author | wenzelm |
Sat, 21 Mar 2009 20:38:49 +0100 | |
changeset 30633 | cc18ae3c1c7f |
parent 29804 | e15b74577368 |
permissions | -rw-r--r-- |
23664 | 1 |
theory ComputeNumeral |
29804
e15b74577368
Added new Float theory and moved old Library/Float.thy to ComputeFloat
hoelzl
parents:
29668
diff
changeset
|
2 |
imports ComputeHOL ComputeFloat |
23664 | 3 |
begin |
4 |
||
5 |
(* normalization of bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
6 |
lemmas bitnorm = normalize_bin_simps |
23664 | 7 |
|
8 |
(* neg for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
9 |
lemma neg1: "neg Int.Pls = False" by (simp add: Int.Pls_def) |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
10 |
lemma neg2: "neg Int.Min = True" apply (subst Int.Min_def) by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
11 |
lemma neg3: "neg (Int.Bit0 x) = neg x" apply (simp add: neg_def) apply (subst Bit0_def) by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
12 |
lemma neg4: "neg (Int.Bit1 x) = neg x" apply (simp add: neg_def) apply (subst Bit1_def) by auto |
23664 | 13 |
lemmas bitneg = neg1 neg2 neg3 neg4 |
14 |
||
15 |
(* iszero for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
16 |
lemma iszero1: "iszero Int.Pls = True" by (simp add: Int.Pls_def iszero_def) |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
17 |
lemma iszero2: "iszero Int.Min = False" apply (subst Int.Min_def) apply (subst iszero_def) by simp |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
18 |
lemma iszero3: "iszero (Int.Bit0 x) = iszero x" apply (subst Int.Bit0_def) apply (subst iszero_def)+ by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
19 |
lemma iszero4: "iszero (Int.Bit1 x) = False" apply (subst Int.Bit1_def) apply (subst iszero_def)+ apply simp by arith |
23664 | 20 |
lemmas bitiszero = iszero1 iszero2 iszero3 iszero4 |
21 |
||
22 |
(* lezero for bit strings *) |
|
23 |
constdefs |
|
24 |
"lezero x == (x \<le> 0)" |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
25 |
lemma lezero1: "lezero Int.Pls = True" unfolding Int.Pls_def lezero_def by auto |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
26 |
lemma lezero2: "lezero Int.Min = True" unfolding Int.Min_def lezero_def by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
27 |
lemma lezero3: "lezero (Int.Bit0 x) = lezero x" unfolding Int.Bit0_def lezero_def by auto |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
28 |
lemma lezero4: "lezero (Int.Bit1 x) = neg x" unfolding Int.Bit1_def lezero_def neg_def by auto |
23664 | 29 |
lemmas bitlezero = lezero1 lezero2 lezero3 lezero4 |
30 |
||
31 |
(* equality for bit strings *) |
|
29037 | 32 |
lemmas biteq = eq_bin_simps |
23664 | 33 |
|
34 |
(* x < y for bit strings *) |
|
29037 | 35 |
lemmas bitless = less_bin_simps |
23664 | 36 |
|
37 |
(* x \<le> y for bit strings *) |
|
29037 | 38 |
lemmas bitle = le_bin_simps |
23664 | 39 |
|
40 |
(* succ for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
41 |
lemmas bitsucc = succ_bin_simps |
23664 | 42 |
|
43 |
(* pred for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
44 |
lemmas bitpred = pred_bin_simps |
23664 | 45 |
|
46 |
(* unary minus for bit strings *) |
|
26075
815f3ccc0b45
added lemma lists {normalize,succ,pred,minus,add,mult}_bin_simps
huffman
parents:
25919
diff
changeset
|
47 |
lemmas bituminus = minus_bin_simps |
23664 | 48 |
|
49 |
(* addition for bit strings *) |
|
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
50 |
lemmas bitadd = add_bin_simps |
23664 | 51 |
|
52 |
(* multiplication for bit strings *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
53 |
lemma mult_Pls_right: "x * Int.Pls = Int.Pls" by (simp add: Pls_def) |
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
54 |
lemma mult_Min_right: "x * Int.Min = - x" by (subst mult_commute, simp add: mult_Min) |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
55 |
lemma multb0x: "(Int.Bit0 x) * y = Int.Bit0 (x * y)" by (rule mult_Bit0) |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
56 |
lemma multxb0: "x * (Int.Bit0 y) = Int.Bit0 (x * y)" unfolding Bit0_def by simp |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
57 |
lemma multb1: "(Int.Bit1 x) * (Int.Bit1 y) = Int.Bit1 (Int.Bit0 (x * y) + x + y)" |
29667 | 58 |
unfolding Bit0_def Bit1_def by (simp add: algebra_simps) |
23664 | 59 |
lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1 |
60 |
||
61 |
lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul |
|
62 |
||
63 |
constdefs |
|
64 |
"nat_norm_number_of (x::nat) == x" |
|
65 |
||
66 |
lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)" |
|
67 |
apply (simp add: nat_norm_number_of_def) |
|
68 |
unfolding lezero_def iszero_def neg_def |
|
28990 | 69 |
apply (simp add: numeral_simps) |
23664 | 70 |
done |
71 |
||
72 |
(* Normalization of nat literals *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
73 |
lemma natnorm0: "(0::nat) = number_of (Int.Pls)" by auto |
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
74 |
lemma natnorm1: "(1 :: nat) = number_of (Int.Bit1 Int.Pls)" by auto |
23664 | 75 |
lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of |
76 |
||
77 |
(* Suc *) |
|
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
78 |
lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Int.succ x))" by (auto simp add: number_of_is_id) |
23664 | 79 |
|
80 |
(* Addition for nat *) |
|
81 |
lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))" |
|
29013 | 82 |
unfolding nat_number_of_def number_of_is_id neg_def |
83 |
by auto |
|
23664 | 84 |
|
85 |
(* Subtraction for nat *) |
|
86 |
lemma natsub: "(number_of x) - ((number_of y)::nat) = |
|
87 |
(if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))" |
|
88 |
unfolding nat_norm_number_of |
|
89 |
by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def) |
|
90 |
||
91 |
(* Multiplication for nat *) |
|
92 |
lemma natmul: "(number_of x) * ((number_of y)::nat) = |
|
93 |
(if neg x then 0 else (if neg y then 0 else number_of (x * y)))" |
|
29013 | 94 |
unfolding nat_number_of_def number_of_is_id neg_def |
95 |
by (simp add: nat_mult_distrib) |
|
23664 | 96 |
|
97 |
lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x \<and> lezero y) \<or> (x = y))" |
|
98 |
by (auto simp add: iszero_def lezero_def neg_def number_of_is_id) |
|
99 |
||
100 |
lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) \<and> (\<not> (lezero y)))" |
|
29013 | 101 |
by (simp add: lezero_def numeral_simps not_le) |
23664 | 102 |
|
103 |
lemma natle: "(((number_of x)::nat) \<le> (number_of y)) = (y < x \<longrightarrow> lezero x)" |
|
104 |
by (auto simp add: number_of_is_id lezero_def nat_number_of_def) |
|
105 |
||
106 |
fun natfac :: "nat \<Rightarrow> nat" |
|
107 |
where |
|
108 |
"natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))" |
|
109 |
||
110 |
lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps |
|
111 |
||
112 |
lemma number_eq: "(((number_of x)::'a::{number_ring, ordered_idom}) = (number_of y)) = (x = y)" |
|
113 |
unfolding number_of_eq |
|
114 |
apply simp |
|
115 |
done |
|
116 |
||
117 |
lemma number_le: "(((number_of x)::'a::{number_ring, ordered_idom}) \<le> (number_of y)) = (x \<le> y)" |
|
118 |
unfolding number_of_eq |
|
119 |
apply simp |
|
120 |
done |
|
121 |
||
122 |
lemma number_less: "(((number_of x)::'a::{number_ring, ordered_idom}) < (number_of y)) = (x < y)" |
|
123 |
unfolding number_of_eq |
|
124 |
apply simp |
|
125 |
done |
|
126 |
||
127 |
lemma number_diff: "((number_of x)::'a::{number_ring, ordered_idom}) - number_of y = number_of (x + (- y))" |
|
128 |
apply (subst diff_number_of_eq) |
|
129 |
apply simp |
|
130 |
done |
|
131 |
||
132 |
lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric] |
|
133 |
||
134 |
lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less |
|
135 |
||
136 |
lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)" |
|
137 |
by (simp only: real_of_nat_number_of number_of_is_id) |
|
138 |
||
139 |
lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)" |
|
140 |
by simp |
|
141 |
||
142 |
lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of |
|
143 |
||
144 |
lemmas zpowerarith = zpower_number_of_even |
|
145 |
zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring] |
|
146 |
zpower_Pls zpower_Min |
|
147 |
||
148 |
(* div, mod *) |
|
149 |
||
150 |
lemma adjust: "adjust b (q, r) = (if 0 \<le> r - b then (2 * q + 1, r - b) else (2 * q, r))" |
|
151 |
by (auto simp only: adjust_def) |
|
152 |
||
153 |
lemma negateSnd: "negateSnd (q, r) = (q, -r)" |
|
29657
881f328dfbb3
slightly adapted towards more uniformity with div/mod on nat
haftmann
parents:
29037
diff
changeset
|
154 |
by (simp add: negateSnd_def) |
23664 | 155 |
|
29657
881f328dfbb3
slightly adapted towards more uniformity with div/mod on nat
haftmann
parents:
29037
diff
changeset
|
156 |
lemma divmod: "IntDiv.divmod a b = (if 0\<le>a then |
23664 | 157 |
if 0\<le>b then posDivAlg a b |
158 |
else if a=0 then (0, 0) |
|
159 |
else negateSnd (negDivAlg (-a) (-b)) |
|
160 |
else |
|
161 |
if 0<b then negDivAlg a b |
|
162 |
else negateSnd (posDivAlg (-a) (-b)))" |
|
29657
881f328dfbb3
slightly adapted towards more uniformity with div/mod on nat
haftmann
parents:
29037
diff
changeset
|
163 |
by (auto simp only: IntDiv.divmod_def) |
23664 | 164 |
|
29657
881f328dfbb3
slightly adapted towards more uniformity with div/mod on nat
haftmann
parents:
29037
diff
changeset
|
165 |
lemmas compute_div_mod = div_def mod_def divmod adjust negateSnd posDivAlg.simps negDivAlg.simps |
23664 | 166 |
|
167 |
||
168 |
||
169 |
(* collecting all the theorems *) |
|
170 |
||
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
171 |
lemma even_Pls: "even (Int.Pls) = True" |
23664 | 172 |
apply (unfold Pls_def even_def) |
173 |
by simp |
|
174 |
||
25919
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
haftmann
parents:
23664
diff
changeset
|
175 |
lemma even_Min: "even (Int.Min) = False" |
23664 | 176 |
apply (unfold Min_def even_def) |
177 |
by simp |
|
178 |
||
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
179 |
lemma even_B0: "even (Int.Bit0 x) = True" |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
180 |
apply (unfold Bit0_def) |
23664 | 181 |
by simp |
182 |
||
26086
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
183 |
lemma even_B1: "even (Int.Bit1 x) = False" |
3c243098b64a
New simpler representation of numerals, using Bit0 and Bit1 instead of BIT, B0, and B1
huffman
parents:
26075
diff
changeset
|
184 |
apply (unfold Bit1_def) |
23664 | 185 |
by simp |
186 |
||
187 |
lemma even_number_of: "even ((number_of w)::int) = even w" |
|
188 |
by (simp only: number_of_is_id) |
|
189 |
||
190 |
lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of |
|
191 |
||
192 |
lemmas compute_numeral = compute_if compute_let compute_pair compute_bool |
|
193 |
compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even |
|
194 |
||
195 |
end |