| 1475 |      1 | (*  Title:      HOL/Fun.thy
 | 
| 923 |      2 |     ID:         $Id$
 | 
| 1475 |      3 |     Author:     Tobias Nipkow, Cambridge University Computer Laboratory
 | 
| 923 |      4 |     Copyright   1994  University of Cambridge
 | 
|  |      5 | 
 | 
| 2912 |      6 | Notions about functions.
 | 
| 923 |      7 | *)
 | 
|  |      8 | 
 | 
| 5852 |      9 | Fun = Vimage + equalities + 
 | 
| 2912 |     10 | 
 | 
| 4059 |     11 | instance set :: (term) order
 | 
|  |     12 |                        (subset_refl,subset_trans,subset_antisym,psubset_eq)
 | 
| 5305 |     13 | nonterminals
 | 
|  |     14 |   updbinds  updbind
 | 
|  |     15 | 
 | 
| 6171 |     16 | consts
 | 
|  |     17 |   fun_upd  :: "('a => 'b) => 'a => 'b => ('a => 'b)"
 | 
|  |     18 | 
 | 
| 5305 |     19 | syntax
 | 
|  |     20 | 
 | 
|  |     21 |   (* Let expressions *)
 | 
|  |     22 | 
 | 
|  |     23 |   "_updbind"       :: ['a, 'a] => updbind             ("(2_ :=/ _)")
 | 
|  |     24 |   ""               :: updbind => updbinds             ("_")
 | 
|  |     25 |   "_updbinds"      :: [updbind, updbinds] => updbinds ("_,/ _")
 | 
| 8258 |     26 |   "_Update"        :: ['a, updbinds] => 'a            ("_/'((_)')" [1000,0] 900)
 | 
| 5305 |     27 | 
 | 
|  |     28 | translations
 | 
|  |     29 |   "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
 | 
|  |     30 |   "f(x:=y)"                     == "fun_upd f x y"
 | 
| 2912 |     31 | 
 | 
|  |     32 | defs
 | 
| 6171 |     33 |   fun_upd_def "f(a:=b) == % x. if x=a then b else f x"
 | 
| 2912 |     34 | 
 | 
| 6171 |     35 |   
 | 
|  |     36 | constdefs
 | 
|  |     37 |   id ::  'a => 'a
 | 
|  |     38 |     "id == %x. x"
 | 
|  |     39 | 
 | 
|  |     40 |   o  :: ['b => 'c, 'a => 'b, 'a] => 'c   (infixl 55)
 | 
|  |     41 |     "f o g == %x. f(g(x))"
 | 
| 7374 |     42 |   
 | 
|  |     43 |   inv :: ('a => 'b) => ('b => 'a)
 | 
|  |     44 |     "inv(f::'a=>'b) == % y. @x. f(x)=y"
 | 
| 6171 |     45 | 
 | 
|  |     46 |   inj_on :: ['a => 'b, 'a set] => bool
 | 
|  |     47 |     "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
 | 
| 2912 |     48 | 
 | 
| 6171 |     49 | syntax
 | 
|  |     50 |   inj   :: ('a => 'b) => bool                   (*injective*)
 | 
|  |     51 | 
 | 
|  |     52 | translations
 | 
|  |     53 |   "inj f" == "inj_on f UNIV"
 | 
| 5852 |     54 | 
 | 
| 7374 |     55 | constdefs
 | 
|  |     56 |   surj :: ('a => 'b) => bool                   (*surjective*)
 | 
|  |     57 |     "surj f == ! y. ? x. y=f(x)"
 | 
|  |     58 |   
 | 
|  |     59 |   bij :: ('a => 'b) => bool                    (*bijective*)
 | 
|  |     60 |     "bij f == inj f & surj f"
 | 
|  |     61 |   
 | 
|  |     62 | 
 | 
| 5852 |     63 | (*The Pi-operator, by Florian Kammueller*)
 | 
|  |     64 |   
 | 
|  |     65 | constdefs
 | 
|  |     66 |   Pi      :: "['a set, 'a => 'b set] => ('a => 'b) set"
 | 
|  |     67 |     "Pi A B == {f. ! x. if x:A then f(x) : B(x) else f(x) = (@ y. True)}"
 | 
|  |     68 | 
 | 
|  |     69 |   restrict :: "['a => 'b, 'a set] => ('a => 'b)"
 | 
|  |     70 |     "restrict f A == (%x. if x : A then f x else (@ y. True))"
 | 
|  |     71 | 
 | 
|  |     72 | syntax
 | 
|  |     73 |   "@Pi"  :: "[idt, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
|  |     74 |   funcset :: "['a set, 'b set] => ('a => 'b) set"      (infixr 60) 
 | 
|  |     75 |   "@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a => 'b)"  ("(3lam _:_./ _)" 10)
 | 
|  |     76 | 
 | 
|  |     77 |   (*Giving funcset the nice arrow syntax -> clashes with existing theories*)
 | 
|  |     78 | 
 | 
|  |     79 | translations
 | 
|  |     80 |   "PI x:A. B" => "Pi A (%x. B)"
 | 
|  |     81 |   "A funcset B"    => "Pi A (_K B)"
 | 
|  |     82 |   "lam x:A. f"  == "restrict (%x. f) A"
 | 
|  |     83 | 
 | 
|  |     84 | constdefs
 | 
|  |     85 |   Applyall :: "[('a => 'b) set, 'a]=> 'b set"
 | 
|  |     86 |     "Applyall F a == (%f. f a) `` F"
 | 
|  |     87 | 
 | 
|  |     88 |   compose :: "['a set, 'a => 'b, 'b => 'c] => ('a => 'c)"
 | 
|  |     89 |     "compose A g f == lam x : A. g(f x)"
 | 
|  |     90 | 
 | 
|  |     91 |   Inv    :: "['a set, 'a => 'b] => ('b => 'a)"
 | 
|  |     92 |     "Inv A f == (% x. (@ y. y : A & f y = x))"
 | 
|  |     93 | 
 | 
|  |     94 |   
 | 
| 2912 |     95 | end
 | 
| 5852 |     96 | 
 | 
|  |     97 | ML
 | 
|  |     98 | val print_translation = [("Pi", dependent_tr' ("@Pi", "op funcset"))];
 |