit1  | 
| 23164 | 743  | 
|
744  | 
lemma Let_Suc [simp]: "Let (Suc n) f == f (Suc n)"  | 
|
745  | 
by (simp add: Let_def)  | 
|
746  | 
||
| 31014 | 747  | 
lemma power_m1_even: "(-1) ^ (2*n) = (1::'a::{number_ring})"
 | 
748  | 
by (simp only: number_of_Min power_minus1_even)  | 
|
| 23164 | 749  | 
|
| 31014 | 750  | 
lemma power_m1_odd: "(-1) ^ Suc(2*n) = (-1::'a::{number_ring})"
 | 
751  | 
by (simp only: number_of_Min power_minus1_odd)  | 
|
| 23164 | 752  | 
|
753  | 
||
754  | 
subsection{*Literal arithmetic and @{term of_nat}*}
 | 
|
755  | 
||
756  | 
lemma of_nat_double:  | 
|
757  | 
"0 \<le> x ==> of_nat (nat (2 * x)) = of_nat (nat x) + of_nat (nat x)"  | 
|
758  | 
by (simp only: mult_2 nat_add_distrib of_nat_add)  | 
|
759  | 
||
760  | 
lemma nat_numeral_m1_eq_0: "-1 = (0::nat)"  | 
|
761  | 
by (simp only: nat_number_of_def)  | 
|
762  | 
||
763  | 
lemma of_nat_number_of_lemma:  | 
|
764  | 
"of_nat (number_of v :: nat) =  | 
|
765  | 
(if 0 \<le> (number_of v :: int)  | 
|
766  | 
then (number_of v :: 'a :: number_ring)  | 
|
767  | 
else 0)"  | 
|
768  | 
by (simp add: int_number_of_def nat_number_of_def number_of_eq of_nat_nat);  | 
|
769  | 
||
770  | 
lemma of_nat_number_of_eq [simp]:  | 
|
771  | 
"of_nat (number_of v :: nat) =  | 
|
772  | 
(if neg (number_of v :: int) then 0  | 
|
773  | 
else (number_of v :: 'a :: number_ring))"  | 
|
774  | 
by (simp only: of_nat_number_of_lemma neg_def, simp)  | 
|
775  | 
||
776  | 
||
777  | 
subsection {*Lemmas for the Combination and Cancellation Simprocs*}
 | 
|
778  | 
||
779  | 
lemma nat_number_of_add_left:  | 
|
780  | 
"number_of v + (number_of v' + (k::nat)) =  | 
|
781  | 
(if neg (number_of v :: int) then number_of v' + k  | 
|
782  | 
else if neg (number_of v' :: int) then number_of v + k  | 
|
783  | 
else number_of (v + v') + k)"  | 
|
| 28968 | 784  | 
unfolding nat_number_of_def number_of_is_id neg_def  | 
785  | 
by auto  | 
|
| 23164 | 786  | 
|
787  | 
lemma nat_number_of_mult_left:  | 
|
788  | 
"number_of v * (number_of v' * (k::nat)) =  | 
|
| 29012 | 789  | 
(if v < Int.Pls then 0  | 
| 23164 | 790  | 
else number_of (v * v') * k)"  | 
791  | 
by simp  | 
|
792  | 
||
793  | 
||
794  | 
subsubsection{*For @{text combine_numerals}*}
 | 
|
795  | 
||
796  | 
lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"  | 
|
797  | 
by (simp add: add_mult_distrib)  | 
|
798  | 
||
799  | 
||
800  | 
subsubsection{*For @{text cancel_numerals}*}
 | 
|
801  | 
||
802  | 
lemma nat_diff_add_eq1:  | 
|
803  | 
"j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"  | 
|
804  | 
by (simp split add: nat_diff_split add: add_mult_distrib)  | 
|
805  | 
||
806  | 
lemma nat_diff_add_eq2:  | 
|
807  | 
"i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"  | 
|
808  | 
by (simp split add: nat_diff_split add: add_mult_distrib)  | 
|
809  | 
||
810  | 
lemma nat_eq_add_iff1:  | 
|
811  | 
"j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"  | 
|
812  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
813  | 
||
814  | 
lemma nat_eq_add_iff2:  | 
|
815  | 
"i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"  | 
|
816  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
817  | 
||
818  | 
lemma nat_less_add_iff1:  | 
|
819  | 
"j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"  | 
|
820  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
821  | 
||
822  | 
lemma nat_less_add_iff2:  | 
|
823  | 
"i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"  | 
|
824  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
825  | 
||
826  | 
lemma nat_le_add_iff1:  | 
|
827  | 
"j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"  | 
|
828  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
829  | 
||
830  | 
lemma nat_le_add_iff2:  | 
|
831  | 
"i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"  | 
|
832  | 
by (auto split add: nat_diff_split simp add: add_mult_distrib)  | 
|
833  | 
||
834  | 
||
835  | 
subsubsection{*For @{text cancel_numeral_factors} *}
 | 
|
836  | 
||
837  | 
lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"  | 
|
838  | 
by auto  | 
|
839  | 
||
840  | 
lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"  | 
|
841  | 
by auto  | 
|
842  | 
||
843  | 
lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"  | 
|
844  | 
by auto  | 
|
845  | 
||
846  | 
lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"  | 
|
847  | 
by auto  | 
|
848  | 
||
| 23969 | 849  | 
lemma nat_mult_dvd_cancel_disj[simp]:  | 
850  | 
"(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"  | 
|
851  | 
by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])  | 
|
852  | 
||
853  | 
lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"  | 
|
854  | 
by(auto)  | 
|
855  | 
||
| 23164 | 856  | 
|
857  | 
subsubsection{*For @{text cancel_factor} *}
 | 
|
858  | 
||
859  | 
lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"  | 
|
860  | 
by auto  | 
|
861  | 
||
862  | 
lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"  | 
|
863  | 
by auto  | 
|
864  | 
||
865  | 
lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"  | 
|
866  | 
by auto  | 
|
867  | 
||
| 23969 | 868  | 
lemma nat_mult_div_cancel_disj[simp]:  | 
| 23164 | 869  | 
"(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"  | 
870  | 
by (simp add: nat_mult_div_cancel1)  | 
|
871  | 
||
| 
30652
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
872  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
873  | 
subsection {* Simprocs for the Naturals *}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
874  | 
|
| 
31068
 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 
haftmann 
parents: 
31034 
diff
changeset
 | 
875  | 
use "Tools/nat_numeral_simprocs.ML"  | 
| 
 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 
haftmann 
parents: 
31034 
diff
changeset
 | 
876  | 
|
| 31100 | 877  | 
declaration {* 
 | 
878  | 
  K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
 | 
|
879  | 
  #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
 | 
|
880  | 
     @{thm nat_0}, @{thm nat_1},
 | 
|
881  | 
     @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
 | 
|
882  | 
     @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
 | 
|
883  | 
     @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
 | 
|
884  | 
     @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
 | 
|
885  | 
     @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
 | 
|
886  | 
     @{thm mult_Suc}, @{thm mult_Suc_right},
 | 
|
887  | 
     @{thm add_Suc}, @{thm add_Suc_right},
 | 
|
888  | 
     @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
 | 
|
889  | 
     @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
 | 
|
890  | 
     @{thm if_True}, @{thm if_False}])
 | 
|
891  | 
#> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))  | 
|
| 
31068
 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 
haftmann 
parents: 
31034 
diff
changeset
 | 
892  | 
*}  | 
| 
 
f591144b0f17
modules numeral_simprocs, nat_numeral_simprocs; proper structures for numeral simprocs
 
haftmann 
parents: 
31034 
diff
changeset
 | 
893  | 
|
| 
30652
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
894  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
895  | 
subsubsection{*For simplifying @{term "Suc m - K"} and  @{term "K - Suc m"}*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
896  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
897  | 
text{*Where K above is a literal*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
898  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
899  | 
lemma Suc_diff_eq_diff_pred: "Numeral0 < n ==> Suc m - n = m - (n - Numeral1)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
900  | 
by (simp add: numeral_0_eq_0 numeral_1_eq_1 split add: nat_diff_split)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
901  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
902  | 
text {*Now just instantiating @{text n} to @{text "number_of v"} does
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
903  | 
the right simplification, but with some redundant inequality  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
904  | 
tests.*}  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
905  | 
lemma neg_number_of_pred_iff_0:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
906  | 
"neg (number_of (Int.pred v)::int) = (number_of v = (0::nat))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
907  | 
apply (subgoal_tac "neg (number_of (Int.pred v)) = (number_of v < Suc 0) ")  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
908  | 
apply (simp only: less_Suc_eq_le le_0_eq)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
909  | 
apply (subst less_number_of_Suc, simp)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
910  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
911  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
912  | 
text{*No longer required as a simprule because of the @{text inverse_fold}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
913  | 
simproc*}  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
914  | 
lemma Suc_diff_number_of:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
915  | 
"Int.Pls < v ==>  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
916  | 
Suc m - (number_of v) = m - (number_of (Int.pred v))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
917  | 
apply (subst Suc_diff_eq_diff_pred)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
918  | 
apply simp  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
919  | 
apply (simp del: nat_numeral_1_eq_1)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
920  | 
apply (auto simp only: diff_nat_number_of less_0_number_of [symmetric]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
921  | 
neg_number_of_pred_iff_0)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
922  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
923  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
924  | 
lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
925  | 
by (simp add: numerals split add: nat_diff_split)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
926  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
927  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
928  | 
subsubsection{*For @{term nat_case} and @{term nat_rec}*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
929  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
930  | 
lemma nat_case_number_of [simp]:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
931  | 
"nat_case a f (number_of v) =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
932  | 
(let pv = number_of (Int.pred v) in  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
933  | 
if neg pv then a else f (nat pv))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
934  | 
by (simp split add: nat.split add: Let_def neg_number_of_pred_iff_0)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
935  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
936  | 
lemma nat_case_add_eq_if [simp]:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
937  | 
"nat_case a f ((number_of v) + n) =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
938  | 
(let pv = number_of (Int.pred v) in  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
939  | 
if neg pv then nat_case a f n else f (nat pv + n))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
940  | 
apply (subst add_eq_if)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
941  | 
apply (simp split add: nat.split  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
942  | 
del: nat_numeral_1_eq_1  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
943  | 
add: nat_numeral_1_eq_1 [symmetric]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
944  | 
numeral_1_eq_Suc_0 [symmetric]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
945  | 
neg_number_of_pred_iff_0)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
946  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
947  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
948  | 
lemma nat_rec_number_of [simp]:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
949  | 
"nat_rec a f (number_of v) =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
950  | 
(let pv = number_of (Int.pred v) in  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
951  | 
if neg pv then a else f (nat pv) (nat_rec a f (nat pv)))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
952  | 
apply (case_tac " (number_of v) ::nat")  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
953  | 
apply (simp_all (no_asm_simp) add: Let_def neg_number_of_pred_iff_0)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
954  | 
apply (simp split add: split_if_asm)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
955  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
956  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
957  | 
lemma nat_rec_add_eq_if [simp]:  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
958  | 
"nat_rec a f (number_of v + n) =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
959  | 
(let pv = number_of (Int.pred v) in  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
960  | 
if neg pv then nat_rec a f n  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
961  | 
else f (nat pv + n) (nat_rec a f (nat pv + n)))"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
962  | 
apply (subst add_eq_if)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
963  | 
apply (simp split add: nat.split  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
964  | 
del: nat_numeral_1_eq_1  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
965  | 
add: nat_numeral_1_eq_1 [symmetric]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
966  | 
numeral_1_eq_Suc_0 [symmetric]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
967  | 
neg_number_of_pred_iff_0)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
968  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
969  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
970  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
971  | 
subsubsection{*Various Other Lemmas*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
972  | 
|
| 31080 | 973  | 
lemma card_UNIV_bool[simp]: "card (UNIV :: bool set) = 2"  | 
974  | 
by(simp add: UNIV_bool)  | 
|
975  | 
||
| 
30652
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
976  | 
text {*Evens and Odds, for Mutilated Chess Board*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
977  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
978  | 
text{*Lemmas for specialist use, NOT as default simprules*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
979  | 
lemma nat_mult_2: "2 * z = (z+z::nat)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
980  | 
proof -  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
981  | 
have "2*z = (1 + 1)*z" by simp  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
982  | 
also have "... = z+z" by (simp add: left_distrib)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
983  | 
finally show ?thesis .  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
984  | 
qed  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
985  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
986  | 
lemma nat_mult_2_right: "z * 2 = (z+z::nat)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
987  | 
by (subst mult_commute, rule nat_mult_2)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
988  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
989  | 
text{*Case analysis on @{term "n<2"}*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
990  | 
lemma less_2_cases: "(n::nat) < 2 ==> n = 0 | n = Suc 0"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
991  | 
by arith  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
992  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
993  | 
lemma div2_Suc_Suc [simp]: "Suc(Suc m) div 2 = Suc (m div 2)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
994  | 
by arith  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
995  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
996  | 
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
997  | 
by (simp add: nat_mult_2 [symmetric])  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
998  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
999  | 
lemma mod2_Suc_Suc [simp]: "Suc(Suc(m)) mod 2 = m mod 2"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1000  | 
apply (subgoal_tac "m mod 2 < 2")  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1001  | 
apply (erule less_2_cases [THEN disjE])  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1002  | 
apply (simp_all (no_asm_simp) add: Let_def mod_Suc nat_1)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1003  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1004  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1005  | 
lemma mod2_gr_0 [simp]: "!!m::nat. (0 < m mod 2) = (m mod 2 = 1)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1006  | 
apply (subgoal_tac "m mod 2 < 2")  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1007  | 
apply (force simp del: mod_less_divisor, simp)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1008  | 
done  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1009  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1010  | 
text{*Removal of Small Numerals: 0, 1 and (in additive positions) 2*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1011  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1012  | 
lemma add_2_eq_Suc [simp]: "2 + n = Suc (Suc n)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1013  | 
by simp  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1014  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1015  | 
lemma add_2_eq_Suc' [simp]: "n + 2 = Suc (Suc n)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1016  | 
by simp  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1017  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1018  | 
text{*Can be used to eliminate long strings of Sucs, but not by default*}
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1019  | 
lemma Suc3_eq_add_3: "Suc (Suc (Suc n)) = 3 + n"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1020  | 
by simp  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1021  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1022  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1023  | 
text{*These lemmas collapse some needless occurrences of Suc:
 | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1024  | 
at least three Sucs, since two and fewer are rewritten back to Suc again!  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1025  | 
We already have some rules to simplify operands smaller than 3.*}  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1026  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1027  | 
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1028  | 
by (simp add: Suc3_eq_add_3)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1029  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1030  | 
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1031  | 
by (simp add: Suc3_eq_add_3)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1032  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1033  | 
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1034  | 
by (simp add: Suc3_eq_add_3)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1035  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1036  | 
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1037  | 
by (simp add: Suc3_eq_add_3)  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1038  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1039  | 
lemmas Suc_div_eq_add3_div_number_of =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1040  | 
Suc_div_eq_add3_div [of _ "number_of v", standard]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1041  | 
declare Suc_div_eq_add3_div_number_of [simp]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1042  | 
|
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1043  | 
lemmas Suc_mod_eq_add3_mod_number_of =  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1044  | 
Suc_mod_eq_add3_mod [of _ "number_of v", standard]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1045  | 
declare Suc_mod_eq_add3_mod_number_of [simp]  | 
| 
 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 
haftmann 
parents: 
30497 
diff
changeset
 | 
1046  | 
|
| 31096 | 1047  | 
end  |