| author | wenzelm | 
| Thu, 08 Jul 2021 22:21:31 +0200 | |
| changeset 73950 | cc49da3003aa | 
| parent 71989 | bad75618fb82 | 
| child 74383 | 107941e8fa01 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/HOL.thy | 
| 11750 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 923 | 4 | |
| 60758 | 5 | section \<open>The basis of Higher-Order Logic\<close> | 
| 923 | 6 | |
| 15131 | 7 | theory HOL | 
| 70853 | 8 | imports Pure Tools.Code_Generator | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46497diff
changeset | 9 | keywords | 
| 52432 | 10 | "try" "solve_direct" "quickcheck" "print_coercions" "print_claset" | 
| 11 | "print_induct_rules" :: diag and | |
| 47657 
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
 haftmann parents: 
46973diff
changeset | 12 | "quickcheck_params" :: thy_decl | 
| 71833 
ff6f3b09b8b4
abbrevs for the Uniq quantifier; trying Sup_nat_def to allow zero (experimentally)
 paulson <lp15@cam.ac.uk> parents: 
71827diff
changeset | 13 | abbrevs "?<" = "\<exists>\<^sub>\<le>\<^sub>1" | 
| 15131 | 14 | begin | 
| 2260 | 15 | |
| 69605 | 16 | ML_file \<open>~~/src/Tools/misc_legacy.ML\<close> | 
| 17 | ML_file \<open>~~/src/Tools/try.ML\<close> | |
| 18 | ML_file \<open>~~/src/Tools/quickcheck.ML\<close> | |
| 19 | ML_file \<open>~~/src/Tools/solve_direct.ML\<close> | |
| 20 | ML_file \<open>~~/src/Tools/IsaPlanner/zipper.ML\<close> | |
| 21 | ML_file \<open>~~/src/Tools/IsaPlanner/isand.ML\<close> | |
| 22 | ML_file \<open>~~/src/Tools/IsaPlanner/rw_inst.ML\<close> | |
| 23 | ML_file \<open>~~/src/Provers/hypsubst.ML\<close> | |
| 24 | ML_file \<open>~~/src/Provers/splitter.ML\<close> | |
| 25 | ML_file \<open>~~/src/Provers/classical.ML\<close> | |
| 26 | ML_file \<open>~~/src/Provers/blast.ML\<close> | |
| 27 | ML_file \<open>~~/src/Provers/clasimp.ML\<close> | |
| 28 | ML_file \<open>~~/src/Tools/eqsubst.ML\<close> | |
| 29 | ML_file \<open>~~/src/Provers/quantifier1.ML\<close> | |
| 30 | ML_file \<open>~~/src/Tools/atomize_elim.ML\<close> | |
| 31 | ML_file \<open>~~/src/Tools/cong_tac.ML\<close> | |
| 32 | ML_file \<open>~~/src/Tools/intuitionistic.ML\<close> setup \<open>Intuitionistic.method_setup \<^binding>\<open>iprover\<close>\<close> | |
| 33 | ML_file \<open>~~/src/Tools/project_rule.ML\<close> | |
| 34 | ML_file \<open>~~/src/Tools/subtyping.ML\<close> | |
| 35 | ML_file \<open>~~/src/Tools/case_product.ML\<close> | |
| 48891 | 36 | |
| 30165 
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
 wenzelm parents: 
30160diff
changeset | 37 | |
| 67149 | 38 | ML \<open>Plugin_Name.declare_setup \<^binding>\<open>extraction\<close>\<close> | 
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 39 | |
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 40 | ML \<open> | 
| 67149 | 41 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_random\<close>; | 
| 42 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_exhaustive\<close>; | |
| 43 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_bounded_forall\<close>; | |
| 44 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_full_exhaustive\<close>; | |
| 45 | Plugin_Name.declare_setup \<^binding>\<open>quickcheck_narrowing\<close>; | |
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 46 | \<close> | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 47 | ML \<open> | 
| 67149 | 48 | Plugin_Name.define_setup \<^binding>\<open>quickcheck\<close> | 
| 69593 | 49 | [\<^plugin>\<open>quickcheck_exhaustive\<close>, | 
| 50 | \<^plugin>\<open>quickcheck_random\<close>, | |
| 51 | \<^plugin>\<open>quickcheck_bounded_forall\<close>, | |
| 52 | \<^plugin>\<open>quickcheck_full_exhaustive\<close>, | |
| 53 | \<^plugin>\<open>quickcheck_narrowing\<close>] | |
| 58659 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 54 | \<close> | 
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 55 | |
| 
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
 wenzelm parents: 
57964diff
changeset | 56 | |
| 60758 | 57 | subsection \<open>Primitive logic\<close> | 
| 11750 | 58 | |
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 59 | text \<open> | 
| 67299 | 60 | The definition of the logic is based on Mike Gordon's technical report @{cite "Gordon-TR68"} that
 | 
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 61 | describes the first implementation of HOL. However, there are a number of differences. | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 62 | In particular, we start with the definite description operator and introduce Hilbert's \<open>\<epsilon>\<close> operator | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 63 | only much later. Moreover, axiom \<open>(P \<longrightarrow> Q) \<longrightarrow> (Q \<longrightarrow> P) \<longrightarrow> (P = Q)\<close> is derived from the other | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 64 | axioms. The fact that this axiom is derivable was first noticed by Bruno Barras (for Mike Gordon's | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 65 | line of HOL systems) and later independently by Alexander Maletzky (for Isabelle/HOL). | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 66 | \<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 67 | |
| 60758 | 68 | subsubsection \<open>Core syntax\<close> | 
| 2260 | 69 | |
| 67149 | 70 | setup \<open>Axclass.class_axiomatization (\<^binding>\<open>type\<close>, [])\<close> | 
| 36452 | 71 | default_sort type | 
| 69593 | 72 | setup \<open>Object_Logic.add_base_sort \<^sort>\<open>type\<close>\<close> | 
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 73 | |
| 70879 | 74 | setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc [])\<close> | 
| 70849 | 75 | |
| 55383 | 76 | axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)"
 | 
| 77 | instance "fun" :: (type, type) type by (rule fun_arity) | |
| 78 | ||
| 79 | axiomatization where itself_arity: "OFCLASS('a itself, type_class)"
 | |
| 80 | instance itself :: (type) type by (rule itself_arity) | |
| 25460 
b80087af2274
interpretation of typedecls: instantiation to class type
 haftmann parents: 
25388diff
changeset | 81 | |
| 7357 | 82 | typedecl bool | 
| 923 | 83 | |
| 62151 | 84 | judgment Trueprop :: "bool \<Rightarrow> prop"  ("(_)" 5)
 | 
| 85 | ||
| 86 | axiomatization implies :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longrightarrow>" 25) | |
| 68973 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 87 | and eq :: "['a, 'a] \<Rightarrow> bool" | 
| 62151 | 88 |   and The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
| 89 | ||
| 68973 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 90 | notation (input) | 
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 91 | eq (infixl "=" 50) | 
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 92 | notation (output) | 
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 93 | eq (infix "=" 50) | 
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 94 | |
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 95 | text \<open>The input syntax for \<open>eq\<close> is more permissive than the output syntax | 
| 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 96 | because of the large amount of material that relies on infixl.\<close> | 
| 923 | 97 | |
| 62151 | 98 | subsubsection \<open>Defined connectives and quantifiers\<close> | 
| 99 | ||
| 100 | definition True :: bool | |
| 101 | where "True \<equiv> ((\<lambda>x::bool. x) = (\<lambda>x. x))" | |
| 102 | ||
| 103 | definition All :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>" 10)
 | |
| 104 | where "All P \<equiv> (P = (\<lambda>x. True))" | |
| 46973 | 105 | |
| 62151 | 106 | definition Ex :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>" 10)
 | 
| 107 | where "Ex P \<equiv> \<forall>Q. (\<forall>x. P x \<longrightarrow> Q) \<longrightarrow> Q" | |
| 108 | ||
| 109 | definition False :: bool | |
| 110 | where "False \<equiv> (\<forall>P. P)" | |
| 111 | ||
| 112 | definition Not :: "bool \<Rightarrow> bool"  ("\<not> _" [40] 40)
 | |
| 113 | where not_def: "\<not> P \<equiv> P \<longrightarrow> False" | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 114 | |
| 62151 | 115 | definition conj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<and>" 35) | 
| 116 | where and_def: "P \<and> Q \<equiv> \<forall>R. (P \<longrightarrow> Q \<longrightarrow> R) \<longrightarrow> R" | |
| 38555 | 117 | |
| 62151 | 118 | definition disj :: "[bool, bool] \<Rightarrow> bool" (infixr "\<or>" 30) | 
| 119 | where or_def: "P \<or> Q \<equiv> \<forall>R. (P \<longrightarrow> R) \<longrightarrow> (Q \<longrightarrow> R) \<longrightarrow> R" | |
| 120 | ||
| 71827 | 121 | definition Uniq :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 122 | where "Uniq P \<equiv> (\<forall>x y. P x \<longrightarrow> P y \<longrightarrow> y = x)" | |
| 123 | ||
| 63909 | 124 | definition Ex1 :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 62151 | 125 | where "Ex1 P \<equiv> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x)" | 
| 923 | 126 | |
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 127 | |
| 60758 | 128 | subsubsection \<open>Additional concrete syntax\<close> | 
| 2260 | 129 | |
| 71827 | 130 | syntax (ASCII) "_Uniq" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(4?< _./ _)" [0, 10] 10)
 | 
| 131 | syntax "_Uniq" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(2\<exists>\<^sub>\<le>\<^sub>1 _./ _)" [0, 10] 10)
 | |
| 132 | translations "\<exists>\<^sub>\<le>\<^sub>1x. P" \<rightleftharpoons> "CONST Uniq (\<lambda>x. P)" | |
| 133 | ||
| 134 | print_translation \<open> | |
| 135 | [Syntax_Trans.preserve_binder_abs_tr' \<^const_syntax>\<open>Uniq\<close> \<^syntax_const>\<open>_Uniq\<close>] | |
| 136 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | |
| 137 | ||
| 138 | ||
| 63909 | 139 | syntax (ASCII) | 
| 140 |   "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3EX! _./ _)" [0, 10] 10)
 | |
| 141 | syntax (input) | |
| 142 |   "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3?! _./ _)" [0, 10] 10)
 | |
| 143 | syntax "_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>!_./ _)" [0, 10] 10)
 | |
| 144 | translations "\<exists>!x. P" \<rightleftharpoons> "CONST Ex1 (\<lambda>x. P)" | |
| 145 | ||
| 146 | print_translation \<open> | |
| 69593 | 147 | [Syntax_Trans.preserve_binder_abs_tr' \<^const_syntax>\<open>Ex1\<close> \<^syntax_const>\<open>_Ex1\<close>] | 
| 63909 | 148 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 149 | ||
| 150 | ||
| 63912 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 151 | syntax | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 152 |   "_Not_Ex" :: "idts \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>_./ _)" [0, 10] 10)
 | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 153 |   "_Not_Ex1" :: "pttrn \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<nexists>!_./ _)" [0, 10] 10)
 | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 154 | translations | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 155 | "\<nexists>x. P" \<rightleftharpoons> "\<not> (\<exists>x. P)" | 
| 
9f8325206465
clarified notation: iterated quantifier is negated as one chunk;
 wenzelm parents: 
63909diff
changeset | 156 | "\<nexists>!x. P" \<rightleftharpoons> "\<not> (\<exists>!x. P)" | 
| 62522 | 157 | |
| 158 | ||
| 68973 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 159 | abbreviation not_equal :: "['a, 'a] \<Rightarrow> bool" (infix "\<noteq>" 50) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 160 | where "x \<noteq> y \<equiv> \<not> (x = y)" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 161 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 162 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 163 |   Not  ("~ _" [40] 40) and
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 164 | conj (infixr "&" 35) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 165 | disj (infixr "|" 30) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 166 | implies (infixr "-->" 25) and | 
| 68973 
a1e26440efb8
tuned "=" syntax declarations; made "~=" uniformly "infix"
 nipkow parents: 
68072diff
changeset | 167 | not_equal (infix "~=" 50) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 168 | |
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 169 | abbreviation (iff) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 170 | iff :: "[bool, bool] \<Rightarrow> bool" (infixr "\<longleftrightarrow>" 25) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 171 | where "A \<longleftrightarrow> B \<equiv> A = B" | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19607diff
changeset | 172 | |
| 60759 | 173 | syntax "_The" :: "[pttrn, bool] \<Rightarrow> 'a"  ("(3THE _./ _)" [0, 10] 10)
 | 
| 174 | translations "THE x. P" \<rightleftharpoons> "CONST The (\<lambda>x. P)" | |
| 60758 | 175 | print_translation \<open> | 
| 69593 | 176 | [(\<^const_syntax>\<open>The\<close>, fn _ => fn [Abs abs] => | 
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 177 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 69593 | 178 | in Syntax.const \<^syntax_const>\<open>_The\<close> $ x $ t end)] | 
| 61799 | 179 | \<close> \<comment> \<open>To avoid eta-contraction of body\<close> | 
| 923 | 180 | |
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 181 | nonterminal letbinds and letbind | 
| 923 | 182 | syntax | 
| 60759 | 183 |   "_bind"       :: "[pttrn, 'a] \<Rightarrow> letbind"              ("(2_ =/ _)" 10)
 | 
| 184 |   ""            :: "letbind \<Rightarrow> letbinds"                 ("_")
 | |
| 185 |   "_binds"      :: "[letbind, letbinds] \<Rightarrow> letbinds"     ("_;/ _")
 | |
| 186 |   "_Let"        :: "[letbinds, 'a] \<Rightarrow> 'a"                ("(let (_)/ in (_))" [0, 10] 10)
 | |
| 923 | 187 | |
| 46125 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 188 | nonterminal case_syn and cases_syn | 
| 
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
 wenzelm parents: 
45654diff
changeset | 189 | syntax | 
| 60759 | 190 |   "_case_syntax" :: "['a, cases_syn] \<Rightarrow> 'b"  ("(case _ of/ _)" 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 191 |   "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ \<Rightarrow>/ _)" 10)
 | 
| 60759 | 192 |   "" :: "case_syn \<Rightarrow> cases_syn"  ("_")
 | 
| 193 |   "_case2" :: "[case_syn, cases_syn] \<Rightarrow> cases_syn"  ("_/ | _")
 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 194 | syntax (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 195 |   "_case1" :: "['a, 'b] \<Rightarrow> case_syn"  ("(2_ =>/ _)" 10)
 | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13723diff
changeset | 196 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 197 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61941diff
changeset | 198 | All (binder "ALL " 10) and | 
| 63909 | 199 | Ex (binder "EX " 10) | 
| 2372 | 200 | |
| 62521 | 201 | notation (input) | 
| 21524 | 202 | All (binder "! " 10) and | 
| 63909 | 203 | Ex (binder "? " 10) | 
| 7238 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 204 | |
| 
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
 wenzelm parents: 
7220diff
changeset | 205 | |
| 60758 | 206 | subsubsection \<open>Axioms and basic definitions\<close> | 
| 2260 | 207 | |
| 46973 | 208 | axiomatization where | 
| 209 | refl: "t = (t::'a)" and | |
| 210 | subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and | |
| 60759 | 211 | ext: "(\<And>x::'a. (f x ::'b) = g x) \<Longrightarrow> (\<lambda>x. f x) = (\<lambda>x. g x)" | 
| 61799 | 212 | \<comment> \<open>Extensionality is built into the meta-logic, and this rule expresses | 
| 15380 | 213 | a related property. It is an eta-expanded version of the traditional | 
| 60758 | 214 | rule, and similar to the ABS rule of HOL\<close> and | 
| 6289 | 215 | |
| 11432 
8a203ae6efe3
added "The" (definite description operator) (by Larry);
 wenzelm parents: 
10489diff
changeset | 216 | the_eq_trivial: "(THE x. x = a) = (a::'a)" | 
| 923 | 217 | |
| 46973 | 218 | axiomatization where | 
| 60759 | 219 | impI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<longrightarrow> Q" and | 
| 220 | mp: "\<lbrakk>P \<longrightarrow> Q; P\<rbrakk> \<Longrightarrow> Q" and | |
| 15380 | 221 | |
| 60759 | 222 | True_or_False: "(P = True) \<or> (P = False)" | 
| 15380 | 223 | |
| 46973 | 224 | definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10)
 | 
| 60759 | 225 | where "If P x y \<equiv> (THE z::'a. (P = True \<longrightarrow> z = x) \<and> (P = False \<longrightarrow> z = y))" | 
| 923 | 226 | |
| 46973 | 227 | definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b"
 | 
| 228 | where "Let s f \<equiv> f s" | |
| 38525 | 229 | |
| 230 | translations | |
| 60759 | 231 | "_Let (_binds b bs) e" \<rightleftharpoons> "_Let b (_Let bs e)" | 
| 232 | "let x = a in e" \<rightleftharpoons> "CONST Let a (\<lambda>x. e)" | |
| 38525 | 233 | |
| 46973 | 234 | axiomatization undefined :: 'a | 
| 22481 
79c2724c36b5
added class "default" and expansion axioms for undefined
 haftmann parents: 
22473diff
changeset | 235 | |
| 46973 | 236 | class default = fixes default :: 'a | 
| 4868 | 237 | |
| 11750 | 238 | |
| 60758 | 239 | subsection \<open>Fundamental rules\<close> | 
| 20944 | 240 | |
| 60758 | 241 | subsubsection \<open>Equality\<close> | 
| 20944 | 242 | |
| 60759 | 243 | lemma sym: "s = t \<Longrightarrow> t = s" | 
| 18457 | 244 | by (erule subst) (rule refl) | 
| 15411 | 245 | |
| 60759 | 246 | lemma ssubst: "t = s \<Longrightarrow> P s \<Longrightarrow> P t" | 
| 18457 | 247 | by (drule sym) (erule subst) | 
| 15411 | 248 | |
| 60759 | 249 | lemma trans: "\<lbrakk>r = s; s = t\<rbrakk> \<Longrightarrow> r = t" | 
| 18457 | 250 | by (erule subst) | 
| 15411 | 251 | |
| 60759 | 252 | lemma trans_sym [Pure.elim?]: "r = s \<Longrightarrow> t = s \<Longrightarrow> r = t" | 
| 40715 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 wenzelm parents: 
40582diff
changeset | 253 | by (rule trans [OF _ sym]) | 
| 
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
 wenzelm parents: 
40582diff
changeset | 254 | |
| 58826 | 255 | lemma meta_eq_to_obj_eq: | 
| 63575 | 256 | assumes "A \<equiv> B" | 
| 20944 | 257 | shows "A = B" | 
| 63575 | 258 | unfolding assms by (rule refl) | 
| 15411 | 259 | |
| 61799 | 260 | text \<open>Useful with \<open>erule\<close> for proving equalities from known equalities.\<close> | 
| 20944 | 261 | (* a = b | 
| 15411 | 262 | | | | 
| 263 | c = d *) | |
| 60759 | 264 | lemma box_equals: "\<lbrakk>a = b; a = c; b = d\<rbrakk> \<Longrightarrow> c = d" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 265 | by (iprover intro: sym trans) | 
| 15411 | 266 | |
| 60758 | 267 | text \<open>For calculational reasoning:\<close> | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 268 | |
| 60759 | 269 | lemma forw_subst: "a = b \<Longrightarrow> P b \<Longrightarrow> P a" | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 270 | by (rule ssubst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 271 | |
| 60759 | 272 | lemma back_subst: "P a \<Longrightarrow> a = b \<Longrightarrow> P b" | 
| 15524 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 273 | by (rule subst) | 
| 
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
 nipkow parents: 
15481diff
changeset | 274 | |
| 15411 | 275 | |
| 60758 | 276 | subsubsection \<open>Congruence rules for application\<close> | 
| 15411 | 277 | |
| 61799 | 278 | text \<open>Similar to \<open>AP_THM\<close> in Gordon's HOL.\<close> | 
| 60759 | 279 | lemma fun_cong: "(f :: 'a \<Rightarrow> 'b) = g \<Longrightarrow> f x = g x" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 280 | by (iprover intro: refl elim: subst) | 
| 15411 | 281 | |
| 61799 | 282 | text \<open>Similar to \<open>AP_TERM\<close> in Gordon's HOL and FOL's \<open>subst_context\<close>.\<close> | 
| 60759 | 283 | lemma arg_cong: "x = y \<Longrightarrow> f x = f y" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 284 | by (iprover intro: refl elim: subst) | 
| 15411 | 285 | |
| 60759 | 286 | lemma arg_cong2: "\<lbrakk>a = b; c = d\<rbrakk> \<Longrightarrow> f a c = f b d" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 287 | by (iprover intro: refl elim: subst) | 
| 15655 | 288 | |
| 60759 | 289 | lemma cong: "\<lbrakk>f = g; (x::'a) = y\<rbrakk> \<Longrightarrow> f x = g y" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 290 | by (iprover intro: refl elim: subst) | 
| 15411 | 291 | |
| 60758 | 292 | ML \<open>fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong}\<close>
 | 
| 15411 | 293 | |
| 32733 
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
 wenzelm parents: 
32668diff
changeset | 294 | |
| 60758 | 295 | subsubsection \<open>Equality of booleans -- iff\<close> | 
| 15411 | 296 | |
| 60759 | 297 | lemma iffD2: "\<lbrakk>P = Q; Q\<rbrakk> \<Longrightarrow> P" | 
| 18457 | 298 | by (erule ssubst) | 
| 15411 | 299 | |
| 60759 | 300 | lemma rev_iffD2: "\<lbrakk>Q; P = Q\<rbrakk> \<Longrightarrow> P" | 
| 18457 | 301 | by (erule iffD2) | 
| 15411 | 302 | |
| 21504 | 303 | lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" | 
| 304 | by (drule sym) (rule iffD2) | |
| 305 | ||
| 306 | lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" | |
| 307 | by (drule sym) (rule rev_iffD2) | |
| 15411 | 308 | |
| 309 | lemma iffE: | |
| 60759 | 310 | assumes major: "P = Q" | 
| 311 | and minor: "\<lbrakk>P \<longrightarrow> Q; Q \<longrightarrow> P\<rbrakk> \<Longrightarrow> R" | |
| 18457 | 312 | shows R | 
| 313 | by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) | |
| 15411 | 314 | |
| 315 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 316 | subsubsection \<open>True (1)\<close> | 
| 15411 | 317 | |
| 63575 | 318 | lemma TrueI: True | 
| 21504 | 319 | unfolding True_def by (rule refl) | 
| 15411 | 320 | |
| 60759 | 321 | lemma eqTrueE: "P = True \<Longrightarrow> P" | 
| 21504 | 322 | by (erule iffD2) (rule TrueI) | 
| 15411 | 323 | |
| 324 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 325 | subsubsection \<open>Universal quantifier (1)\<close> | 
| 15411 | 326 | |
| 60759 | 327 | lemma spec: "\<forall>x::'a. P x \<Longrightarrow> P x" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 328 | unfolding All_def by (iprover intro: eqTrueE fun_cong) | 
| 15411 | 329 | |
| 330 | lemma allE: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 331 | assumes major: "\<forall>x. P x" and minor: "P x \<Longrightarrow> R" | 
| 21504 | 332 | shows R | 
| 333 | by (iprover intro: minor major [THEN spec]) | |
| 15411 | 334 | |
| 335 | lemma all_dupE: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 336 | assumes major: "\<forall>x. P x" and minor: "\<lbrakk>P x; \<forall>x. P x\<rbrakk> \<Longrightarrow> R" | 
| 21504 | 337 | shows R | 
| 338 | by (iprover intro: minor major major [THEN spec]) | |
| 15411 | 339 | |
| 340 | ||
| 60758 | 341 | subsubsection \<open>False\<close> | 
| 21504 | 342 | |
| 60758 | 343 | text \<open> | 
| 61799 | 344 | Depends upon \<open>spec\<close>; it is impossible to do propositional | 
| 21504 | 345 | logic before quantifiers! | 
| 60758 | 346 | \<close> | 
| 15411 | 347 | |
| 60759 | 348 | lemma FalseE: "False \<Longrightarrow> P" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 349 | unfolding False_def by (erule spec) | 
| 15411 | 350 | |
| 60759 | 351 | lemma False_neq_True: "False = True \<Longrightarrow> P" | 
| 21504 | 352 | by (erule eqTrueE [THEN FalseE]) | 
| 15411 | 353 | |
| 354 | ||
| 60758 | 355 | subsubsection \<open>Negation\<close> | 
| 15411 | 356 | |
| 357 | lemma notI: | |
| 60759 | 358 | assumes "P \<Longrightarrow> False" | 
| 359 | shows "\<not> P" | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 360 | unfolding not_def by (iprover intro: impI assms) | 
| 15411 | 361 | |
| 60759 | 362 | lemma False_not_True: "False \<noteq> True" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 363 | by (iprover intro: notI elim: False_neq_True) | 
| 15411 | 364 | |
| 60759 | 365 | lemma True_not_False: "True \<noteq> False" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 366 | by (iprover intro: notI dest: sym elim: False_neq_True) | 
| 15411 | 367 | |
| 60759 | 368 | lemma notE: "\<lbrakk>\<not> P; P\<rbrakk> \<Longrightarrow> R" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 369 | unfolding not_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 370 | by (iprover intro: mp [THEN FalseE]) | 
| 15411 | 371 | |
| 372 | ||
| 60758 | 373 | subsubsection \<open>Implication\<close> | 
| 15411 | 374 | |
| 375 | lemma impE: | |
| 60759 | 376 | assumes "P \<longrightarrow> Q" P "Q \<Longrightarrow> R" | 
| 377 | shows R | |
| 63575 | 378 | by (iprover intro: assms mp) | 
| 15411 | 379 | |
| 63575 | 380 | text \<open>Reduces \<open>Q\<close> to \<open>P \<longrightarrow> Q\<close>, allowing substitution in \<open>P\<close>.\<close> | 
| 60759 | 381 | lemma rev_mp: "\<lbrakk>P; P \<longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 382 | by (rule mp) | 
| 15411 | 383 | |
| 384 | lemma contrapos_nn: | |
| 60759 | 385 | assumes major: "\<not> Q" | 
| 63575 | 386 | and minor: "P \<Longrightarrow> Q" | 
| 60759 | 387 | shows "\<not> P" | 
| 63575 | 388 | by (iprover intro: notI minor major [THEN notE]) | 
| 15411 | 389 | |
| 63575 | 390 | text \<open>Not used at all, but we already have the other 3 combinations.\<close> | 
| 15411 | 391 | lemma contrapos_pn: | 
| 392 | assumes major: "Q" | |
| 63575 | 393 | and minor: "P \<Longrightarrow> \<not> Q" | 
| 60759 | 394 | shows "\<not> P" | 
| 63575 | 395 | by (iprover intro: notI minor major notE) | 
| 15411 | 396 | |
| 60759 | 397 | lemma not_sym: "t \<noteq> s \<Longrightarrow> s \<noteq> t" | 
| 21250 | 398 | by (erule contrapos_nn) (erule sym) | 
| 399 | ||
| 60759 | 400 | lemma eq_neq_eq_imp_neq: "\<lbrakk>x = a; a \<noteq> b; b = y\<rbrakk> \<Longrightarrow> x \<noteq> y" | 
| 21250 | 401 | by (erule subst, erule ssubst, assumption) | 
| 15411 | 402 | |
| 403 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 404 | subsubsection \<open>Disjunction (1)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 405 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 406 | lemma disjE: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 407 | assumes major: "P \<or> Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 408 | and minorP: "P \<Longrightarrow> R" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 409 | and minorQ: "Q \<Longrightarrow> R" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 410 | shows R | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 411 | by (iprover intro: minorP minorQ impI | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 412 | major [unfolded or_def, THEN spec, THEN mp, THEN mp]) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 413 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 414 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 415 | subsubsection \<open>Derivation of \<open>iffI\<close>\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 416 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 417 | text \<open>In an intuitionistic version of HOL \<open>iffI\<close> needs to be an axiom.\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 418 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 419 | lemma iffI: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 420 | assumes "P \<Longrightarrow> Q" and "Q \<Longrightarrow> P" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 421 | shows "P = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 422 | proof (rule disjE[OF True_or_False[of P]]) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 423 | assume 1: "P = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 424 | note Q = assms(1)[OF eqTrueE[OF this]] | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 425 | from 1 show ?thesis | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 426 | proof (rule ssubst) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 427 | from True_or_False[of Q] show "True = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 428 | proof (rule disjE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 429 | assume "Q = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 430 | thus ?thesis by(rule sym) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 431 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 432 | assume "Q = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 433 | with Q have False by (rule rev_iffD1) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 434 | thus ?thesis by (rule FalseE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 435 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 436 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 437 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 438 | assume 2: "P = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 439 | thus ?thesis | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 440 | proof (rule ssubst) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 441 | from True_or_False[of Q] show "False = Q" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 442 | proof (rule disjE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 443 | assume "Q = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 444 | from 2 assms(2)[OF eqTrueE[OF this]] have False by (rule iffD1) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 445 | thus ?thesis by (rule FalseE) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 446 | next | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 447 | assume "Q = False" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 448 | thus ?thesis by(rule sym) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 449 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 450 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 451 | qed | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 452 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 453 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 454 | subsubsection \<open>True (2)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 455 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 456 | lemma eqTrueI: "P \<Longrightarrow> P = True" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 457 | by (iprover intro: iffI TrueI) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 458 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 459 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 460 | subsubsection \<open>Universal quantifier (2)\<close> | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 461 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 462 | lemma allI: | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 463 | assumes "\<And>x::'a. P x" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 464 | shows "\<forall>x. P x" | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 465 | unfolding All_def by (iprover intro: ext eqTrueI assms) | 
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 466 | |
| 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 467 | |
| 60758 | 468 | subsubsection \<open>Existential quantifier\<close> | 
| 15411 | 469 | |
| 60759 | 470 | lemma exI: "P x \<Longrightarrow> \<exists>x::'a. P x" | 
| 63575 | 471 | unfolding Ex_def by (iprover intro: allI allE impI mp) | 
| 15411 | 472 | |
| 473 | lemma exE: | |
| 60759 | 474 | assumes major: "\<exists>x::'a. P x" | 
| 63575 | 475 | and minor: "\<And>x. P x \<Longrightarrow> Q" | 
| 15411 | 476 | shows "Q" | 
| 63575 | 477 | by (rule major [unfolded Ex_def, THEN spec, THEN mp]) (iprover intro: impI [THEN allI] minor) | 
| 15411 | 478 | |
| 479 | ||
| 60758 | 480 | subsubsection \<open>Conjunction\<close> | 
| 15411 | 481 | |
| 60759 | 482 | lemma conjI: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> P \<and> Q" | 
| 63575 | 483 | unfolding and_def by (iprover intro: impI [THEN allI] mp) | 
| 15411 | 484 | |
| 60759 | 485 | lemma conjunct1: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> P" | 
| 63575 | 486 | unfolding and_def by (iprover intro: impI dest: spec mp) | 
| 15411 | 487 | |
| 60759 | 488 | lemma conjunct2: "\<lbrakk>P \<and> Q\<rbrakk> \<Longrightarrow> Q" | 
| 63575 | 489 | unfolding and_def by (iprover intro: impI dest: spec mp) | 
| 15411 | 490 | |
| 491 | lemma conjE: | |
| 60759 | 492 | assumes major: "P \<and> Q" | 
| 63575 | 493 | and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 494 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 495 | proof (rule minor) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 496 | show P by (rule major [THEN conjunct1]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 497 | show Q by (rule major [THEN conjunct2]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 498 | qed | 
| 15411 | 499 | |
| 500 | lemma context_conjI: | |
| 63575 | 501 | assumes P "P \<Longrightarrow> Q" | 
| 502 | shows "P \<and> Q" | |
| 503 | by (iprover intro: conjI assms) | |
| 15411 | 504 | |
| 505 | ||
| 66893 
ced164fe3bbd
derived axiom iffI as a lemma (thanks to Alexander Maletzky)
 nipkow parents: 
66836diff
changeset | 506 | subsubsection \<open>Disjunction (2)\<close> | 
| 15411 | 507 | |
| 60759 | 508 | lemma disjI1: "P \<Longrightarrow> P \<or> Q" | 
| 63575 | 509 | unfolding or_def by (iprover intro: allI impI mp) | 
| 15411 | 510 | |
| 60759 | 511 | lemma disjI2: "Q \<Longrightarrow> P \<or> Q" | 
| 63575 | 512 | unfolding or_def by (iprover intro: allI impI mp) | 
| 15411 | 513 | |
| 514 | ||
| 60758 | 515 | subsubsection \<open>Classical logic\<close> | 
| 15411 | 516 | |
| 517 | lemma classical: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 518 | assumes "\<not> P \<Longrightarrow> P" | 
| 60759 | 519 | shows P | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 520 | proof (rule True_or_False [THEN disjE]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 521 | show P if "P = True" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 522 | using that by (iprover intro: eqTrueE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 523 | show P if "P = False" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 524 | proof (intro notI assms) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 525 | assume P | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 526 | with that show False | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 527 | by (iprover elim: subst) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 528 | qed | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 529 | qed | 
| 15411 | 530 | |
| 45607 | 531 | lemmas ccontr = FalseE [THEN classical] | 
| 15411 | 532 | |
| 63575 | 533 | text \<open>\<open>notE\<close> with premises exchanged; it discharges \<open>\<not> R\<close> so that it can be used to | 
| 534 | make elimination rules.\<close> | |
| 15411 | 535 | lemma rev_notE: | 
| 60759 | 536 | assumes premp: P | 
| 63575 | 537 | and premnot: "\<not> R \<Longrightarrow> \<not> P" | 
| 60759 | 538 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 539 | by (iprover intro: ccontr notE [OF premnot premp]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 540 | |
| 15411 | 541 | |
| 63575 | 542 | text \<open>Double negation law.\<close> | 
| 60759 | 543 | lemma notnotD: "\<not>\<not> P \<Longrightarrow> P" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 544 | by (iprover intro: ccontr notE ) | 
| 15411 | 545 | |
| 546 | lemma contrapos_pp: | |
| 60759 | 547 | assumes p1: Q | 
| 63575 | 548 | and p2: "\<not> P \<Longrightarrow> \<not> Q" | 
| 60759 | 549 | shows P | 
| 63575 | 550 | by (iprover intro: classical p1 p2 notE) | 
| 15411 | 551 | |
| 552 | ||
| 60758 | 553 | subsubsection \<open>Unique existence\<close> | 
| 15411 | 554 | |
| 71827 | 555 | lemma Uniq_I [intro?]: | 
| 556 | assumes "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> y = x" | |
| 557 | shows "Uniq P" | |
| 558 | unfolding Uniq_def by (iprover intro: assms allI impI) | |
| 559 | ||
| 560 | lemma Uniq_D [dest?]: "\<lbrakk>Uniq P; P a; P b\<rbrakk> \<Longrightarrow> a=b" | |
| 561 | unfolding Uniq_def by (iprover dest: spec mp) | |
| 562 | ||
| 15411 | 563 | lemma ex1I: | 
| 60759 | 564 | assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" | 
| 565 | shows "\<exists>!x. P x" | |
| 63575 | 566 | unfolding Ex1_def by (iprover intro: assms exI conjI allI impI) | 
| 15411 | 567 | |
| 63575 | 568 | text \<open>Sometimes easier to use: the premises have no shared variables. Safe!\<close> | 
| 15411 | 569 | lemma ex_ex1I: | 
| 60759 | 570 | assumes ex_prem: "\<exists>x. P x" | 
| 63575 | 571 | and eq: "\<And>x y. \<lbrakk>P x; P y\<rbrakk> \<Longrightarrow> x = y" | 
| 60759 | 572 | shows "\<exists>!x. P x" | 
| 63575 | 573 | by (iprover intro: ex_prem [THEN exE] ex1I eq) | 
| 15411 | 574 | |
| 575 | lemma ex1E: | |
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 576 | assumes major: "\<exists>!x. P x" and minor: "\<And>x. \<lbrakk>P x; \<forall>y. P y \<longrightarrow> y = x\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 577 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 578 | proof (rule major [unfolded Ex1_def, THEN exE]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 579 | show "\<And>x. P x \<and> (\<forall>y. P y \<longrightarrow> y = x) \<Longrightarrow> R" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 580 | by (iprover intro: minor elim: conjE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 581 | qed | 
| 15411 | 582 | |
| 60759 | 583 | lemma ex1_implies_ex: "\<exists>!x. P x \<Longrightarrow> \<exists>x. P x" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 584 | by (iprover intro: exI elim: ex1E) | 
| 15411 | 585 | |
| 60758 | 586 | subsubsection \<open>Classical intro rules for disjunction and existential quantifiers\<close> | 
| 15411 | 587 | |
| 588 | lemma disjCI: | |
| 63575 | 589 | assumes "\<not> Q \<Longrightarrow> P" | 
| 590 | shows "P \<or> Q" | |
| 591 | by (rule classical) (iprover intro: assms disjI1 disjI2 notI elim: notE) | |
| 15411 | 592 | |
| 60759 | 593 | lemma excluded_middle: "\<not> P \<or> P" | 
| 63575 | 594 | by (iprover intro: disjCI) | 
| 15411 | 595 | |
| 60758 | 596 | text \<open> | 
| 20944 | 597 | case distinction as a natural deduction rule. | 
| 63575 | 598 | Note that \<open>\<not> P\<close> is the second case, not the first. | 
| 60758 | 599 | \<close> | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 600 | lemma case_split [case_names True False]: | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 601 | assumes "P \<Longrightarrow> Q" "\<not> P \<Longrightarrow> Q" | 
| 60759 | 602 | shows Q | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 603 | using excluded_middle [of P] | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 604 | by (iprover intro: assms elim: disjE) | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 605 | |
| 63575 | 606 | text \<open>Classical implies (\<open>\<longrightarrow>\<close>) elimination.\<close> | 
| 15411 | 607 | lemma impCE: | 
| 60759 | 608 | assumes major: "P \<longrightarrow> Q" | 
| 63575 | 609 | and minor: "\<not> P \<Longrightarrow> R" "Q \<Longrightarrow> R" | 
| 60759 | 610 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 611 | using excluded_middle [of P] | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 612 | by (iprover intro: minor major [THEN mp] elim: disjE)+ | 
| 15411 | 613 | |
| 63575 | 614 | text \<open> | 
| 615 | This version of \<open>\<longrightarrow>\<close> elimination works on \<open>Q\<close> before \<open>P\<close>. It works best for | |
| 616 | those cases in which \<open>P\<close> holds "almost everywhere". Can't install as | |
| 617 | default: would break old proofs. | |
| 618 | \<close> | |
| 15411 | 619 | lemma impCE': | 
| 60759 | 620 | assumes major: "P \<longrightarrow> Q" | 
| 63575 | 621 | and minor: "Q \<Longrightarrow> R" "\<not> P \<Longrightarrow> R" | 
| 60759 | 622 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 623 | using assms by (elim impCE) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 624 | |
| 15411 | 625 | |
| 63575 | 626 | text \<open>Classical \<open>\<longleftrightarrow>\<close> elimination.\<close> | 
| 15411 | 627 | lemma iffCE: | 
| 60759 | 628 | assumes major: "P = Q" | 
| 63575 | 629 | and minor: "\<lbrakk>P; Q\<rbrakk> \<Longrightarrow> R" "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> R" | 
| 60759 | 630 | shows R | 
| 63575 | 631 | by (rule major [THEN iffE]) (iprover intro: minor elim: impCE notE) | 
| 15411 | 632 | |
| 633 | lemma exCI: | |
| 60759 | 634 | assumes "\<forall>x. \<not> P x \<Longrightarrow> P a" | 
| 635 | shows "\<exists>x. P x" | |
| 63575 | 636 | by (rule ccontr) (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) | 
| 15411 | 637 | |
| 638 | ||
| 60758 | 639 | subsubsection \<open>Intuitionistic Reasoning\<close> | 
| 12386 | 640 | |
| 641 | lemma impE': | |
| 60759 | 642 | assumes 1: "P \<longrightarrow> Q" | 
| 643 | and 2: "Q \<Longrightarrow> R" | |
| 644 | and 3: "P \<longrightarrow> Q \<Longrightarrow> P" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 645 | shows R | 
| 12386 | 646 | proof - | 
| 647 | from 3 and 1 have P . | |
| 648 | with 1 have Q by (rule impE) | |
| 649 | with 2 show R . | |
| 650 | qed | |
| 651 | ||
| 652 | lemma allE': | |
| 60759 | 653 | assumes 1: "\<forall>x. P x" | 
| 654 | and 2: "P x \<Longrightarrow> \<forall>x. P x \<Longrightarrow> Q" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 655 | shows Q | 
| 12386 | 656 | proof - | 
| 657 | from 1 have "P x" by (rule spec) | |
| 658 | from this and 1 show Q by (rule 2) | |
| 659 | qed | |
| 660 | ||
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 661 | lemma notE': | 
| 60759 | 662 | assumes 1: "\<not> P" | 
| 663 | and 2: "\<not> P \<Longrightarrow> P" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 664 | shows R | 
| 12386 | 665 | proof - | 
| 666 | from 2 and 1 have P . | |
| 667 | with 1 show R by (rule notE) | |
| 668 | qed | |
| 669 | ||
| 60759 | 670 | lemma TrueE: "True \<Longrightarrow> P \<Longrightarrow> P" . | 
| 671 | lemma notFalseE: "\<not> False \<Longrightarrow> P \<Longrightarrow> P" . | |
| 22444 
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
 dixon parents: 
22377diff
changeset | 672 | |
| 22467 
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
 dixon parents: 
22445diff
changeset | 673 | lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE | 
| 15801 | 674 | and [Pure.intro!] = iffI conjI impI TrueI notI allI refl | 
| 675 | and [Pure.elim 2] = allE notE' impE' | |
| 676 | and [Pure.intro] = exI disjI2 disjI1 | |
| 12386 | 677 | |
| 678 | lemmas [trans] = trans | |
| 679 | and [sym] = sym not_sym | |
| 15801 | 680 | and [Pure.elim?] = iffD1 iffD2 impE | 
| 11750 | 681 | |
| 11438 
3d9222b80989
declare trans [trans]  (*overridden in theory Calculation*);
 wenzelm parents: 
11432diff
changeset | 682 | |
| 60758 | 683 | subsubsection \<open>Atomizing meta-level connectives\<close> | 
| 11750 | 684 | |
| 28513 | 685 | axiomatization where | 
| 63575 | 686 | eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" \<comment> \<open>admissible axiom\<close> | 
| 28513 | 687 | |
| 60759 | 688 | lemma atomize_all [atomize]: "(\<And>x. P x) \<equiv> Trueprop (\<forall>x. P x)" | 
| 12003 | 689 | proof | 
| 60759 | 690 | assume "\<And>x. P x" | 
| 691 | then show "\<forall>x. P x" .. | |
| 9488 | 692 | next | 
| 60759 | 693 | assume "\<forall>x. P x" | 
| 694 | then show "\<And>x. P x" by (rule allE) | |
| 9488 | 695 | qed | 
| 696 | ||
| 60759 | 697 | lemma atomize_imp [atomize]: "(A \<Longrightarrow> B) \<equiv> Trueprop (A \<longrightarrow> B)" | 
| 12003 | 698 | proof | 
| 60759 | 699 | assume r: "A \<Longrightarrow> B" | 
| 700 | show "A \<longrightarrow> B" by (rule impI) (rule r) | |
| 9488 | 701 | next | 
| 60759 | 702 | assume "A \<longrightarrow> B" and A | 
| 23553 | 703 | then show B by (rule mp) | 
| 9488 | 704 | qed | 
| 705 | ||
| 60759 | 706 | lemma atomize_not: "(A \<Longrightarrow> False) \<equiv> Trueprop (\<not> A)" | 
| 14749 | 707 | proof | 
| 60759 | 708 | assume r: "A \<Longrightarrow> False" | 
| 709 | show "\<not> A" by (rule notI) (rule r) | |
| 14749 | 710 | next | 
| 60759 | 711 | assume "\<not> A" and A | 
| 23553 | 712 | then show False by (rule notE) | 
| 14749 | 713 | qed | 
| 714 | ||
| 60759 | 715 | lemma atomize_eq [atomize, code]: "(x \<equiv> y) \<equiv> Trueprop (x = y)" | 
| 12003 | 716 | proof | 
| 60759 | 717 | assume "x \<equiv> y" | 
| 718 | show "x = y" by (unfold \<open>x \<equiv> y\<close>) (rule refl) | |
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 719 | next | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 720 | assume "x = y" | 
| 60759 | 721 | then show "x \<equiv> y" by (rule eq_reflection) | 
| 10432 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 722 | qed | 
| 
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
 wenzelm parents: 
10383diff
changeset | 723 | |
| 60759 | 724 | lemma atomize_conj [atomize]: "(A &&& B) \<equiv> Trueprop (A \<and> B)" | 
| 12003 | 725 | proof | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 726 | assume conj: "A &&& B" | 
| 60759 | 727 | show "A \<and> B" | 
| 19121 | 728 | proof (rule conjI) | 
| 729 | from conj show A by (rule conjunctionD1) | |
| 730 | from conj show B by (rule conjunctionD2) | |
| 731 | qed | |
| 11953 | 732 | next | 
| 60759 | 733 | assume conj: "A \<and> B" | 
| 28856 
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
 wenzelm parents: 
28741diff
changeset | 734 | show "A &&& B" | 
| 19121 | 735 | proof - | 
| 736 | from conj show A .. | |
| 737 | from conj show B .. | |
| 11953 | 738 | qed | 
| 739 | qed | |
| 740 | ||
| 12386 | 741 | lemmas [symmetric, rulify] = atomize_all atomize_imp | 
| 18832 | 742 | and [symmetric, defn] = atomize_all atomize_imp atomize_eq | 
| 12386 | 743 | |
| 11750 | 744 | |
| 60758 | 745 | subsubsection \<open>Atomizing elimination rules\<close> | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 746 | |
| 60759 | 747 | lemma atomize_exL[atomize_elim]: "(\<And>x. P x \<Longrightarrow> Q) \<equiv> ((\<exists>x. P x) \<Longrightarrow> Q)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 748 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 749 | |
| 60759 | 750 | lemma atomize_conjL[atomize_elim]: "(A \<Longrightarrow> B \<Longrightarrow> C) \<equiv> (A \<and> B \<Longrightarrow> C)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 751 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 752 | |
| 60759 | 753 | lemma atomize_disjL[atomize_elim]: "((A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C) \<equiv> ((A \<or> B \<Longrightarrow> C) \<Longrightarrow> C)" | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 754 | by rule iprover+ | 
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 755 | |
| 60759 | 756 | lemma atomize_elimL[atomize_elim]: "(\<And>B. (A \<Longrightarrow> B) \<Longrightarrow> B) \<equiv> Trueprop A" .. | 
| 26580 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 757 | |
| 
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
 krauss parents: 
26555diff
changeset | 758 | |
| 60758 | 759 | subsection \<open>Package setup\<close> | 
| 20944 | 760 | |
| 69605 | 761 | ML_file \<open>Tools/hologic.ML\<close> | 
| 70847 | 762 | ML_file \<open>Tools/rewrite_hol_proof.ML\<close> | 
| 51314 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 wenzelm parents: 
51304diff
changeset | 763 | |
| 70879 | 764 | setup \<open>Proofterm.set_preproc (Proof_Rewrite_Rules.standard_preproc Rewrite_HOL_Proof.rews)\<close> | 
| 70849 | 765 | |
| 51314 
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
 wenzelm parents: 
51304diff
changeset | 766 | |
| 60758 | 767 | subsubsection \<open>Sledgehammer setup\<close> | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 768 | |
| 60758 | 769 | text \<open> | 
| 63575 | 770 | Theorems blacklisted to Sledgehammer. These theorems typically produce clauses | 
| 771 | that are prolific (match too many equality or membership literals) and relate to | |
| 772 | seldom-used facts. Some duplicate other rules. | |
| 60758 | 773 | \<close> | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 774 | |
| 57963 | 775 | named_theorems no_atp "theorems that should be filtered out by Sledgehammer" | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 776 | |
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 777 | |
| 60758 | 778 | subsubsection \<open>Classical Reasoner setup\<close> | 
| 9529 | 779 | |
| 60759 | 780 | lemma imp_elim: "P \<longrightarrow> Q \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | 
| 26411 | 781 | by (rule classical) iprover | 
| 782 | ||
| 60759 | 783 | lemma swap: "\<not> P \<Longrightarrow> (\<not> R \<Longrightarrow> P) \<Longrightarrow> R" | 
| 26411 | 784 | by (rule classical) iprover | 
| 785 | ||
| 62958 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 wenzelm parents: 
62913diff
changeset | 786 | lemma thin_refl: "\<lbrakk>x = x; PROP W\<rbrakk> \<Longrightarrow> PROP W" . | 
| 20944 | 787 | |
| 60758 | 788 | ML \<open> | 
| 42799 | 789 | structure Hypsubst = Hypsubst | 
| 790 | ( | |
| 21218 | 791 | val dest_eq = HOLogic.dest_eq | 
| 21151 | 792 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 793 | val dest_imp = HOLogic.dest_imp | |
| 26411 | 794 |   val eq_reflection = @{thm eq_reflection}
 | 
| 795 |   val rev_eq_reflection = @{thm meta_eq_to_obj_eq}
 | |
| 796 |   val imp_intr = @{thm impI}
 | |
| 797 |   val rev_mp = @{thm rev_mp}
 | |
| 798 |   val subst = @{thm subst}
 | |
| 799 |   val sym = @{thm sym}
 | |
| 22129 | 800 |   val thin_refl = @{thm thin_refl};
 | 
| 42799 | 801 | ); | 
| 21671 | 802 | open Hypsubst; | 
| 21151 | 803 | |
| 42799 | 804 | structure Classical = Classical | 
| 805 | ( | |
| 26411 | 806 |   val imp_elim = @{thm imp_elim}
 | 
| 807 |   val not_elim = @{thm notE}
 | |
| 808 |   val swap = @{thm swap}
 | |
| 809 |   val classical = @{thm classical}
 | |
| 21151 | 810 | val sizef = Drule.size_of_thm | 
| 811 | val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] | |
| 42799 | 812 | ); | 
| 21151 | 813 | |
| 58826 | 814 | structure Basic_Classical: BASIC_CLASSICAL = Classical; | 
| 33308 
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
 wenzelm parents: 
33185diff
changeset | 815 | open Basic_Classical; | 
| 60758 | 816 | \<close> | 
| 22129 | 817 | |
| 60758 | 818 | setup \<open> | 
| 35389 | 819 | (*prevent substitution on bool*) | 
| 58826 | 820 | let | 
| 69593 | 821 | fun non_bool_eq (\<^const_name>\<open>HOL.eq\<close>, Type (_, [T, _])) = T <> \<^typ>\<open>bool\<close> | 
| 58826 | 822 | | non_bool_eq _ = false; | 
| 823 | fun hyp_subst_tac' ctxt = | |
| 824 | SUBGOAL (fn (goal, i) => | |
| 825 | if Term.exists_Const non_bool_eq goal | |
| 826 | then Hypsubst.hyp_subst_tac ctxt i | |
| 827 | else no_tac); | |
| 828 | in | |
| 829 | Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac) | |
| 830 | end | |
| 60758 | 831 | \<close> | 
| 21009 | 832 | |
| 833 | declare iffI [intro!] | |
| 834 | and notI [intro!] | |
| 835 | and impI [intro!] | |
| 836 | and disjCI [intro!] | |
| 837 | and conjI [intro!] | |
| 838 | and TrueI [intro!] | |
| 839 | and refl [intro!] | |
| 840 | ||
| 841 | declare iffCE [elim!] | |
| 842 | and FalseE [elim!] | |
| 843 | and impCE [elim!] | |
| 844 | and disjE [elim!] | |
| 845 | and conjE [elim!] | |
| 846 | ||
| 847 | declare ex_ex1I [intro!] | |
| 848 | and allI [intro!] | |
| 849 | and exI [intro] | |
| 850 | ||
| 851 | declare exE [elim!] | |
| 852 | allE [elim] | |
| 853 | ||
| 69593 | 854 | ML \<open>val HOL_cs = claset_of \<^context>\<close> | 
| 19162 | 855 | |
| 60759 | 856 | lemma contrapos_np: "\<not> Q \<Longrightarrow> (\<not> P \<Longrightarrow> Q) \<Longrightarrow> P" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 857 | by (erule swap) | 
| 10383 | 858 | |
| 18689 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 859 | declare ex_ex1I [rule del, intro! 2] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 860 | and ex1I [intro] | 
| 
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
 wenzelm parents: 
18595diff
changeset | 861 | |
| 41865 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 paulson parents: 
41827diff
changeset | 862 | declare ext [intro] | 
| 
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
 paulson parents: 
41827diff
changeset | 863 | |
| 12386 | 864 | lemmas [intro?] = ext | 
| 865 | and [elim?] = ex1_implies_ex | |
| 11977 | 866 | |
| 63575 | 867 | text \<open>Better than \<open>ex1E\<close> for classical reasoner: needs no quantifier duplication!\<close> | 
| 20973 | 868 | lemma alt_ex1E [elim!]: | 
| 20944 | 869 | assumes major: "\<exists>!x. P x" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 870 | and minor: "\<And>x. \<lbrakk>P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y'\<rbrakk> \<Longrightarrow> R" | 
| 20944 | 871 | shows R | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 872 | proof (rule ex1E [OF major minor]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 873 | show "\<forall>y y'. P y \<and> P y' \<longrightarrow> y = y'" if "P x" and \<section>: "\<forall>y. P y \<longrightarrow> y = x" for x | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 874 | using \<open>P x\<close> \<section> \<section> by fast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 875 | qed assumption | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 876 | |
| 71827 | 877 | text \<open>And again using Uniq\<close> | 
| 878 | lemma alt_ex1E': | |
| 879 | assumes "\<exists>!x. P x" "\<And>x. \<lbrakk>P x; \<exists>\<^sub>\<le>\<^sub>1x. P x\<rbrakk> \<Longrightarrow> R" | |
| 880 | shows R | |
| 881 | using assms unfolding Uniq_def by fast | |
| 882 | ||
| 883 | lemma ex1_iff_ex_Uniq: "(\<exists>!x. P x) \<longleftrightarrow> (\<exists>x. P x) \<and> (\<exists>\<^sub>\<le>\<^sub>1x. P x)" | |
| 884 | unfolding Uniq_def by fast | |
| 885 | ||
| 20944 | 886 | |
| 60758 | 887 | ML \<open> | 
| 42477 | 888 | structure Blast = Blast | 
| 889 | ( | |
| 890 | structure Classical = Classical | |
| 69597 | 891 | val Trueprop_const = dest_Const \<^const>\<open>Trueprop\<close> | 
| 69593 | 892 | val equality_name = \<^const_name>\<open>HOL.eq\<close> | 
| 893 | val not_name = \<^const_name>\<open>Not\<close> | |
| 42477 | 894 |     val notE = @{thm notE}
 | 
| 895 |     val ccontr = @{thm ccontr}
 | |
| 896 | val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac | |
| 897 | ); | |
| 898 | val blast_tac = Blast.blast_tac; | |
| 60758 | 899 | \<close> | 
| 20944 | 900 | |
| 901 | ||
| 60758 | 902 | subsubsection \<open>THE: definite description operator\<close> | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 903 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 904 | lemma the_equality [intro]: | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 905 | assumes "P a" | 
| 63575 | 906 | and "\<And>x. P x \<Longrightarrow> x = a" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 907 | shows "(THE x. P x) = a" | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 908 | by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial]) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 909 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 910 | lemma theI: | 
| 63575 | 911 | assumes "P a" | 
| 912 | and "\<And>x. P x \<Longrightarrow> x = a" | |
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 913 | shows "P (THE x. P x)" | 
| 63575 | 914 | by (iprover intro: assms the_equality [THEN ssubst]) | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 915 | |
| 60759 | 916 | lemma theI': "\<exists>!x. P x \<Longrightarrow> P (THE x. P x)" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 917 | by (blast intro: theI) | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 918 | |
| 63575 | 919 | text \<open>Easier to apply than \<open>theI\<close>: only one occurrence of \<open>P\<close>.\<close> | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 920 | lemma theI2: | 
| 60759 | 921 | assumes "P a" "\<And>x. P x \<Longrightarrow> x = a" "\<And>x. P x \<Longrightarrow> Q x" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 922 | shows "Q (THE x. P x)" | 
| 63575 | 923 | by (iprover intro: assms theI) | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 924 | |
| 63575 | 925 | lemma the1I2: | 
| 926 | assumes "\<exists>!x. P x" "\<And>x. P x \<Longrightarrow> Q x" | |
| 927 | shows "Q (THE x. P x)" | |
| 928 | by (iprover intro: assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] elim: allE impE) | |
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 929 | |
| 60759 | 930 | lemma the1_equality [elim?]: "\<lbrakk>\<exists>!x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 931 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 932 | |
| 71827 | 933 | lemma the1_equality': "\<lbrakk>\<exists>\<^sub>\<le>\<^sub>1x. P x; P a\<rbrakk> \<Longrightarrow> (THE x. P x) = a" | 
| 934 | unfolding Uniq_def by blast | |
| 935 | ||
| 60759 | 936 | lemma the_sym_eq_trivial: "(THE y. x = y) = x" | 
| 59504 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 937 | by blast | 
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 938 | |
| 
8c6747dba731
New lemmas and a bit of tidying up.
 paulson <lp15@cam.ac.uk> parents: 
59028diff
changeset | 939 | |
| 60758 | 940 | subsubsection \<open>Simplifier\<close> | 
| 12281 | 941 | |
| 60759 | 942 | lemma eta_contract_eq: "(\<lambda>s. f s) = f" .. | 
| 12281 | 943 | |
| 71918 | 944 | lemma subst_all: | 
| 945 | \<open>(\<And>x. x = a \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close> | |
| 946 | \<open>(\<And>x. a = x \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close> | |
| 71959 | 947 | proof - | 
| 948 | show \<open>(\<And>x. x = a \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close> | |
| 949 | proof (rule equal_intr_rule) | |
| 950 | assume *: \<open>\<And>x. x = a \<Longrightarrow> PROP P x\<close> | |
| 951 | show \<open>PROP P a\<close> | |
| 952 | by (rule *) (rule refl) | |
| 953 | next | |
| 954 | fix x | |
| 955 | assume \<open>PROP P a\<close> and \<open>x = a\<close> | |
| 956 | from \<open>x = a\<close> have \<open>x \<equiv> a\<close> | |
| 957 | by (rule eq_reflection) | |
| 958 | with \<open>PROP P a\<close> show \<open>PROP P x\<close> | |
| 959 | by simp | |
| 960 | qed | |
| 961 | show \<open>(\<And>x. a = x \<Longrightarrow> PROP P x) \<equiv> PROP P a\<close> | |
| 962 | proof (rule equal_intr_rule) | |
| 963 | assume *: \<open>\<And>x. a = x \<Longrightarrow> PROP P x\<close> | |
| 964 | show \<open>PROP P a\<close> | |
| 965 | by (rule *) (rule refl) | |
| 966 | next | |
| 967 | fix x | |
| 968 | assume \<open>PROP P a\<close> and \<open>a = x\<close> | |
| 969 | from \<open>a = x\<close> have \<open>a \<equiv> x\<close> | |
| 970 | by (rule eq_reflection) | |
| 971 | with \<open>PROP P a\<close> show \<open>PROP P x\<close> | |
| 972 | by simp | |
| 973 | qed | |
| 71918 | 974 | qed | 
| 975 | ||
| 12281 | 976 | lemma simp_thms: | 
| 60759 | 977 | shows not_not: "(\<not> \<not> P) = P" | 
| 978 | and Not_eq_iff: "((\<not> P) = (\<not> Q)) = (P = Q)" | |
| 12937 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 wenzelm parents: 
12892diff
changeset | 979 | and | 
| 60759 | 980 | "(P \<noteq> Q) = (P = (\<not> Q))" | 
| 981 | "(P \<or> \<not>P) = True" "(\<not> P \<or> P) = True" | |
| 12281 | 982 | "(x = x) = True" | 
| 32068 | 983 | and not_True_eq_False [code]: "(\<not> True) = False" | 
| 984 | and not_False_eq_True [code]: "(\<not> False) = True" | |
| 20944 | 985 | and | 
| 60759 | 986 | "(\<not> P) \<noteq> P" "P \<noteq> (\<not> P)" | 
| 987 | "(True = P) = P" | |
| 20944 | 988 | and eq_True: "(P = True) = P" | 
| 60759 | 989 | and "(False = P) = (\<not> P)" | 
| 20944 | 990 | and eq_False: "(P = False) = (\<not> P)" | 
| 991 | and | |
| 60759 | 992 | "(True \<longrightarrow> P) = P" "(False \<longrightarrow> P) = True" | 
| 993 | "(P \<longrightarrow> True) = True" "(P \<longrightarrow> P) = True" | |
| 994 | "(P \<longrightarrow> False) = (\<not> P)" "(P \<longrightarrow> \<not> P) = (\<not> P)" | |
| 995 | "(P \<and> True) = P" "(True \<and> P) = P" | |
| 996 | "(P \<and> False) = False" "(False \<and> P) = False" | |
| 997 | "(P \<and> P) = P" "(P \<and> (P \<and> Q)) = (P \<and> Q)" | |
| 998 | "(P \<and> \<not> P) = False" "(\<not> P \<and> P) = False" | |
| 999 | "(P \<or> True) = True" "(True \<or> P) = True" | |
| 1000 | "(P \<or> False) = P" "(False \<or> P) = P" | |
| 1001 | "(P \<or> P) = P" "(P \<or> (P \<or> Q)) = (P \<or> Q)" and | |
| 1002 | "(\<forall>x. P) = P" "(\<exists>x. P) = P" "\<exists>x. x = t" "\<exists>x. t = x" | |
| 31166 
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
 nipkow parents: 
31156diff
changeset | 1003 | and | 
| 60759 | 1004 | "\<And>P. (\<exists>x. x = t \<and> P x) = P t" | 
| 1005 | "\<And>P. (\<exists>x. t = x \<and> P x) = P t" | |
| 1006 | "\<And>P. (\<forall>x. x = t \<longrightarrow> P x) = P t" | |
| 1007 | "\<And>P. (\<forall>x. t = x \<longrightarrow> P x) = P t" | |
| 66109 | 1008 | "(\<forall>x. x \<noteq> t) = False" "(\<forall>x. t \<noteq> x) = False" | 
| 17589 | 1009 | by (blast, blast, blast, blast, blast, iprover+) | 
| 13421 | 1010 | |
| 63575 | 1011 | lemma disj_absorb: "A \<or> A \<longleftrightarrow> A" | 
| 14201 | 1012 | by blast | 
| 1013 | ||
| 63575 | 1014 | lemma disj_left_absorb: "A \<or> (A \<or> B) \<longleftrightarrow> A \<or> B" | 
| 14201 | 1015 | by blast | 
| 1016 | ||
| 63575 | 1017 | lemma conj_absorb: "A \<and> A \<longleftrightarrow> A" | 
| 14201 | 1018 | by blast | 
| 1019 | ||
| 63575 | 1020 | lemma conj_left_absorb: "A \<and> (A \<and> B) \<longleftrightarrow> A \<and> B" | 
| 14201 | 1021 | by blast | 
| 1022 | ||
| 12281 | 1023 | lemma eq_ac: | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 1024 | shows eq_commute: "a = b \<longleftrightarrow> b = a" | 
| 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 1025 | and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))" | 
| 63575 | 1026 | and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))" | 
| 1027 | by (iprover, blast+) | |
| 1028 | ||
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56941diff
changeset | 1029 | lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover | 
| 12281 | 1030 | |
| 1031 | lemma conj_comms: | |
| 63575 | 1032 | shows conj_commute: "P \<and> Q \<longleftrightarrow> Q \<and> P" | 
| 1033 | and conj_left_commute: "P \<and> (Q \<and> R) \<longleftrightarrow> Q \<and> (P \<and> R)" by iprover+ | |
| 1034 | lemma conj_assoc: "(P \<and> Q) \<and> R \<longleftrightarrow> P \<and> (Q \<and> R)" by iprover | |
| 12281 | 1035 | |
| 19174 | 1036 | lemmas conj_ac = conj_commute conj_left_commute conj_assoc | 
| 1037 | ||
| 12281 | 1038 | lemma disj_comms: | 
| 63575 | 1039 | shows disj_commute: "P \<or> Q \<longleftrightarrow> Q \<or> P" | 
| 1040 | and disj_left_commute: "P \<or> (Q \<or> R) \<longleftrightarrow> Q \<or> (P \<or> R)" by iprover+ | |
| 1041 | lemma disj_assoc: "(P \<or> Q) \<or> R \<longleftrightarrow> P \<or> (Q \<or> R)" by iprover | |
| 12281 | 1042 | |
| 19174 | 1043 | lemmas disj_ac = disj_commute disj_left_commute disj_assoc | 
| 1044 | ||
| 63575 | 1045 | lemma conj_disj_distribL: "P \<and> (Q \<or> R) \<longleftrightarrow> P \<and> Q \<or> P \<and> R" by iprover | 
| 1046 | lemma conj_disj_distribR: "(P \<or> Q) \<and> R \<longleftrightarrow> P \<and> R \<or> Q \<and> R" by iprover | |
| 12281 | 1047 | |
| 63575 | 1048 | lemma disj_conj_distribL: "P \<or> (Q \<and> R) \<longleftrightarrow> (P \<or> Q) \<and> (P \<or> R)" by iprover | 
| 1049 | lemma disj_conj_distribR: "(P \<and> Q) \<or> R \<longleftrightarrow> (P \<or> R) \<and> (Q \<or> R)" by iprover | |
| 12281 | 1050 | |
| 60759 | 1051 | lemma imp_conjR: "(P \<longrightarrow> (Q \<and> R)) = ((P \<longrightarrow> Q) \<and> (P \<longrightarrow> R))" by iprover | 
| 1052 | lemma imp_conjL: "((P \<and> Q) \<longrightarrow> R) = (P \<longrightarrow> (Q \<longrightarrow> R))" by iprover | |
| 1053 | lemma imp_disjL: "((P \<or> Q) \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))" by iprover | |
| 12281 | 1054 | |
| 61799 | 1055 | text \<open>These two are specialized, but \<open>imp_disj_not1\<close> is useful in \<open>Auth/Yahalom\<close>.\<close> | 
| 63575 | 1056 | lemma imp_disj_not1: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> Q \<longrightarrow> P \<longrightarrow> R)" by blast | 
| 1057 | lemma imp_disj_not2: "(P \<longrightarrow> Q \<or> R) \<longleftrightarrow> (\<not> R \<longrightarrow> P \<longrightarrow> Q)" by blast | |
| 12281 | 1058 | |
| 63575 | 1059 | lemma imp_disj1: "((P \<longrightarrow> Q) \<or> R) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast | 
| 1060 | lemma imp_disj2: "(Q \<or> (P \<longrightarrow> R)) \<longleftrightarrow> (P \<longrightarrow> Q \<or> R)" by blast | |
| 12281 | 1061 | |
| 63575 | 1062 | lemma imp_cong: "(P = P') \<Longrightarrow> (P' \<Longrightarrow> (Q = Q')) \<Longrightarrow> ((P \<longrightarrow> Q) \<longleftrightarrow> (P' \<longrightarrow> Q'))" | 
| 21151 | 1063 | by iprover | 
| 1064 | ||
| 63575 | 1065 | lemma de_Morgan_disj: "\<not> (P \<or> Q) \<longleftrightarrow> \<not> P \<and> \<not> Q" by iprover | 
| 1066 | lemma de_Morgan_conj: "\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q" by blast | |
| 1067 | lemma not_imp: "\<not> (P \<longrightarrow> Q) \<longleftrightarrow> P \<and> \<not> Q" by blast | |
| 1068 | lemma not_iff: "P \<noteq> Q \<longleftrightarrow> (P \<longleftrightarrow> \<not> Q)" by blast | |
| 1069 | lemma disj_not1: "\<not> P \<or> Q \<longleftrightarrow> (P \<longrightarrow> Q)" by blast | |
| 1070 | lemma disj_not2: "P \<or> \<not> Q \<longleftrightarrow> (Q \<longrightarrow> P)" by blast \<comment> \<open>changes orientation :-(\<close> | |
| 1071 | lemma imp_conv_disj: "(P \<longrightarrow> Q) \<longleftrightarrow> (\<not> P) \<or> Q" by blast | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
62958diff
changeset | 1072 | lemma disj_imp: "P \<or> Q \<longleftrightarrow> \<not> P \<longrightarrow> Q" by blast | 
| 12281 | 1073 | |
| 63575 | 1074 | lemma iff_conv_conj_imp: "(P \<longleftrightarrow> Q) \<longleftrightarrow> (P \<longrightarrow> Q) \<and> (Q \<longrightarrow> P)" by iprover | 
| 12281 | 1075 | |
| 1076 | ||
| 63575 | 1077 | lemma cases_simp: "(P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> Q) \<longleftrightarrow> Q" | 
| 62390 | 1078 | \<comment> \<open>Avoids duplication of subgoals after \<open>if_split\<close>, when the true and false\<close> | 
| 61799 | 1079 | \<comment> \<open>cases boil down to the same thing.\<close> | 
| 12281 | 1080 | by blast | 
| 1081 | ||
| 63575 | 1082 | lemma not_all: "\<not> (\<forall>x. P x) \<longleftrightarrow> (\<exists>x. \<not> P x)" by blast | 
| 1083 | lemma imp_all: "((\<forall>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<exists>x. P x \<longrightarrow> Q)" by blast | |
| 1084 | lemma not_ex: "\<not> (\<exists>x. P x) \<longleftrightarrow> (\<forall>x. \<not> P x)" by iprover | |
| 1085 | lemma imp_ex: "((\<exists>x. P x) \<longrightarrow> Q) \<longleftrightarrow> (\<forall>x. P x \<longrightarrow> Q)" by iprover | |
| 1086 | lemma all_not_ex: "(\<forall>x. P x) \<longleftrightarrow> \<not> (\<exists>x. \<not> P x)" by blast | |
| 12281 | 1087 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35808diff
changeset | 1088 | declare All_def [no_atp] | 
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
24280diff
changeset | 1089 | |
| 63575 | 1090 | lemma ex_disj_distrib: "(\<exists>x. P x \<or> Q x) \<longleftrightarrow> (\<exists>x. P x) \<or> (\<exists>x. Q x)" by iprover | 
| 1091 | lemma all_conj_distrib: "(\<forall>x. P x \<and> Q x) \<longleftrightarrow> (\<forall>x. P x) \<and> (\<forall>x. Q x)" by iprover | |
| 12281 | 1092 | |
| 60758 | 1093 | text \<open> | 
| 63575 | 1094 | \<^medskip> The \<open>\<and>\<close> congruence rule: not included by default! | 
| 60758 | 1095 | May slow rewrite proofs down by as much as 50\%\<close> | 
| 12281 | 1096 | |
| 63575 | 1097 | lemma conj_cong: "P = P' \<Longrightarrow> (P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')" | 
| 17589 | 1098 | by iprover | 
| 12281 | 1099 | |
| 63575 | 1100 | lemma rev_conj_cong: "Q = Q' \<Longrightarrow> (Q' \<Longrightarrow> P = P') \<Longrightarrow> (P \<and> Q) = (P' \<and> Q')" | 
| 17589 | 1101 | by iprover | 
| 12281 | 1102 | |
| 61799 | 1103 | text \<open>The \<open>|\<close> congruence rule: not included by default!\<close> | 
| 12281 | 1104 | |
| 63575 | 1105 | lemma disj_cong: "P = P' \<Longrightarrow> (\<not> P' \<Longrightarrow> Q = Q') \<Longrightarrow> (P \<or> Q) = (P' \<or> Q')" | 
| 12281 | 1106 | by blast | 
| 1107 | ||
| 1108 | ||
| 63575 | 1109 | text \<open>\<^medskip> if-then-else rules\<close> | 
| 12281 | 1110 | |
| 32068 | 1111 | lemma if_True [code]: "(if True then x else y) = x" | 
| 63575 | 1112 | unfolding If_def by blast | 
| 12281 | 1113 | |
| 32068 | 1114 | lemma if_False [code]: "(if False then x else y) = y" | 
| 63575 | 1115 | unfolding If_def by blast | 
| 12281 | 1116 | |
| 60759 | 1117 | lemma if_P: "P \<Longrightarrow> (if P then x else y) = x" | 
| 63575 | 1118 | unfolding If_def by blast | 
| 12281 | 1119 | |
| 60759 | 1120 | lemma if_not_P: "\<not> P \<Longrightarrow> (if P then x else y) = y" | 
| 63575 | 1121 | unfolding If_def by blast | 
| 12281 | 1122 | |
| 62390 | 1123 | lemma if_split: "P (if Q then x else y) = ((Q \<longrightarrow> P x) \<and> (\<not> Q \<longrightarrow> P y))" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1124 | proof (rule case_split [of Q]) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1125 | show ?thesis if Q | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1126 | using that by (simplesubst if_P) blast+ | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1127 | show ?thesis if "\<not> Q" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1128 | using that by (simplesubst if_not_P) blast+ | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1129 | qed | 
| 12281 | 1130 | |
| 62390 | 1131 | lemma if_split_asm: "P (if Q then x else y) = (\<not> ((Q \<and> \<not> P x) \<or> (\<not> Q \<and> \<not> P y)))" | 
| 63575 | 1132 | by (simplesubst if_split) blast | 
| 12281 | 1133 | |
| 62390 | 1134 | lemmas if_splits [no_atp] = if_split if_split_asm | 
| 12281 | 1135 | |
| 1136 | lemma if_cancel: "(if c then x else x) = x" | |
| 63575 | 1137 | by (simplesubst if_split) blast | 
| 12281 | 1138 | |
| 1139 | lemma if_eq_cancel: "(if x = y then y else x) = x" | |
| 63575 | 1140 | by (simplesubst if_split) blast | 
| 12281 | 1141 | |
| 60759 | 1142 | lemma if_bool_eq_conj: "(if P then Q else R) = ((P \<longrightarrow> Q) \<and> (\<not> P \<longrightarrow> R))" | 
| 61799 | 1143 | \<comment> \<open>This form is useful for expanding \<open>if\<close>s on the RIGHT of the \<open>\<Longrightarrow>\<close> symbol.\<close> | 
| 62390 | 1144 | by (rule if_split) | 
| 12281 | 1145 | |
| 60759 | 1146 | lemma if_bool_eq_disj: "(if P then Q else R) = ((P \<and> Q) \<or> (\<not> P \<and> R))" | 
| 61799 | 1147 | \<comment> \<open>And this form is useful for expanding \<open>if\<close>s on the LEFT.\<close> | 
| 62390 | 1148 | by (simplesubst if_split) blast | 
| 12281 | 1149 | |
| 63575 | 1150 | lemma Eq_TrueI: "P \<Longrightarrow> P \<equiv> True" unfolding atomize_eq by iprover | 
| 1151 | lemma Eq_FalseI: "\<not> P \<Longrightarrow> P \<equiv> False" unfolding atomize_eq by iprover | |
| 12281 | 1152 | |
| 63575 | 1153 | text \<open>\<^medskip> let rules for simproc\<close> | 
| 15423 | 1154 | |
| 60759 | 1155 | lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" | 
| 15423 | 1156 | by (unfold Let_def) | 
| 1157 | ||
| 60759 | 1158 | lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" | 
| 15423 | 1159 | by (unfold Let_def) | 
| 1160 | ||
| 60758 | 1161 | text \<open> | 
| 16999 | 1162 | The following copy of the implication operator is useful for | 
| 1163 | fine-tuning congruence rules. It instructs the simplifier to simplify | |
| 1164 | its premise. | |
| 60758 | 1165 | \<close> | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1166 | |
| 63575 | 1167 | definition simp_implies :: "prop \<Rightarrow> prop \<Rightarrow> prop" (infixr "=simp=>" 1) | 
| 67399 | 1168 | where "simp_implies \<equiv> (\<Longrightarrow>)" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1169 | |
| 18457 | 1170 | lemma simp_impliesI: | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1171 | assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1172 | shows "PROP P =simp=> PROP Q" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1173 | unfolding simp_implies_def | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1174 | by (iprover intro: PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1175 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1176 | lemma simp_impliesE: | 
| 25388 | 1177 | assumes PQ: "PROP P =simp=> PROP Q" | 
| 63575 | 1178 | and P: "PROP P" | 
| 1179 | and QR: "PROP Q \<Longrightarrow> PROP R" | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1180 | shows "PROP R" | 
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1181 | by (iprover intro: QR P PQ [unfolded simp_implies_def]) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1182 | |
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1183 | lemma simp_implies_cong: | 
| 60759 | 1184 | assumes PP' :"PROP P \<equiv> PROP P'" | 
| 63575 | 1185 | and P'QQ': "PROP P' \<Longrightarrow> (PROP Q \<equiv> PROP Q')" | 
| 60759 | 1186 | shows "(PROP P =simp=> PROP Q) \<equiv> (PROP P' =simp=> PROP Q')" | 
| 63575 | 1187 | unfolding simp_implies_def | 
| 1188 | proof (rule equal_intr_rule) | |
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1189 | assume PQ: "PROP P \<Longrightarrow> PROP Q" | 
| 63575 | 1190 | and P': "PROP P'" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1191 | from PP' [symmetric] and P' have "PROP P" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1192 | by (rule equal_elim_rule1) | 
| 23553 | 1193 | then have "PROP Q" by (rule PQ) | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1194 | with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1195 | next | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1196 | assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" | 
| 63575 | 1197 | and P: "PROP P" | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1198 | from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) | 
| 23553 | 1199 | then have "PROP Q'" by (rule P'Q') | 
| 16633 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1200 | with P'QQ' [OF P', symmetric] show "PROP Q" | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1201 | by (rule equal_elim_rule1) | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1202 | qed | 
| 
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
 berghofe parents: 
16587diff
changeset | 1203 | |
| 20944 | 1204 | lemma uncurry: | 
| 1205 | assumes "P \<longrightarrow> Q \<longrightarrow> R" | |
| 1206 | shows "P \<and> Q \<longrightarrow> R" | |
| 23553 | 1207 | using assms by blast | 
| 20944 | 1208 | |
| 1209 | lemma iff_allI: | |
| 1210 | assumes "\<And>x. P x = Q x" | |
| 1211 | shows "(\<forall>x. P x) = (\<forall>x. Q x)" | |
| 23553 | 1212 | using assms by blast | 
| 20944 | 1213 | |
| 1214 | lemma iff_exI: | |
| 1215 | assumes "\<And>x. P x = Q x" | |
| 1216 | shows "(\<exists>x. P x) = (\<exists>x. Q x)" | |
| 23553 | 1217 | using assms by blast | 
| 20944 | 1218 | |
| 63575 | 1219 | lemma all_comm: "(\<forall>x y. P x y) = (\<forall>y x. P x y)" | 
| 20944 | 1220 | by blast | 
| 1221 | ||
| 63575 | 1222 | lemma ex_comm: "(\<exists>x y. P x y) = (\<exists>y x. P x y)" | 
| 20944 | 1223 | by blast | 
| 1224 | ||
| 69605 | 1225 | ML_file \<open>Tools/simpdata.ML\<close> | 
| 60758 | 1226 | ML \<open>open Simpdata\<close> | 
| 42455 | 1227 | |
| 60758 | 1228 | setup \<open> | 
| 58826 | 1229 | map_theory_simpset (put_simpset HOL_basic_ss) #> | 
| 1230 | Simplifier.method_setup Splitter.split_modifiers | |
| 60758 | 1231 | \<close> | 
| 42455 | 1232 | |
| 71886 | 1233 | simproc_setup defined_Ex ("\<exists>x. P x") = \<open>K Quantifier1.rearrange_Ex\<close>
 | 
| 1234 | simproc_setup defined_All ("\<forall>x. P x") = \<open>K Quantifier1.rearrange_All\<close>
 | |
| 71914 | 1235 | simproc_setup defined_all("\<And>x. PROP P x") = \<open>K Quantifier1.rearrange_all\<close>
 | 
| 1236 | ||
| 61799 | 1237 | text \<open>Simproc for proving \<open>(y = x) \<equiv> False\<close> from premise \<open>\<not> (x = y)\<close>:\<close> | 
| 24035 | 1238 | |
| 60758 | 1239 | simproc_setup neq ("x = y") = \<open>fn _ =>
 | 
| 63575 | 1240 | let | 
| 1241 |     val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI};
 | |
| 1242 | fun is_neq eq lhs rhs thm = | |
| 1243 | (case Thm.prop_of thm of | |
| 1244 | _ $ (Not $ (eq' $ l' $ r')) => | |
| 1245 | Not = HOLogic.Not andalso eq' = eq andalso | |
| 1246 | r' aconv lhs andalso l' aconv rhs | |
| 1247 | | _ => false); | |
| 1248 | fun proc ss ct = | |
| 1249 | (case Thm.term_of ct of | |
| 1250 | eq $ lhs $ rhs => | |
| 1251 | (case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of | |
| 1252 | SOME thm => SOME (thm RS neq_to_EQ_False) | |
| 1253 | | NONE => NONE) | |
| 1254 | | _ => NONE); | |
| 69216 
1a52baa70aed
clarified ML_Context.expression: it is a closed expression, not a let-declaration -- thus source positions are more accurate (amending d8849cfad60f, 162a4c2e97bc);
 wenzelm parents: 
68979diff
changeset | 1255 | in proc end | 
| 60758 | 1256 | \<close> | 
| 24035 | 1257 | |
| 60758 | 1258 | simproc_setup let_simp ("Let x f") = \<open>
 | 
| 63575 | 1259 | let | 
| 1260 | fun count_loose (Bound i) k = if i >= k then 1 else 0 | |
| 1261 | | count_loose (s $ t) k = count_loose s k + count_loose t k | |
| 1262 | | count_loose (Abs (_, _, t)) k = count_loose t (k + 1) | |
| 1263 | | count_loose _ _ = 0; | |
| 69593 | 1264 | fun is_trivial_let (Const (\<^const_name>\<open>Let\<close>, _) $ x $ t) = | 
| 63575 | 1265 | (case t of | 
| 1266 | Abs (_, _, t') => count_loose t' 0 <= 1 | |
| 1267 | | _ => true); | |
| 1268 | in | |
| 1269 | fn _ => fn ctxt => fn ct => | |
| 1270 | if is_trivial_let (Thm.term_of ct) | |
| 1271 |       then SOME @{thm Let_def} (*no or one ocurrence of bound variable*)
 | |
| 1272 | else | |
| 1273 | let (*Norbert Schirmer's case*) | |
| 1274 | val t = Thm.term_of ct; | |
| 70326 | 1275 | val (t', ctxt') = yield_singleton (Variable.import_terms false) t ctxt; | 
| 63575 | 1276 | in | 
| 1277 | Option.map (hd o Variable.export ctxt' ctxt o single) | |
| 69593 | 1278 | (case t' of Const (\<^const_name>\<open>Let\<close>,_) $ x $ f => (* x and f are already in normal form *) | 
| 63575 | 1279 | if is_Free x orelse is_Bound x orelse is_Const x | 
| 1280 |               then SOME @{thm Let_def}
 | |
| 1281 | else | |
| 1282 | let | |
| 1283 | val n = case f of (Abs (x, _, _)) => x | _ => "x"; | |
| 1284 | val cx = Thm.cterm_of ctxt x; | |
| 1285 | val xT = Thm.typ_of_cterm cx; | |
| 1286 | val cf = Thm.cterm_of ctxt f; | |
| 1287 | val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx); | |
| 1288 | val (_ $ _ $ g) = Thm.prop_of fx_g; | |
| 1289 | val g' = abstract_over (x, g); | |
| 1290 | val abs_g'= Abs (n, xT, g'); | |
| 1291 | in | |
| 1292 | if g aconv g' then | |
| 1293 | let | |
| 1294 | val rl = | |
| 1295 |                         infer_instantiate ctxt [(("f", 0), cf), (("x", 0), cx)] @{thm Let_unfold};
 | |
| 1296 | in SOME (rl OF [fx_g]) end | |
| 1297 | else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g') | |
| 1298 | then NONE (*avoid identity conversion*) | |
| 1299 | else | |
| 1300 | let | |
| 1301 | val g'x = abs_g' $ x; | |
| 1302 | val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x)); | |
| 1303 | val rl = | |
| 1304 |                         @{thm Let_folded} |> infer_instantiate ctxt
 | |
| 1305 |                           [(("f", 0), Thm.cterm_of ctxt f),
 | |
| 1306 |                            (("x", 0), cx),
 | |
| 1307 |                            (("g", 0), Thm.cterm_of ctxt abs_g')];
 | |
| 1308 | in SOME (rl OF [Thm.transitive fx_g g_g'x]) end | |
| 1309 | end | |
| 1310 | | _ => NONE) | |
| 1311 | end | |
| 1312 | end | |
| 1313 | \<close> | |
| 24035 | 1314 | |
| 21151 | 1315 | lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 1316 | proof | |
| 23389 | 1317 | assume "True \<Longrightarrow> PROP P" | 
| 1318 | from this [OF TrueI] show "PROP P" . | |
| 21151 | 1319 | next | 
| 1320 | assume "PROP P" | |
| 23389 | 1321 | then show "PROP P" . | 
| 21151 | 1322 | qed | 
| 1323 | ||
| 59864 | 1324 | lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True" | 
| 61169 | 1325 | by standard (intro TrueI) | 
| 59864 | 1326 | |
| 1327 | lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True" | |
| 61169 | 1328 | by standard simp_all | 
| 59864 | 1329 | |
| 71842 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1330 | (* It seems that making this a simp rule is slower than using the simproc below *) | 
| 63575 | 1331 | lemma implies_False_swap: | 
| 71842 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1332 | "(False \<Longrightarrow> PROP P \<Longrightarrow> PROP Q) \<equiv> (PROP P \<Longrightarrow> False \<Longrightarrow> PROP Q)" | 
| 63575 | 1333 | by (rule swap_prems_eq) | 
| 60169 
5ef8ed685965
swap False to the right in assumptions to be eliminated at the right end
 nipkow parents: 
60151diff
changeset | 1334 | |
| 71842 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1335 | ML \<open> | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1336 | fun eliminate_false_implies ct = | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1337 | let | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1338 | val (prems, concl) = Logic.strip_horn (Thm.term_of ct) | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1339 | fun go n = | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1340 | if n > 1 then | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1341 |         Conv.rewr_conv @{thm Pure.swap_prems_eq}
 | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1342 | then_conv Conv.arg_conv (go (n - 1)) | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1343 |         then_conv Conv.rewr_conv @{thm HOL.implies_True_equals}
 | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1344 | else | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1345 |         Conv.rewr_conv @{thm HOL.False_implies_equals}
 | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1346 | in | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1347 | case concl of | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1348 |       Const (@{const_name HOL.Trueprop}, _) $ _ => SOME (go (length prems) ct)
 | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1349 | | _ => NONE | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1350 | end | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1351 | \<close> | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1352 | |
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1353 | simproc_setup eliminate_false_implies ("False \<Longrightarrow> PROP P") = \<open>K (K eliminate_false_implies)\<close>
 | 
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1354 | |
| 
db120661dded
new HOL simproc: eliminate_false_implies
 Manuel Eberl <eberlm@in.tum.de> parents: 
71833diff
changeset | 1355 | |
| 21151 | 1356 | lemma ex_simps: | 
| 60759 | 1357 | "\<And>P Q. (\<exists>x. P x \<and> Q) = ((\<exists>x. P x) \<and> Q)" | 
| 1358 | "\<And>P Q. (\<exists>x. P \<and> Q x) = (P \<and> (\<exists>x. Q x))" | |
| 1359 | "\<And>P Q. (\<exists>x. P x \<or> Q) = ((\<exists>x. P x) \<or> Q)" | |
| 1360 | "\<And>P Q. (\<exists>x. P \<or> Q x) = (P \<or> (\<exists>x. Q x))" | |
| 1361 | "\<And>P Q. (\<exists>x. P x \<longrightarrow> Q) = ((\<forall>x. P x) \<longrightarrow> Q)" | |
| 1362 | "\<And>P Q. (\<exists>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<exists>x. Q x))" | |
| 61799 | 1363 | \<comment> \<open>Miniscoping: pushing in existential quantifiers.\<close> | 
| 21151 | 1364 | by (iprover | blast)+ | 
| 1365 | ||
| 1366 | lemma all_simps: | |
| 60759 | 1367 | "\<And>P Q. (\<forall>x. P x \<and> Q) = ((\<forall>x. P x) \<and> Q)" | 
| 1368 | "\<And>P Q. (\<forall>x. P \<and> Q x) = (P \<and> (\<forall>x. Q x))" | |
| 1369 | "\<And>P Q. (\<forall>x. P x \<or> Q) = ((\<forall>x. P x) \<or> Q)" | |
| 1370 | "\<And>P Q. (\<forall>x. P \<or> Q x) = (P \<or> (\<forall>x. Q x))" | |
| 1371 | "\<And>P Q. (\<forall>x. P x \<longrightarrow> Q) = ((\<exists>x. P x) \<longrightarrow> Q)" | |
| 1372 | "\<And>P Q. (\<forall>x. P \<longrightarrow> Q x) = (P \<longrightarrow> (\<forall>x. Q x))" | |
| 61799 | 1373 | \<comment> \<open>Miniscoping: pushing in universal quantifiers.\<close> | 
| 21151 | 1374 | by (iprover | blast)+ | 
| 15481 | 1375 | |
| 21671 | 1376 | lemmas [simp] = | 
| 63575 | 1377 | triv_forall_equality \<comment> \<open>prunes params\<close> | 
| 1378 | True_implies_equals implies_True_equals \<comment> \<open>prune \<open>True\<close> in asms\<close> | |
| 1379 | False_implies_equals \<comment> \<open>prune \<open>False\<close> in asms\<close> | |
| 21671 | 1380 | if_True | 
| 1381 | if_False | |
| 1382 | if_cancel | |
| 1383 | if_eq_cancel | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 1384 | imp_disjL \<comment> \<open>In general it seems wrong to add distributive laws by default: they | 
| 63575 | 1385 | might cause exponential blow-up. But \<open>imp_disjL\<close> has been in for a while | 
| 20973 | 1386 | and cannot be removed without affecting existing proofs. Moreover, | 
| 63575 | 1387 | rewriting by \<open>(P \<or> Q \<longrightarrow> R) = ((P \<longrightarrow> R) \<and> (Q \<longrightarrow> R))\<close> might be justified on the | 
| 1388 | grounds that it allows simplification of \<open>R\<close> in the two cases.\<close> | |
| 21671 | 1389 | conj_assoc | 
| 1390 | disj_assoc | |
| 1391 | de_Morgan_conj | |
| 1392 | de_Morgan_disj | |
| 1393 | imp_disj1 | |
| 1394 | imp_disj2 | |
| 1395 | not_imp | |
| 1396 | disj_not1 | |
| 1397 | not_all | |
| 1398 | not_ex | |
| 1399 | cases_simp | |
| 1400 | the_eq_trivial | |
| 1401 | the_sym_eq_trivial | |
| 1402 | ex_simps | |
| 1403 | all_simps | |
| 1404 | simp_thms | |
| 71918 | 1405 | subst_all | 
| 21671 | 1406 | |
| 1407 | lemmas [cong] = imp_cong simp_implies_cong | |
| 62390 | 1408 | lemmas [split] = if_split | 
| 20973 | 1409 | |
| 69593 | 1410 | ML \<open>val HOL_ss = simpset_of \<^context>\<close> | 
| 20973 | 1411 | |
| 63575 | 1412 | text \<open>Simplifies \<open>x\<close> assuming \<open>c\<close> and \<open>y\<close> assuming \<open>\<not> c\<close>.\<close> | 
| 20944 | 1413 | lemma if_cong: | 
| 1414 | assumes "b = c" | |
| 63575 | 1415 | and "c \<Longrightarrow> x = u" | 
| 1416 | and "\<not> c \<Longrightarrow> y = v" | |
| 20944 | 1417 | shows "(if b then x else y) = (if c then u else v)" | 
| 38525 | 1418 | using assms by simp | 
| 20944 | 1419 | |
| 63575 | 1420 | text \<open>Prevents simplification of \<open>x\<close> and \<open>y\<close>: | 
| 60758 | 1421 | faster and allows the execution of functional programs.\<close> | 
| 20944 | 1422 | lemma if_weak_cong [cong]: | 
| 1423 | assumes "b = c" | |
| 1424 | shows "(if b then x else y) = (if c then x else y)" | |
| 23553 | 1425 | using assms by (rule arg_cong) | 
| 20944 | 1426 | |
| 60758 | 1427 | text \<open>Prevents simplification of t: much faster\<close> | 
| 20944 | 1428 | lemma let_weak_cong: | 
| 1429 | assumes "a = b" | |
| 1430 | shows "(let x = a in t x) = (let x = b in t x)" | |
| 23553 | 1431 | using assms by (rule arg_cong) | 
| 20944 | 1432 | |
| 60758 | 1433 | text \<open>To tidy up the result of a simproc. Only the RHS will be simplified.\<close> | 
| 20944 | 1434 | lemma eq_cong2: | 
| 1435 | assumes "u = u'" | |
| 1436 | shows "(t \<equiv> u) \<equiv> (t \<equiv> u')" | |
| 23553 | 1437 | using assms by simp | 
| 20944 | 1438 | |
| 63575 | 1439 | lemma if_distrib: "f (if c then x else y) = (if c then f x else f y)" | 
| 20944 | 1440 | by simp | 
| 1441 | ||
| 68072 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1442 | lemma if_distribR: "(if b then f else g) x = (if b then f x else g x)" | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1443 | by simp | 
| 
493b818e8e10
added Johannes' generalizations Modules.thy and Vector_Spaces.thy; adapted HOL and HOL-Analysis accordingly
 immler parents: 
67719diff
changeset | 1444 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1445 | lemma all_if_distrib: "(\<forall>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<and> (\<forall>x. x\<noteq>a \<longrightarrow> Q x)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1446 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1447 | |
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1448 | lemma ex_if_distrib: "(\<exists>x. if x = a then P x else Q x) \<longleftrightarrow> P a \<or> (\<exists>x. x\<noteq>a \<and> Q x)" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1449 | by auto | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1450 | |
| 67719 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1451 | lemma if_if_eq_conj: "(if P then if Q then x else y else y) = (if P \<and> Q then x else y)" | 
| 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1452 | by simp | 
| 
bffb7482faaa
new material on matrices, etc., and consolidating duplicate results about of_nat
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1453 | |
| 63575 | 1454 | text \<open>As a simplification rule, it replaces all function equalities by | 
| 60758 | 1455 | first-order equalities.\<close> | 
| 44277 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1456 | lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1457 | by auto | 
| 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 haftmann parents: 
44121diff
changeset | 1458 | |
| 17459 | 1459 | |
| 60758 | 1460 | subsubsection \<open>Generic cases and induction\<close> | 
| 17459 | 1461 | |
| 60758 | 1462 | text \<open>Rule projections:\<close> | 
| 1463 | ML \<open> | |
| 32172 | 1464 | structure Project_Rule = Project_Rule | 
| 25388 | 1465 | ( | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1466 |   val conjunct1 = @{thm conjunct1}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1467 |   val conjunct2 = @{thm conjunct2}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1468 |   val mp = @{thm mp}
 | 
| 59929 | 1469 | ); | 
| 60758 | 1470 | \<close> | 
| 17459 | 1471 | |
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1472 | context | 
| 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1473 | begin | 
| 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1474 | |
| 59990 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1475 | qualified definition "induct_forall P \<equiv> \<forall>x. P x" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1476 | qualified definition "induct_implies A B \<equiv> A \<longrightarrow> B" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1477 | qualified definition "induct_equal x y \<equiv> x = y" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1478 | qualified definition "induct_conj A B \<equiv> A \<and> B" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1479 | qualified definition "induct_true \<equiv> True" | 
| 
a81dc82ecba3
clarified keyword 'qualified' in accordance to a similar keyword from Haskell (despite unrelated Binding.qualified in Isabelle/ML);
 wenzelm parents: 
59970diff
changeset | 1480 | qualified definition "induct_false \<equiv> False" | 
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35115diff
changeset | 1481 | |
| 59929 | 1482 | lemma induct_forall_eq: "(\<And>x. P x) \<equiv> Trueprop (induct_forall (\<lambda>x. P x))" | 
| 18457 | 1483 | by (unfold atomize_all induct_forall_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1484 | |
| 59929 | 1485 | lemma induct_implies_eq: "(A \<Longrightarrow> B) \<equiv> Trueprop (induct_implies A B)" | 
| 18457 | 1486 | by (unfold atomize_imp induct_implies_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1487 | |
| 59929 | 1488 | lemma induct_equal_eq: "(x \<equiv> y) \<equiv> Trueprop (induct_equal x y)" | 
| 18457 | 1489 | by (unfold atomize_eq induct_equal_def) | 
| 1490 | ||
| 59929 | 1491 | lemma induct_conj_eq: "(A &&& B) \<equiv> Trueprop (induct_conj A B)" | 
| 18457 | 1492 | by (unfold atomize_conj induct_conj_def) | 
| 1493 | ||
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1494 | lemmas induct_atomize' = induct_forall_eq induct_implies_eq induct_conj_eq | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1495 | lemmas induct_atomize = induct_atomize' induct_equal_eq | 
| 45607 | 1496 | lemmas induct_rulify' [symmetric] = induct_atomize' | 
| 1497 | lemmas induct_rulify [symmetric] = induct_atomize | |
| 18457 | 1498 | lemmas induct_rulify_fallback = | 
| 1499 | induct_forall_def induct_implies_def induct_equal_def induct_conj_def | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1500 | induct_true_def induct_false_def | 
| 18457 | 1501 | |
| 11989 | 1502 | lemma induct_forall_conj: "induct_forall (\<lambda>x. induct_conj (A x) (B x)) = | 
| 1503 | induct_conj (induct_forall A) (induct_forall B)" | |
| 17589 | 1504 | by (unfold induct_forall_def induct_conj_def) iprover | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1505 | |
| 11989 | 1506 | lemma induct_implies_conj: "induct_implies C (induct_conj A B) = | 
| 1507 | induct_conj (induct_implies C A) (induct_implies C B)" | |
| 17589 | 1508 | by (unfold induct_implies_def induct_conj_def) iprover | 
| 11989 | 1509 | |
| 59929 | 1510 | lemma induct_conj_curry: "(induct_conj A B \<Longrightarrow> PROP C) \<equiv> (A \<Longrightarrow> B \<Longrightarrow> PROP C)" | 
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1511 | proof | 
| 59929 | 1512 | assume r: "induct_conj A B \<Longrightarrow> PROP C" | 
| 1513 | assume ab: A B | |
| 1514 | show "PROP C" by (rule r) (simp add: induct_conj_def ab) | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1515 | next | 
| 59929 | 1516 | assume r: "A \<Longrightarrow> B \<Longrightarrow> PROP C" | 
| 1517 | assume ab: "induct_conj A B" | |
| 1518 | show "PROP C" by (rule r) (simp_all add: ab [unfolded induct_conj_def]) | |
| 13598 
8bc77b17f59f
Fixed problem with induct_conj_curry: variable C should have type prop.
 berghofe parents: 
13596diff
changeset | 1519 | qed | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1520 | |
| 11989 | 1521 | lemmas induct_conj = induct_forall_conj induct_implies_conj induct_conj_curry | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1522 | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1523 | lemma induct_trueI: "induct_true" | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1524 | by (simp add: induct_true_def) | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1525 | |
| 60758 | 1526 | text \<open>Method setup.\<close> | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1527 | |
| 69605 | 1528 | ML_file \<open>~~/src/Tools/induct.ML\<close> | 
| 60758 | 1529 | ML \<open> | 
| 32171 | 1530 | structure Induct = Induct | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1531 | ( | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1532 |   val cases_default = @{thm case_split}
 | 
| 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1533 |   val atomize = @{thms induct_atomize}
 | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1534 |   val rulify = @{thms induct_rulify'}
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1535 |   val rulify_fallback = @{thms induct_rulify_fallback}
 | 
| 34988 
cca208c8d619
Added setup for simplification of equality constraints in cases rules.
 berghofe parents: 
34917diff
changeset | 1536 |   val equal_def = @{thm induct_equal_def}
 | 
| 69593 | 1537 | fun dest_def (Const (\<^const_name>\<open>induct_equal\<close>, _) $ t $ u) = SOME (t, u) | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1538 | | dest_def _ = NONE | 
| 58957 | 1539 |   fun trivial_tac ctxt = match_tac ctxt @{thms induct_trueI}
 | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1540 | ) | 
| 60758 | 1541 | \<close> | 
| 11824 
f4c1882dde2c
setup generic cases and induction (from Inductive.thy);
 wenzelm parents: 
11770diff
changeset | 1542 | |
| 69605 | 1543 | ML_file \<open>~~/src/Tools/induction.ML\<close> | 
| 45014 
0e847655b2d8
New proof method "induction" that gives induction hypotheses the name IH.
 nipkow parents: 
44921diff
changeset | 1544 | |
| 60758 | 1545 | declaration \<open> | 
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1546 | fn _ => Induct.map_simpset (fn ss => ss | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1547 | addsimprocs | 
| 69593 | 1548 | [Simplifier.make_simproc \<^context> "swap_induct_false" | 
| 1549 |         {lhss = [\<^term>\<open>induct_false \<Longrightarrow> PROP P \<Longrightarrow> PROP Q\<close>],
 | |
| 61144 | 1550 | proc = fn _ => fn _ => fn ct => | 
| 1551 | (case Thm.term_of ct of | |
| 69597 | 1552 | _ $ (P as _ $ \<^const>\<open>induct_false\<close>) $ (_ $ Q $ _) => | 
| 61144 | 1553 | if P <> Q then SOME Drule.swap_prems_eq else NONE | 
| 62913 | 1554 | | _ => NONE)}, | 
| 69593 | 1555 | Simplifier.make_simproc \<^context> "induct_equal_conj_curry" | 
| 1556 |         {lhss = [\<^term>\<open>induct_conj P Q \<Longrightarrow> PROP R\<close>],
 | |
| 61144 | 1557 | proc = fn _ => fn _ => fn ct => | 
| 1558 | (case Thm.term_of ct of | |
| 1559 | _ $ (_ $ P) $ _ => | |
| 1560 | let | |
| 69597 | 1561 | fun is_conj (\<^const>\<open>induct_conj\<close> $ P $ Q) = | 
| 61144 | 1562 | is_conj P andalso is_conj Q | 
| 69593 | 1563 | | is_conj (Const (\<^const_name>\<open>induct_equal\<close>, _) $ _ $ _) = true | 
| 69597 | 1564 | | is_conj \<^const>\<open>induct_true\<close> = true | 
| 1565 | | is_conj \<^const>\<open>induct_false\<close> = true | |
| 61144 | 1566 | | is_conj _ = false | 
| 1567 |               in if is_conj P then SOME @{thm induct_conj_curry} else NONE end
 | |
| 62913 | 1568 | | _ => NONE)}] | 
| 54742 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 wenzelm parents: 
53146diff
changeset | 1569 | |> Simplifier.set_mksimps (fn ctxt => | 
| 
7a86358a3c0b
proper context for basic Simplifier operations: rewrite_rule, rewrite_goals_rule, rewrite_goals_tac etc.;
 wenzelm parents: 
53146diff
changeset | 1570 | Simpdata.mksimps Simpdata.mksimps_pairs ctxt #> | 
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1571 |         map (rewrite_rule ctxt (map Thm.symmetric @{thms induct_rulify_fallback}))))
 | 
| 60758 | 1572 | \<close> | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1573 | |
| 60758 | 1574 | text \<open>Pre-simplification of induction and cases rules\<close> | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1575 | |
| 59929 | 1576 | lemma [induct_simp]: "(\<And>x. induct_equal x t \<Longrightarrow> PROP P x) \<equiv> PROP P t" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1577 | unfolding induct_equal_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1578 | proof | 
| 59929 | 1579 | assume r: "\<And>x. x = t \<Longrightarrow> PROP P x" | 
| 1580 | show "PROP P t" by (rule r [OF refl]) | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1581 | next | 
| 59929 | 1582 | fix x | 
| 1583 | assume "PROP P t" "x = t" | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1584 | then show "PROP P x" by simp | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1585 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1586 | |
| 59929 | 1587 | lemma [induct_simp]: "(\<And>x. induct_equal t x \<Longrightarrow> PROP P x) \<equiv> PROP P t" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1588 | unfolding induct_equal_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1589 | proof | 
| 59929 | 1590 | assume r: "\<And>x. t = x \<Longrightarrow> PROP P x" | 
| 1591 | show "PROP P t" by (rule r [OF refl]) | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1592 | next | 
| 59929 | 1593 | fix x | 
| 1594 | assume "PROP P t" "t = x" | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1595 | then show "PROP P x" by simp | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1596 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1597 | |
| 59929 | 1598 | lemma [induct_simp]: "(induct_false \<Longrightarrow> P) \<equiv> Trueprop induct_true" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1599 | unfolding induct_false_def induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1600 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1601 | |
| 59929 | 1602 | lemma [induct_simp]: "(induct_true \<Longrightarrow> PROP P) \<equiv> PROP P" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1603 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1604 | proof | 
| 59929 | 1605 | assume "True \<Longrightarrow> PROP P" | 
| 1606 | then show "PROP P" using TrueI . | |
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1607 | next | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1608 | assume "PROP P" | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1609 | then show "PROP P" . | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1610 | qed | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1611 | |
| 59929 | 1612 | lemma [induct_simp]: "(PROP P \<Longrightarrow> induct_true) \<equiv> Trueprop induct_true" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1613 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1614 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1615 | |
| 62958 
b41c1cb5e251
Type_Infer.object_logic controls improvement of type inference result;
 wenzelm parents: 
62913diff
changeset | 1616 | lemma [induct_simp]: "(\<And>x::'a::{}. induct_true) \<equiv> Trueprop induct_true"
 | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1617 | unfolding induct_true_def | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1618 | by (iprover intro: equal_intr_rule) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1619 | |
| 59929 | 1620 | lemma [induct_simp]: "induct_implies induct_true P \<equiv> P" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1621 | by (simp add: induct_implies_def induct_true_def) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1622 | |
| 59929 | 1623 | lemma [induct_simp]: "x = x \<longleftrightarrow> True" | 
| 34908 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1624 | by (rule simp_thms) | 
| 
d546e75631bb
Added setup for simplification of equality constraints in induction rules.
 berghofe parents: 
34294diff
changeset | 1625 | |
| 59940 
087d81f5213e
local setup of induction tools, with restricted access to auxiliary consts;
 wenzelm parents: 
59929diff
changeset | 1626 | end | 
| 18457 | 1627 | |
| 69605 | 1628 | ML_file \<open>~~/src/Tools/induct_tacs.ML\<close> | 
| 27126 
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
 wenzelm parents: 
27107diff
changeset | 1629 | |
| 20944 | 1630 | |
| 60758 | 1631 | subsubsection \<open>Coherent logic\<close> | 
| 28325 | 1632 | |
| 69605 | 1633 | ML_file \<open>~~/src/Tools/coherent.ML\<close> | 
| 60758 | 1634 | ML \<open> | 
| 32734 | 1635 | structure Coherent = Coherent | 
| 28325 | 1636 | ( | 
| 55632 | 1637 |   val atomize_elimL = @{thm atomize_elimL};
 | 
| 1638 |   val atomize_exL = @{thm atomize_exL};
 | |
| 1639 |   val atomize_conjL = @{thm atomize_conjL};
 | |
| 1640 |   val atomize_disjL = @{thm atomize_disjL};
 | |
| 69593 | 1641 | val operator_names = [\<^const_name>\<open>HOL.disj\<close>, \<^const_name>\<open>HOL.conj\<close>, \<^const_name>\<open>Ex\<close>]; | 
| 28325 | 1642 | ); | 
| 60758 | 1643 | \<close> | 
| 28325 | 1644 | |
| 1645 | ||
| 60758 | 1646 | subsubsection \<open>Reorienting equalities\<close> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1647 | |
| 60758 | 1648 | ML \<open> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1649 | signature REORIENT_PROC = | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1650 | sig | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1651 | val add : (term -> bool) -> theory -> theory | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1652 | val proc : morphism -> Proof.context -> cterm -> thm option | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1653 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1654 | |
| 33523 | 1655 | structure Reorient_Proc : REORIENT_PROC = | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1656 | struct | 
| 33523 | 1657 | structure Data = Theory_Data | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1658 | ( | 
| 33523 | 1659 | type T = ((term -> bool) * stamp) list; | 
| 1660 | val empty = []; | |
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1661 | val extend = I; | 
| 67405 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 wenzelm parents: 
67399diff
changeset | 1662 | fun merge data : T = Library.merge (eq_snd (op =)) data; | 
| 33523 | 1663 | ); | 
| 1664 | fun add m = Data.map (cons (m, stamp ())); | |
| 1665 | fun matches thy t = exists (fn (m, _) => m t) (Data.get thy); | |
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1666 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1667 |   val meta_reorient = @{thm eq_commute [THEN eq_reflection]};
 | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1668 | fun proc phi ctxt ct = | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1669 | let | 
| 42361 | 1670 | val thy = Proof_Context.theory_of ctxt; | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1671 | in | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1672 | case Thm.term_of ct of | 
| 33523 | 1673 | (_ $ t $ u) => if matches thy u then NONE else SOME meta_reorient | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1674 | | _ => NONE | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1675 | end; | 
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1676 | end; | 
| 60758 | 1677 | \<close> | 
| 31024 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1678 | |
| 
0fdf666e08bf
reimplement reorientation simproc using theory data
 huffman parents: 
30980diff
changeset | 1679 | |
| 60758 | 1680 | subsection \<open>Other simple lemmas and lemma duplicates\<close> | 
| 20944 | 1681 | |
| 68975 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1682 | lemma all_cong1: "(\<And>x. P x = P' x) \<Longrightarrow> (\<forall>x. P x) = (\<forall>x. P' x)" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1683 | by auto | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1684 | |
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1685 | lemma ex_cong1: "(\<And>x. P x = P' x) \<Longrightarrow> (\<exists>x. P x) = (\<exists>x. P' x)" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1686 | by auto | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68072diff
changeset | 1687 | |
| 67091 | 1688 | lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<forall>x. Q x \<longrightarrow> P x) = (\<forall>x. Q x \<longrightarrow> P' x)" | 
| 66836 | 1689 | by auto | 
| 1690 | ||
| 67091 | 1691 | lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow> (\<exists>x. Q x \<and> P x) = (\<exists>x. Q x \<and> P' x)" | 
| 66836 | 1692 | by auto | 
| 1693 | ||
| 60759 | 1694 | lemma ex1_eq [iff]: "\<exists>!x. x = t" "\<exists>!x. t = x" | 
| 20944 | 1695 | by blast+ | 
| 1696 | ||
| 71608 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1697 | lemma choice_eq: "(\<forall>x. \<exists>!y. P x y) = (\<exists>!f. \<forall>x. P x (f x))" (is "?lhs = ?rhs") | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1698 | proof (intro iffI allI) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1699 | assume L: ?lhs | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1700 | then have \<section>: "\<forall>x. P x (THE y. P x y)" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1701 | by (best intro: theI') | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1702 | show ?rhs | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1703 | by (rule ex1I) (use L \<section> in \<open>fast+\<close>) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1704 | next | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1705 | fix x | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1706 | assume R: ?rhs | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1707 | then obtain f where f: "\<forall>x. P x (f x)" and f1: "\<And>y. (\<forall>x. P x (y x)) \<Longrightarrow> y = f" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1708 | by (blast elim: ex1E) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1709 | show "\<exists>!y. P x y" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1710 | proof (rule ex1I) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1711 | show "P x (f x)" | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1712 | using f by blast | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1713 | show "y = f x" if "P x y" for y | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1714 | proof - | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1715 | have "P z (if z = x then y else f z)" for z | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1716 | using f that by (auto split: if_split) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1717 | with f1 [of "\<lambda>z. if z = x then y else f z"] f | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1718 | show ?thesis | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1719 | by (auto simp add: split: if_split_asm dest: fun_cong) | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1720 | qed | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1721 | qed | 
| 
856c68ab6f13
structured a lot of ancient, horrible proofs
 paulson <lp15@cam.ac.uk> parents: 
71517diff
changeset | 1722 | qed | 
| 20944 | 1723 | |
| 22218 | 1724 | lemmas eq_sym_conv = eq_commute | 
| 1725 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1726 | lemma nnf_simps: | 
| 63575 | 1727 | "(\<not> (P \<and> Q)) = (\<not> P \<or> \<not> Q)" | 
| 1728 | "(\<not> (P \<or> Q)) = (\<not> P \<and> \<not> Q)" | |
| 1729 | "(P \<longrightarrow> Q) = (\<not> P \<or> Q)" | |
| 1730 | "(P = Q) = ((P \<and> Q) \<or> (\<not> P \<and> \<not> Q))" | |
| 1731 | "(\<not> (P = Q)) = ((P \<and> \<not> Q) \<or> (\<not> P \<and> Q))" | |
| 1732 | "(\<not> \<not> P) = P" | |
| 1733 | by blast+ | |
| 1734 | ||
| 23037 
6c72943a71b1
added a set of NNF normalization lemmas and nnf_conv
 chaieb parents: 
22993diff
changeset | 1735 | |
| 60758 | 1736 | subsection \<open>Basic ML bindings\<close> | 
| 21671 | 1737 | |
| 60758 | 1738 | ML \<open> | 
| 22129 | 1739 | val FalseE = @{thm FalseE}
 | 
| 1740 | val Let_def = @{thm Let_def}
 | |
| 1741 | val TrueI = @{thm TrueI}
 | |
| 1742 | val allE = @{thm allE}
 | |
| 1743 | val allI = @{thm allI}
 | |
| 1744 | val all_dupE = @{thm all_dupE}
 | |
| 1745 | val arg_cong = @{thm arg_cong}
 | |
| 1746 | val box_equals = @{thm box_equals}
 | |
| 1747 | val ccontr = @{thm ccontr}
 | |
| 1748 | val classical = @{thm classical}
 | |
| 1749 | val conjE = @{thm conjE}
 | |
| 1750 | val conjI = @{thm conjI}
 | |
| 1751 | val conjunct1 = @{thm conjunct1}
 | |
| 1752 | val conjunct2 = @{thm conjunct2}
 | |
| 1753 | val disjCI = @{thm disjCI}
 | |
| 1754 | val disjE = @{thm disjE}
 | |
| 1755 | val disjI1 = @{thm disjI1}
 | |
| 1756 | val disjI2 = @{thm disjI2}
 | |
| 1757 | val eq_reflection = @{thm eq_reflection}
 | |
| 1758 | val ex1E = @{thm ex1E}
 | |
| 1759 | val ex1I = @{thm ex1I}
 | |
| 1760 | val ex1_implies_ex = @{thm ex1_implies_ex}
 | |
| 1761 | val exE = @{thm exE}
 | |
| 1762 | val exI = @{thm exI}
 | |
| 1763 | val excluded_middle = @{thm excluded_middle}
 | |
| 1764 | val ext = @{thm ext}
 | |
| 1765 | val fun_cong = @{thm fun_cong}
 | |
| 1766 | val iffD1 = @{thm iffD1}
 | |
| 1767 | val iffD2 = @{thm iffD2}
 | |
| 1768 | val iffI = @{thm iffI}
 | |
| 1769 | val impE = @{thm impE}
 | |
| 1770 | val impI = @{thm impI}
 | |
| 1771 | val meta_eq_to_obj_eq = @{thm meta_eq_to_obj_eq}
 | |
| 1772 | val mp = @{thm mp}
 | |
| 1773 | val notE = @{thm notE}
 | |
| 1774 | val notI = @{thm notI}
 | |
| 1775 | val not_all = @{thm not_all}
 | |
| 1776 | val not_ex = @{thm not_ex}
 | |
| 1777 | val not_iff = @{thm not_iff}
 | |
| 1778 | val not_not = @{thm not_not}
 | |
| 1779 | val not_sym = @{thm not_sym}
 | |
| 1780 | val refl = @{thm refl}
 | |
| 1781 | val rev_mp = @{thm rev_mp}
 | |
| 1782 | val spec = @{thm spec}
 | |
| 1783 | val ssubst = @{thm ssubst}
 | |
| 1784 | val subst = @{thm subst}
 | |
| 1785 | val sym = @{thm sym}
 | |
| 1786 | val trans = @{thm trans}
 | |
| 60758 | 1787 | \<close> | 
| 21671 | 1788 | |
| 70486 | 1789 | locale cnf | 
| 1790 | begin | |
| 1791 | ||
| 1792 | lemma clause2raw_notE: "\<lbrakk>P; \<not>P\<rbrakk> \<Longrightarrow> False" by auto | |
| 1793 | lemma clause2raw_not_disj: "\<lbrakk>\<not> P; \<not> Q\<rbrakk> \<Longrightarrow> \<not> (P \<or> Q)" by auto | |
| 1794 | lemma clause2raw_not_not: "P \<Longrightarrow> \<not>\<not> P" by auto | |
| 1795 | ||
| 1796 | lemma iff_refl: "(P::bool) = P" by auto | |
| 1797 | lemma iff_trans: "[| (P::bool) = Q; Q = R |] ==> P = R" by auto | |
| 1798 | lemma conj_cong: "[| P = P'; Q = Q' |] ==> (P \<and> Q) = (P' \<and> Q')" by auto | |
| 1799 | lemma disj_cong: "[| P = P'; Q = Q' |] ==> (P \<or> Q) = (P' \<or> Q')" by auto | |
| 1800 | ||
| 1801 | lemma make_nnf_imp: "[| (\<not>P) = P'; Q = Q' |] ==> (P \<longrightarrow> Q) = (P' \<or> Q')" by auto | |
| 1802 | lemma make_nnf_iff: "[| P = P'; (\<not>P) = NP; Q = Q'; (\<not>Q) = NQ |] ==> (P = Q) = ((P' \<or> NQ) \<and> (NP \<or> Q'))" by auto | |
| 1803 | lemma make_nnf_not_false: "(\<not>False) = True" by auto | |
| 1804 | lemma make_nnf_not_true: "(\<not>True) = False" by auto | |
| 1805 | lemma make_nnf_not_conj: "[| (\<not>P) = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<and> Q)) = (P' \<or> Q')" by auto | |
| 1806 | lemma make_nnf_not_disj: "[| (\<not>P) = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<or> Q)) = (P' \<and> Q')" by auto | |
| 1807 | lemma make_nnf_not_imp: "[| P = P'; (\<not>Q) = Q' |] ==> (\<not>(P \<longrightarrow> Q)) = (P' \<and> Q')" by auto | |
| 1808 | lemma make_nnf_not_iff: "[| P = P'; (\<not>P) = NP; Q = Q'; (\<not>Q) = NQ |] ==> (\<not>(P = Q)) = ((P' \<or> Q') \<and> (NP \<or> NQ))" by auto | |
| 1809 | lemma make_nnf_not_not: "P = P' ==> (\<not>\<not>P) = P'" by auto | |
| 1810 | ||
| 1811 | lemma simp_TF_conj_True_l: "[| P = True; Q = Q' |] ==> (P \<and> Q) = Q'" by auto | |
| 1812 | lemma simp_TF_conj_True_r: "[| P = P'; Q = True |] ==> (P \<and> Q) = P'" by auto | |
| 1813 | lemma simp_TF_conj_False_l: "P = False ==> (P \<and> Q) = False" by auto | |
| 1814 | lemma simp_TF_conj_False_r: "Q = False ==> (P \<and> Q) = False" by auto | |
| 1815 | lemma simp_TF_disj_True_l: "P = True ==> (P \<or> Q) = True" by auto | |
| 1816 | lemma simp_TF_disj_True_r: "Q = True ==> (P \<or> Q) = True" by auto | |
| 1817 | lemma simp_TF_disj_False_l: "[| P = False; Q = Q' |] ==> (P \<or> Q) = Q'" by auto | |
| 1818 | lemma simp_TF_disj_False_r: "[| P = P'; Q = False |] ==> (P \<or> Q) = P'" by auto | |
| 1819 | ||
| 1820 | lemma make_cnf_disj_conj_l: "[| (P \<or> R) = PR; (Q \<or> R) = QR |] ==> ((P \<and> Q) \<or> R) = (PR \<and> QR)" by auto | |
| 1821 | lemma make_cnf_disj_conj_r: "[| (P \<or> Q) = PQ; (P \<or> R) = PR |] ==> (P \<or> (Q \<and> R)) = (PQ \<and> PR)" by auto | |
| 1822 | ||
| 1823 | lemma make_cnfx_disj_ex_l: "((\<exists>(x::bool). P x) \<or> Q) = (\<exists>x. P x \<or> Q)" by auto | |
| 1824 | lemma make_cnfx_disj_ex_r: "(P \<or> (\<exists>(x::bool). Q x)) = (\<exists>x. P \<or> Q x)" by auto | |
| 1825 | lemma make_cnfx_newlit: "(P \<or> Q) = (\<exists>x. (P \<or> x) \<and> (Q \<or> \<not>x))" by auto | |
| 1826 | lemma make_cnfx_ex_cong: "(\<forall>(x::bool). P x = Q x) \<Longrightarrow> (\<exists>x. P x) = (\<exists>x. Q x)" by auto | |
| 1827 | ||
| 1828 | lemma weakening_thm: "[| P; Q |] ==> Q" by auto | |
| 1829 | ||
| 1830 | lemma cnftac_eq_imp: "[| P = Q; P |] ==> Q" by auto | |
| 1831 | ||
| 1832 | end | |
| 1833 | ||
| 69605 | 1834 | ML_file \<open>Tools/cnf.ML\<close> | 
| 55239 | 1835 | |
| 21671 | 1836 | |
| 61799 | 1837 | section \<open>\<open>NO_MATCH\<close> simproc\<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1838 | |
| 60758 | 1839 | text \<open> | 
| 63575 | 1840 | The simplification procedure can be used to avoid simplification of terms | 
| 1841 | of a certain form. | |
| 60758 | 1842 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1843 | |
| 63575 | 1844 | definition NO_MATCH :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | 
| 1845 | where "NO_MATCH pat val \<equiv> True" | |
| 58830 | 1846 | |
| 63575 | 1847 | lemma NO_MATCH_cong[cong]: "NO_MATCH pat val = NO_MATCH pat val" | 
| 1848 | by (rule refl) | |
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1849 | |
| 58830 | 1850 | declare [[coercion_args NO_MATCH - -]] | 
| 1851 | ||
| 60758 | 1852 | simproc_setup NO_MATCH ("NO_MATCH pat val") = \<open>fn _ => fn ctxt => fn ct =>
 | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1853 | let | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1854 | val thy = Proof_Context.theory_of ctxt | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1855 | val dest_binop = Term.dest_comb #> apfst (Term.dest_comb #> snd) | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1856 | val m = Pattern.matches thy (dest_binop (Thm.term_of ct)) | 
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1857 |   in if m then NONE else SOME @{thm NO_MATCH_def} end
 | 
| 60758 | 1858 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1859 | |
| 60758 | 1860 | text \<open> | 
| 69593 | 1861 | This setup ensures that a rewrite rule of the form \<^term>\<open>NO_MATCH pat val \<Longrightarrow> t\<close> | 
| 63575 | 1862 | is only applied, if the pattern \<open>pat\<close> does not match the value \<open>val\<close>. | 
| 60758 | 1863 | \<close> | 
| 58775 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1864 | |
| 
9cd64a66a765
move NO_MATCH simproc from the AFP entry Graph_Theory to HOL
 hoelzl parents: 
58659diff
changeset | 1865 | |
| 63575 | 1866 | text\<open> | 
| 1867 | Tagging a premise of a simp rule with ASSUMPTION forces the simplifier | |
| 1868 | not to simplify the argument and to solve it by an assumption. | |
| 1869 | \<close> | |
| 61202 | 1870 | |
| 63575 | 1871 | definition ASSUMPTION :: "bool \<Rightarrow> bool" | 
| 1872 | where "ASSUMPTION A \<equiv> A" | |
| 61202 | 1873 | |
| 1874 | lemma ASSUMPTION_cong[cong]: "ASSUMPTION A = ASSUMPTION A" | |
| 63575 | 1875 | by (rule refl) | 
| 61202 | 1876 | |
| 1877 | lemma ASSUMPTION_I: "A \<Longrightarrow> ASSUMPTION A" | |
| 63575 | 1878 | by (simp add: ASSUMPTION_def) | 
| 61202 | 1879 | |
| 1880 | lemma ASSUMPTION_D: "ASSUMPTION A \<Longrightarrow> A" | |
| 63575 | 1881 | by (simp add: ASSUMPTION_def) | 
| 61202 | 1882 | |
| 61222 | 1883 | setup \<open> | 
| 61202 | 1884 | let | 
| 1885 | val asm_sol = mk_solver "ASSUMPTION" (fn ctxt => | |
| 1886 |     resolve_tac ctxt [@{thm ASSUMPTION_I}] THEN'
 | |
| 1887 | resolve_tac ctxt (Simplifier.prems_of ctxt)) | |
| 1888 | in | |
| 1889 | map_theory_simpset (fn ctxt => Simplifier.addSolver (ctxt,asm_sol)) | |
| 1890 | end | |
| 61222 | 1891 | \<close> | 
| 61202 | 1892 | |
| 1893 | ||
| 60758 | 1894 | subsection \<open>Code generator setup\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1895 | |
| 60758 | 1896 | subsubsection \<open>Generic code generator preprocessor setup\<close> | 
| 31151 | 1897 | |
| 63575 | 1898 | lemma conj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<and> R \<longleftrightarrow> Q \<and> R" | 
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1899 | by (fact arg_cong) | 
| 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1900 | |
| 63575 | 1901 | lemma disj_left_cong: "P \<longleftrightarrow> Q \<Longrightarrow> P \<or> R \<longleftrightarrow> Q \<or> R" | 
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1902 | by (fact arg_cong) | 
| 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1903 | |
| 60758 | 1904 | setup \<open> | 
| 58826 | 1905 | Code_Preproc.map_pre (put_simpset HOL_basic_ss) #> | 
| 1906 | Code_Preproc.map_post (put_simpset HOL_basic_ss) #> | |
| 1907 | Code_Simp.map_ss (put_simpset HOL_basic_ss #> | |
| 1908 |   Simplifier.add_cong @{thm conj_left_cong} #>
 | |
| 1909 |   Simplifier.add_cong @{thm disj_left_cong})
 | |
| 60758 | 1910 | \<close> | 
| 31151 | 1911 | |
| 53146 
3a93bc5d3370
congruence rules for code_simp to mimic typical non-strict behaviour of conj and disj
 haftmann parents: 
52654diff
changeset | 1912 | |
| 60758 | 1913 | subsubsection \<open>Equality\<close> | 
| 24844 
98c006a30218
certificates for code generator case expressions
 haftmann parents: 
24842diff
changeset | 1914 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1915 | class equal = | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1916 | fixes equal :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1917 | assumes equal_eq: "equal x y \<longleftrightarrow> x = y" | 
| 26513 | 1918 | begin | 
| 1919 | ||
| 67399 | 1920 | lemma equal: "equal = (=)" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1921 | by (rule ext equal_eq)+ | 
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1922 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1923 | lemma equal_refl: "equal x x \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1924 | unfolding equal by rule+ | 
| 28346 
b8390cd56b8f
discontinued special treatment of op = vs. eq_class.eq
 haftmann parents: 
28325diff
changeset | 1925 | |
| 67399 | 1926 | lemma eq_equal: "(=) \<equiv> equal" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1927 | by (rule eq_reflection) (rule ext, rule ext, rule sym, rule equal_eq) | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1928 | |
| 26513 | 1929 | end | 
| 1930 | ||
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1931 | declare eq_equal [symmetric, code_post] | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1932 | declare eq_equal [code] | 
| 30966 | 1933 | |
| 60758 | 1934 | setup \<open> | 
| 51717 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 wenzelm parents: 
51692diff
changeset | 1935 | Code_Preproc.map_pre (fn ctxt => | 
| 61144 | 1936 | ctxt addsimprocs | 
| 69593 | 1937 | [Simplifier.make_simproc \<^context> "equal" | 
| 1938 |         {lhss = [\<^term>\<open>HOL.eq\<close>],
 | |
| 61144 | 1939 | proc = fn _ => fn _ => fn ct => | 
| 1940 | (case Thm.term_of ct of | |
| 69593 | 1941 |             Const (_, Type (\<^type_name>\<open>fun\<close>, [Type _, _])) => SOME @{thm eq_equal}
 | 
| 62913 | 1942 | | _ => NONE)}]) | 
| 60758 | 1943 | \<close> | 
| 31151 | 1944 | |
| 30966 | 1945 | |
| 60758 | 1946 | subsubsection \<open>Generic code generator foundation\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1947 | |
| 69593 | 1948 | text \<open>Datatype \<^typ>\<open>bool\<close>\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1949 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1950 | code_datatype True False | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1951 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1952 | lemma [code]: | 
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1953 | shows "False \<and> P \<longleftrightarrow> False" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1954 | and "True \<and> P \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1955 | and "P \<and> False \<longleftrightarrow> False" | 
| 63575 | 1956 | and "P \<and> True \<longleftrightarrow> P" | 
| 1957 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1958 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1959 | lemma [code]: | 
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1960 | shows "False \<or> P \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1961 | and "True \<or> P \<longleftrightarrow> True" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1962 | and "P \<or> False \<longleftrightarrow> P" | 
| 63575 | 1963 | and "P \<or> True \<longleftrightarrow> True" | 
| 1964 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1965 | |
| 33185 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1966 | lemma [code]: | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1967 | shows "(False \<longrightarrow> P) \<longleftrightarrow> True" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1968 | and "(True \<longrightarrow> P) \<longleftrightarrow> P" | 
| 
247f6c6969d9
tuned code setup for primitive boolean connectors
 haftmann parents: 
33084diff
changeset | 1969 | and "(P \<longrightarrow> False) \<longleftrightarrow> \<not> P" | 
| 63575 | 1970 | and "(P \<longrightarrow> True) \<longleftrightarrow> True" | 
| 1971 | by simp_all | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 1972 | |
| 69593 | 1973 | text \<open>More about \<^typ>\<open>prop\<close>\<close> | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1974 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1975 | lemma [code nbe]: | 
| 58826 | 1976 | shows "(True \<Longrightarrow> PROP Q) \<equiv> PROP Q" | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1977 | and "(PROP Q \<Longrightarrow> True) \<equiv> Trueprop True" | 
| 63575 | 1978 | and "(P \<Longrightarrow> R) \<equiv> Trueprop (P \<longrightarrow> R)" | 
| 1979 | by (auto intro!: equal_intr_rule) | |
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1980 | |
| 63575 | 1981 | lemma Trueprop_code [code]: "Trueprop True \<equiv> Code_Generator.holds" | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1982 | by (auto intro!: equal_intr_rule holds) | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1983 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1984 | declare Trueprop_code [symmetric, code_post] | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1985 | |
| 60758 | 1986 | text \<open>Equality\<close> | 
| 39421 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1987 | |
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1988 | declare simp_thms(6) [code nbe] | 
| 
b6a77cffc231
introduced "holds" as synthetic datatype constructor for "prop"; moved Pure code generator setup to Code_Generator.thy
 haftmann parents: 
39403diff
changeset | 1989 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 1990 | instantiation itself :: (type) equal | 
| 31132 | 1991 | begin | 
| 1992 | ||
| 63575 | 1993 | definition equal_itself :: "'a itself \<Rightarrow> 'a itself \<Rightarrow> bool" | 
| 1994 | where "equal_itself x y \<longleftrightarrow> x = y" | |
| 31132 | 1995 | |
| 63575 | 1996 | instance | 
| 1997 | by standard (fact equal_itself_def) | |
| 31132 | 1998 | |
| 1999 | end | |
| 2000 | ||
| 63575 | 2001 | lemma equal_itself_code [code]: "equal TYPE('a) TYPE('a) \<longleftrightarrow> True"
 | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 2002 | by (simp add: equal) | 
| 31132 | 2003 | |
| 69593 | 2004 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>equal\<close>, SOME \<^typ>\<open>'a::type \<Rightarrow> 'a \<Rightarrow> bool\<close>)\<close> | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2005 | |
| 67399 | 2006 | lemma equal_alias_cert: "OFCLASS('a, equal_class) \<equiv> (((=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool) \<equiv> equal)"
 | 
| 63575 | 2007 | (is "?ofclass \<equiv> ?equal") | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2008 | proof | 
| 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2009 | assume "PROP ?ofclass" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 2010 | show "PROP ?equal" | 
| 69593 | 2011 |     by (tactic \<open>ALLGOALS (resolve_tac \<^context> [Thm.unconstrainT @{thm eq_equal}])\<close>)
 | 
| 60758 | 2012 | (fact \<open>PROP ?ofclass\<close>) | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2013 | next | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38795diff
changeset | 2014 | assume "PROP ?equal" | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2015 | show "PROP ?ofclass" proof | 
| 60758 | 2016 | qed (simp add: \<open>PROP ?equal\<close>) | 
| 31956 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2017 | qed | 
| 
c3844c4d0c2c
more accurate certificates for constant aliasses
 haftmann parents: 
31902diff
changeset | 2018 | |
| 69593 | 2019 | setup \<open>Sign.add_const_constraint (\<^const_name>\<open>equal\<close>, SOME \<^typ>\<open>'a::equal \<Rightarrow> 'a \<Rightarrow> bool\<close>)\<close> | 
| 58826 | 2020 | |
| 60758 | 2021 | setup \<open>Nbe.add_const_alias @{thm equal_alias_cert}\<close>
 | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2022 | |
| 60758 | 2023 | text \<open>Cases\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2024 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2025 | lemma Let_case_cert: | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2026 | assumes "CASE \<equiv> (\<lambda>x. Let x f)" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2027 | shows "CASE x \<equiv> f x" | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2028 | using assms by simp_all | 
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2029 | |
| 60758 | 2030 | setup \<open> | 
| 66251 
cd935b7cb3fb
proper concept of code declaration wrt. atomicity and Isar declarations
 haftmann parents: 
66109diff
changeset | 2031 |   Code.declare_case_global @{thm Let_case_cert} #>
 | 
| 69593 | 2032 | Code.declare_undefined_global \<^const_name>\<open>undefined\<close> | 
| 60758 | 2033 | \<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2034 | |
| 54890 
cb892d835803
fundamental treatment of undefined vs. universally partial replaces code_abort
 haftmann parents: 
54742diff
changeset | 2035 | declare [[code abort: undefined]] | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2036 | |
| 38972 | 2037 | |
| 60758 | 2038 | subsubsection \<open>Generic code generator target languages\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2039 | |
| 69593 | 2040 | text \<open>type \<^typ>\<open>bool\<close>\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2041 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2042 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2043 | type_constructor bool \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2044 | (SML) "bool" and (OCaml) "bool" and (Haskell) "Bool" and (Scala) "Boolean" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2045 | | constant True \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2046 | (SML) "true" and (OCaml) "true" and (Haskell) "True" and (Scala) "true" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2047 | | constant False \<rightharpoonup> | 
| 58826 | 2048 | (SML) "false" and (OCaml) "false" and (Haskell) "False" and (Scala) "false" | 
| 34294 | 2049 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2050 | code_reserved SML | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2051 | bool true false | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2052 | |
| 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2053 | code_reserved OCaml | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2054 | bool | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2055 | |
| 34294 | 2056 | code_reserved Scala | 
| 2057 | Boolean | |
| 2058 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2059 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2060 | constant Not \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2061 | (SML) "not" and (OCaml) "not" and (Haskell) "not" and (Scala) "'! _" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2062 | | constant HOL.conj \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2063 | (SML) infixl 1 "andalso" and (OCaml) infixl 3 "&&" and (Haskell) infixr 3 "&&" and (Scala) infixl 3 "&&" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2064 | | constant HOL.disj \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2065 | (SML) infixl 0 "orelse" and (OCaml) infixl 2 "||" and (Haskell) infixl 2 "||" and (Scala) infixl 1 "||" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2066 | | constant HOL.implies \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2067 | (SML) "!(if (_)/ then (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2068 | and (OCaml) "!(if (_)/ then (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2069 | and (Haskell) "!(if (_)/ then (_)/ else True)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2070 | and (Scala) "!(if ((_))/ (_)/ else true)" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2071 | | constant If \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2072 | (SML) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2073 | and (OCaml) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2074 | and (Haskell) "!(if (_)/ then (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2075 | and (Scala) "!(if ((_))/ (_)/ else (_))" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2076 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2077 | code_reserved SML | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2078 | not | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2079 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2080 | code_reserved OCaml | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2081 | not | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2082 | |
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2083 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2084 | code_module Pure \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2085 | (SML) HOL and (OCaml) HOL and (Haskell) HOL and (Scala) HOL | 
| 39026 | 2086 | |
| 63575 | 2087 | text \<open>Using built-in Haskell equality.\<close> | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2088 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2089 | type_class equal \<rightharpoonup> (Haskell) "Eq" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2090 | | constant HOL.equal \<rightharpoonup> (Haskell) infix 4 "==" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2091 | | constant HOL.eq \<rightharpoonup> (Haskell) infix 4 "==" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2092 | |
| 63575 | 2093 | text \<open>\<open>undefined\<close>\<close> | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2094 | code_printing | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2095 | constant undefined \<rightharpoonup> | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2096 | (SML) "!(raise/ Fail/ \"undefined\")" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2097 | and (OCaml) "failwith/ \"undefined\"" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2098 | and (Haskell) "error/ \"undefined\"" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2099 | and (Scala) "!sys.error(\"undefined\")" | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52432diff
changeset | 2100 | |
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2101 | |
| 60758 | 2102 | subsubsection \<open>Evaluation and normalization by evaluation\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2103 | |
| 60758 | 2104 | method_setup eval = \<open> | 
| 58826 | 2105 | let | 
| 2106 | fun eval_tac ctxt = | |
| 2107 | let val conv = Code_Runtime.dynamic_holds_conv ctxt | |
| 58839 | 2108 | in | 
| 2109 | CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1 conv)) ctxt) THEN' | |
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2110 | resolve_tac ctxt [TrueI] | 
| 58839 | 2111 | end | 
| 58826 | 2112 | in | 
| 2113 | Scan.succeed (SIMPLE_METHOD' o eval_tac) | |
| 2114 | end | |
| 60758 | 2115 | \<close> "solve goal by evaluation" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2116 | |
| 60758 | 2117 | method_setup normalization = \<open> | 
| 46190 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2118 | Scan.succeed (fn ctxt => | 
| 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2119 | SIMPLE_METHOD' | 
| 
a42c5f23109f
more conventional eval_tac vs. method_setup "eval";
 wenzelm parents: 
46161diff
changeset | 2120 | (CHANGED_PROP o | 
| 55757 | 2121 | (CONVERSION (Nbe.dynamic_conv ctxt) | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2122 | THEN_ALL_NEW (TRY o resolve_tac ctxt [TrueI])))) | 
| 60758 | 2123 | \<close> "solve goal by normalization" | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2124 | |
| 31902 | 2125 | |
| 60758 | 2126 | subsection \<open>Counterexample Search Units\<close> | 
| 33084 | 2127 | |
| 60758 | 2128 | subsubsection \<open>Quickcheck\<close> | 
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2129 | |
| 33084 | 2130 | quickcheck_params [size = 5, iterations = 50] | 
| 2131 | ||
| 30929 
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
 haftmann parents: 
30927diff
changeset | 2132 | |
| 60758 | 2133 | subsubsection \<open>Nitpick setup\<close> | 
| 30309 
188f0658af9f
Added a "nitpick_maybe" symbol, which is used by Nitpick. This will go away once Nitpick is part of HOL.
 blanchet parents: 
30254diff
changeset | 2134 | |
| 59028 | 2135 | named_theorems nitpick_unfold "alternative definitions of constants as needed by Nitpick" | 
| 2136 | and nitpick_simp "equational specification of constants as needed by Nitpick" | |
| 2137 | and nitpick_psimp "partial equational specification of constants as needed by Nitpick" | |
| 2138 | and nitpick_choice_spec "choice specification of constants as needed by Nitpick" | |
| 30980 | 2139 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41636diff
changeset | 2140 | declare if_bool_eq_conj [nitpick_unfold, no_atp] | 
| 63575 | 2141 | and if_bool_eq_disj [no_atp] | 
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41636diff
changeset | 2142 | |
| 29863 
dadad1831e9d
Added "nitpick_const_simps" and "nitpick_ind_intros" attributes for theorems;
 blanchet parents: 
29608diff
changeset | 2143 | |
| 60758 | 2144 | subsection \<open>Preprocessing for the predicate compiler\<close> | 
| 33084 | 2145 | |
| 59028 | 2146 | named_theorems code_pred_def "alternative definitions of constants for the Predicate Compiler" | 
| 2147 | and code_pred_inline "inlining definitions for the Predicate Compiler" | |
| 2148 | and code_pred_simp "simplification rules for the optimisations in the Predicate Compiler" | |
| 33084 | 2149 | |
| 2150 | ||
| 60758 | 2151 | subsection \<open>Legacy tactics and ML bindings\<close> | 
| 21671 | 2152 | |
| 60758 | 2153 | ML \<open> | 
| 58826 | 2154 | (* combination of (spec RS spec RS ...(j times) ... spec RS mp) *) | 
| 2155 | local | |
| 69593 | 2156 | fun wrong_prem (Const (\<^const_name>\<open>All\<close>, _) $ Abs (_, _, t)) = wrong_prem t | 
| 58826 | 2157 | | wrong_prem (Bound _) = true | 
| 2158 | | wrong_prem _ = false; | |
| 2159 | val filter_right = filter (not o wrong_prem o HOLogic.dest_Trueprop o hd o Thm.prems_of); | |
| 61914 | 2160 | fun smp i = funpow i (fn m => filter_right ([spec] RL m)) [mp]; | 
| 58826 | 2161 | in | 
| 59498 
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
 wenzelm parents: 
59028diff
changeset | 2162 | fun smp_tac ctxt j = EVERY' [dresolve_tac ctxt (smp j), assume_tac ctxt]; | 
| 58826 | 2163 | end; | 
| 22839 | 2164 | |
| 58826 | 2165 | local | 
| 2166 | val nnf_ss = | |
| 69593 | 2167 |       simpset_of (put_simpset HOL_basic_ss \<^context> addsimps @{thms simp_thms nnf_simps});
 | 
| 58826 | 2168 | in | 
| 2169 | fun nnf_conv ctxt = Simplifier.rewrite (put_simpset nnf_ss ctxt); | |
| 2170 | end | |
| 60758 | 2171 | \<close> | 
| 21671 | 2172 | |
| 38866 | 2173 | hide_const (open) eq equal | 
| 2174 | ||
| 14357 | 2175 | end |