| author | nipkow | 
| Wed, 23 Sep 2015 09:14:22 +0200 | |
| changeset 61231 | cc6969542f8d | 
| parent 60758 | d8d85a8172b5 | 
| child 61649 | 268d88ec9087 | 
| permissions | -rw-r--r-- | 
| 31708 | 1  | 
|
| 32554 | 2  | 
(* Authors: Jeremy Avigad and Amine Chaieb *)  | 
| 31708 | 3  | 
|
| 60758 | 4  | 
section \<open>Generic transfer machinery; specific transfer from nats to ints and back.\<close>  | 
| 31708 | 5  | 
|
| 32558 | 6  | 
theory Nat_Transfer  | 
| 
47255
 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 
huffman 
parents: 
42870 
diff
changeset
 | 
7  | 
imports Int  | 
| 31708 | 8  | 
begin  | 
9  | 
||
| 60758 | 10  | 
subsection \<open>Generic transfer machinery\<close>  | 
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
11  | 
|
| 35821 | 12  | 
definition transfer_morphism:: "('b \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> bool) \<Rightarrow> bool"
 | 
| 
42870
 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 
krauss 
parents: 
39302 
diff
changeset
 | 
13  | 
where "transfer_morphism f A \<longleftrightarrow> True"  | 
| 35644 | 14  | 
|
| 
42870
 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 
krauss 
parents: 
39302 
diff
changeset
 | 
15  | 
lemma transfer_morphismI[intro]: "transfer_morphism f A"  | 
| 
 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 
krauss 
parents: 
39302 
diff
changeset
 | 
16  | 
by (simp add: transfer_morphism_def)  | 
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
17  | 
|
| 48891 | 18  | 
ML_file "Tools/legacy_transfer.ML"  | 
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
19  | 
|
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
20  | 
|
| 60758 | 21  | 
subsection \<open>Set up transfer from nat to int\<close>  | 
| 31708 | 22  | 
|
| 60758 | 23  | 
text \<open>set up transfer direction\<close>  | 
| 31708 | 24  | 
|
| 
42870
 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 
krauss 
parents: 
39302 
diff
changeset
 | 
25  | 
lemma transfer_morphism_nat_int: "transfer_morphism nat (op <= (0::int))" ..  | 
| 31708 | 26  | 
|
| 35683 | 27  | 
declare transfer_morphism_nat_int [transfer add  | 
28  | 
mode: manual  | 
|
| 31708 | 29  | 
return: nat_0_le  | 
| 35683 | 30  | 
labels: nat_int  | 
| 31708 | 31  | 
]  | 
32  | 
||
| 60758 | 33  | 
text \<open>basic functions and relations\<close>  | 
| 31708 | 34  | 
|
| 35683 | 35  | 
lemma transfer_nat_int_numerals [transfer key: transfer_morphism_nat_int]:  | 
| 31708 | 36  | 
"(0::nat) = nat 0"  | 
37  | 
"(1::nat) = nat 1"  | 
|
38  | 
"(2::nat) = nat 2"  | 
|
39  | 
"(3::nat) = nat 3"  | 
|
40  | 
by auto  | 
|
41  | 
||
42  | 
definition  | 
|
43  | 
tsub :: "int \<Rightarrow> int \<Rightarrow> int"  | 
|
44  | 
where  | 
|
45  | 
"tsub x y = (if x >= y then x - y else 0)"  | 
|
46  | 
||
47  | 
lemma tsub_eq: "x >= y \<Longrightarrow> tsub x y = x - y"  | 
|
48  | 
by (simp add: tsub_def)  | 
|
49  | 
||
| 35683 | 50  | 
lemma transfer_nat_int_functions [transfer key: transfer_morphism_nat_int]:  | 
| 31708 | 51  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) + (nat y) = nat (x + y)"  | 
52  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) * (nat y) = nat (x * y)"  | 
|
53  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) - (nat y) = nat (tsub x y)"  | 
|
54  | 
"(x::int) >= 0 \<Longrightarrow> (nat x)^n = nat (x^n)"  | 
|
55  | 
by (auto simp add: eq_nat_nat_iff nat_mult_distrib  | 
|
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
56  | 
nat_power_eq tsub_def)  | 
| 31708 | 57  | 
|
| 35683 | 58  | 
lemma transfer_nat_int_function_closures [transfer key: transfer_morphism_nat_int]:  | 
| 31708 | 59  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x + y >= 0"  | 
60  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x * y >= 0"  | 
|
61  | 
"(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> tsub x y >= 0"  | 
|
62  | 
"(x::int) >= 0 \<Longrightarrow> x^n >= 0"  | 
|
63  | 
"(0::int) >= 0"  | 
|
64  | 
"(1::int) >= 0"  | 
|
65  | 
"(2::int) >= 0"  | 
|
66  | 
"(3::int) >= 0"  | 
|
67  | 
"int z >= 0"  | 
|
| 
33340
 
a165b97f3658
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
33318 
diff
changeset
 | 
68  | 
by (auto simp add: zero_le_mult_iff tsub_def)  | 
| 31708 | 69  | 
|
| 35683 | 70  | 
lemma transfer_nat_int_relations [transfer key: transfer_morphism_nat_int]:  | 
| 31708 | 71  | 
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>  | 
72  | 
(nat (x::int) = nat y) = (x = y)"  | 
|
73  | 
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>  | 
|
74  | 
(nat (x::int) < nat y) = (x < y)"  | 
|
75  | 
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>  | 
|
76  | 
(nat (x::int) <= nat y) = (x <= y)"  | 
|
77  | 
"x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow>  | 
|
78  | 
(nat (x::int) dvd nat y) = (x dvd y)"  | 
|
| 32558 | 79  | 
by (auto simp add: zdvd_int)  | 
| 31708 | 80  | 
|
81  | 
||
| 60758 | 82  | 
text \<open>first-order quantifiers\<close>  | 
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
83  | 
|
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
84  | 
lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))"  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
85  | 
by (simp split add: split_nat)  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
86  | 
|
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
87  | 
lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))"  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
88  | 
proof  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
89  | 
assume "\<exists>x. P x"  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
90  | 
then obtain x where "P x" ..  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
91  | 
then have "int x \<ge> 0 \<and> P (nat (int x))" by simp  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
92  | 
then show "\<exists>x\<ge>0. P (nat x)" ..  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
93  | 
next  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
94  | 
assume "\<exists>x\<ge>0. P (nat x)"  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
95  | 
then show "\<exists>x. P x" by auto  | 
| 
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
96  | 
qed  | 
| 31708 | 97  | 
|
| 35683 | 98  | 
lemma transfer_nat_int_quantifiers [transfer key: transfer_morphism_nat_int]:  | 
| 31708 | 99  | 
"(ALL (x::nat). P x) = (ALL (x::int). x >= 0 \<longrightarrow> P (nat x))"  | 
100  | 
"(EX (x::nat). P x) = (EX (x::int). x >= 0 & P (nat x))"  | 
|
101  | 
by (rule all_nat, rule ex_nat)  | 
|
102  | 
||
103  | 
(* should we restrict these? *)  | 
|
104  | 
lemma all_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>  | 
|
105  | 
(ALL x. Q x \<longrightarrow> P x) = (ALL x. Q x \<longrightarrow> P' x)"  | 
|
106  | 
by auto  | 
|
107  | 
||
108  | 
lemma ex_cong: "(\<And>x. Q x \<Longrightarrow> P x = P' x) \<Longrightarrow>  | 
|
109  | 
(EX x. Q x \<and> P x) = (EX x. Q x \<and> P' x)"  | 
|
110  | 
by auto  | 
|
111  | 
||
| 35644 | 112  | 
declare transfer_morphism_nat_int [transfer add  | 
| 31708 | 113  | 
cong: all_cong ex_cong]  | 
114  | 
||
115  | 
||
| 60758 | 116  | 
text \<open>if\<close>  | 
| 31708 | 117  | 
|
| 35683 | 118  | 
lemma nat_if_cong [transfer key: transfer_morphism_nat_int]:  | 
119  | 
"(if P then (nat x) else (nat y)) = nat (if P then x else y)"  | 
|
| 31708 | 120  | 
by auto  | 
121  | 
||
122  | 
||
| 60758 | 123  | 
text \<open>operations with sets\<close>  | 
| 31708 | 124  | 
|
125  | 
definition  | 
|
126  | 
nat_set :: "int set \<Rightarrow> bool"  | 
|
127  | 
where  | 
|
128  | 
"nat_set S = (ALL x:S. x >= 0)"  | 
|
129  | 
||
130  | 
lemma transfer_nat_int_set_functions:  | 
|
131  | 
"card A = card (int ` A)"  | 
|
132  | 
    "{} = nat ` ({}::int set)"
 | 
|
133  | 
"A Un B = nat ` (int ` A Un int ` B)"  | 
|
134  | 
"A Int B = nat ` (int ` A Int int ` B)"  | 
|
135  | 
    "{x. P x} = nat ` {x. x >= 0 & P(nat x)}"
 | 
|
136  | 
apply (rule card_image [symmetric])  | 
|
137  | 
apply (auto simp add: inj_on_def image_def)  | 
|
138  | 
apply (rule_tac x = "int x" in bexI)  | 
|
139  | 
apply auto  | 
|
140  | 
apply (rule_tac x = "int x" in bexI)  | 
|
141  | 
apply auto  | 
|
142  | 
apply (rule_tac x = "int x" in bexI)  | 
|
143  | 
apply auto  | 
|
144  | 
apply (rule_tac x = "int x" in exI)  | 
|
145  | 
apply auto  | 
|
146  | 
done  | 
|
147  | 
||
148  | 
lemma transfer_nat_int_set_function_closures:  | 
|
149  | 
    "nat_set {}"
 | 
|
150  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"  | 
|
151  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"  | 
|
152  | 
    "nat_set {x. x >= 0 & P x}"
 | 
|
153  | 
"nat_set (int ` C)"  | 
|
154  | 
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> x >= 0" (* does it hurt to turn this on? *)  | 
|
155  | 
unfolding nat_set_def apply auto  | 
|
156  | 
done  | 
|
157  | 
||
158  | 
lemma transfer_nat_int_set_relations:  | 
|
159  | 
"(finite A) = (finite (int ` A))"  | 
|
160  | 
"(x : A) = (int x : int ` A)"  | 
|
161  | 
"(A = B) = (int ` A = int ` B)"  | 
|
162  | 
"(A < B) = (int ` A < int ` B)"  | 
|
163  | 
"(A <= B) = (int ` A <= int ` B)"  | 
|
164  | 
apply (rule iffI)  | 
|
165  | 
apply (erule finite_imageI)  | 
|
166  | 
apply (erule finite_imageD)  | 
|
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
167  | 
apply (auto simp add: image_def set_eq_iff inj_on_def)  | 
| 31708 | 168  | 
apply (drule_tac x = "int x" in spec, auto)  | 
169  | 
apply (drule_tac x = "int x" in spec, auto)  | 
|
170  | 
apply (drule_tac x = "int x" in spec, auto)  | 
|
171  | 
done  | 
|
172  | 
||
173  | 
lemma transfer_nat_int_set_return_embed: "nat_set A \<Longrightarrow>  | 
|
174  | 
(int ` nat ` A = A)"  | 
|
175  | 
by (auto simp add: nat_set_def image_def)  | 
|
176  | 
||
177  | 
lemma transfer_nat_int_set_cong: "(!!x. x >= 0 \<Longrightarrow> P x = P' x) \<Longrightarrow>  | 
|
178  | 
    {(x::int). x >= 0 & P x} = {x. x >= 0 & P' x}"
 | 
|
179  | 
by auto  | 
|
180  | 
||
| 35644 | 181  | 
declare transfer_morphism_nat_int [transfer add  | 
| 31708 | 182  | 
return: transfer_nat_int_set_functions  | 
183  | 
transfer_nat_int_set_function_closures  | 
|
184  | 
transfer_nat_int_set_relations  | 
|
185  | 
transfer_nat_int_set_return_embed  | 
|
186  | 
cong: transfer_nat_int_set_cong  | 
|
187  | 
]  | 
|
188  | 
||
189  | 
||
| 60758 | 190  | 
text \<open>setsum and setprod\<close>  | 
| 31708 | 191  | 
|
192  | 
(* this handles the case where the *domain* of f is nat *)  | 
|
193  | 
lemma transfer_nat_int_sum_prod:  | 
|
194  | 
"setsum f A = setsum (%x. f (nat x)) (int ` A)"  | 
|
195  | 
"setprod f A = setprod (%x. f (nat x)) (int ` A)"  | 
|
| 57418 | 196  | 
apply (subst setsum.reindex)  | 
| 31708 | 197  | 
apply (unfold inj_on_def, auto)  | 
| 57418 | 198  | 
apply (subst setprod.reindex)  | 
| 31708 | 199  | 
apply (unfold inj_on_def o_def, auto)  | 
200  | 
done  | 
|
201  | 
||
202  | 
(* this handles the case where the *range* of f is nat *)  | 
|
203  | 
lemma transfer_nat_int_sum_prod2:  | 
|
204  | 
"setsum f A = nat(setsum (%x. int (f x)) A)"  | 
|
205  | 
"setprod f A = nat(setprod (%x. int (f x)) A)"  | 
|
206  | 
apply (subst int_setsum [symmetric])  | 
|
207  | 
apply auto  | 
|
208  | 
apply (subst int_setprod [symmetric])  | 
|
209  | 
apply auto  | 
|
210  | 
done  | 
|
211  | 
||
212  | 
lemma transfer_nat_int_sum_prod_closure:  | 
|
213  | 
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"  | 
|
214  | 
"nat_set A \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"  | 
|
215  | 
unfolding nat_set_def  | 
|
216  | 
apply (rule setsum_nonneg)  | 
|
217  | 
apply auto  | 
|
218  | 
apply (rule setprod_nonneg)  | 
|
219  | 
apply auto  | 
|
220  | 
done  | 
|
221  | 
||
222  | 
(* this version doesn't work, even with nat_set A \<Longrightarrow>  | 
|
223  | 
x : A \<Longrightarrow> x >= 0 turned on. Why not?  | 
|
224  | 
||
225  | 
also: what does =simp=> do?  | 
|
226  | 
||
227  | 
lemma transfer_nat_int_sum_prod_closure:  | 
|
228  | 
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setsum f A >= 0"  | 
|
229  | 
"(!!x. x : A ==> f x >= (0::int)) \<Longrightarrow> setprod f A >= 0"  | 
|
230  | 
unfolding nat_set_def simp_implies_def  | 
|
231  | 
apply (rule setsum_nonneg)  | 
|
232  | 
apply auto  | 
|
233  | 
apply (rule setprod_nonneg)  | 
|
234  | 
apply auto  | 
|
235  | 
done  | 
|
236  | 
*)  | 
|
237  | 
||
238  | 
(* Making A = B in this lemma doesn't work. Why not?  | 
|
| 57418 | 239  | 
Also, why aren't setsum.cong and setprod.cong enough,  | 
| 31708 | 240  | 
with the previously mentioned rule turned on? *)  | 
241  | 
||
242  | 
lemma transfer_nat_int_sum_prod_cong:  | 
|
243  | 
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>  | 
|
244  | 
setsum f A = setsum g B"  | 
|
245  | 
"A = B \<Longrightarrow> nat_set B \<Longrightarrow> (!!x. x >= 0 \<Longrightarrow> f x = g x) \<Longrightarrow>  | 
|
246  | 
setprod f A = setprod g B"  | 
|
247  | 
unfolding nat_set_def  | 
|
| 57418 | 248  | 
apply (subst setsum.cong, assumption)  | 
| 31708 | 249  | 
apply auto [2]  | 
| 57418 | 250  | 
apply (subst setprod.cong, assumption, auto)  | 
| 31708 | 251  | 
done  | 
252  | 
||
| 35644 | 253  | 
declare transfer_morphism_nat_int [transfer add  | 
| 31708 | 254  | 
return: transfer_nat_int_sum_prod transfer_nat_int_sum_prod2  | 
255  | 
transfer_nat_int_sum_prod_closure  | 
|
256  | 
cong: transfer_nat_int_sum_prod_cong]  | 
|
257  | 
||
258  | 
||
| 60758 | 259  | 
subsection \<open>Set up transfer from int to nat\<close>  | 
| 31708 | 260  | 
|
| 60758 | 261  | 
text \<open>set up transfer direction\<close>  | 
| 31708 | 262  | 
|
| 
42870
 
36abaf4cce1f
clarified vacuous nature of predicate "transfer_morphism" -- equivalent to previous definiton
 
krauss 
parents: 
39302 
diff
changeset
 | 
263  | 
lemma transfer_morphism_int_nat: "transfer_morphism int (\<lambda>n. True)" ..  | 
| 31708 | 264  | 
|
| 35644 | 265  | 
declare transfer_morphism_int_nat [transfer add  | 
| 31708 | 266  | 
mode: manual  | 
267  | 
return: nat_int  | 
|
| 35683 | 268  | 
labels: int_nat  | 
| 31708 | 269  | 
]  | 
270  | 
||
271  | 
||
| 60758 | 272  | 
text \<open>basic functions and relations\<close>  | 
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
273  | 
|
| 31708 | 274  | 
definition  | 
275  | 
is_nat :: "int \<Rightarrow> bool"  | 
|
276  | 
where  | 
|
277  | 
"is_nat x = (x >= 0)"  | 
|
278  | 
||
279  | 
lemma transfer_int_nat_numerals:  | 
|
280  | 
"0 = int 0"  | 
|
281  | 
"1 = int 1"  | 
|
282  | 
"2 = int 2"  | 
|
283  | 
"3 = int 3"  | 
|
284  | 
by auto  | 
|
285  | 
||
286  | 
lemma transfer_int_nat_functions:  | 
|
287  | 
"(int x) + (int y) = int (x + y)"  | 
|
288  | 
"(int x) * (int y) = int (x * y)"  | 
|
289  | 
"tsub (int x) (int y) = int (x - y)"  | 
|
290  | 
"(int x)^n = int (x^n)"  | 
|
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
291  | 
by (auto simp add: int_mult tsub_def int_power)  | 
| 31708 | 292  | 
|
293  | 
lemma transfer_int_nat_function_closures:  | 
|
294  | 
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x + y)"  | 
|
295  | 
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x * y)"  | 
|
296  | 
"is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (tsub x y)"  | 
|
297  | 
"is_nat x \<Longrightarrow> is_nat (x^n)"  | 
|
298  | 
"is_nat 0"  | 
|
299  | 
"is_nat 1"  | 
|
300  | 
"is_nat 2"  | 
|
301  | 
"is_nat 3"  | 
|
302  | 
"is_nat (int z)"  | 
|
303  | 
by (simp_all only: is_nat_def transfer_nat_int_function_closures)  | 
|
304  | 
||
305  | 
lemma transfer_int_nat_relations:  | 
|
306  | 
"(int x = int y) = (x = y)"  | 
|
307  | 
"(int x < int y) = (x < y)"  | 
|
308  | 
"(int x <= int y) = (x <= y)"  | 
|
309  | 
"(int x dvd int y) = (x dvd y)"  | 
|
| 
33318
 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 
haftmann 
parents: 
32558 
diff
changeset
 | 
310  | 
by (auto simp add: zdvd_int)  | 
| 32121 | 311  | 
|
| 35644 | 312  | 
declare transfer_morphism_int_nat [transfer add return:  | 
| 31708 | 313  | 
transfer_int_nat_numerals  | 
314  | 
transfer_int_nat_functions  | 
|
315  | 
transfer_int_nat_function_closures  | 
|
316  | 
transfer_int_nat_relations  | 
|
317  | 
]  | 
|
318  | 
||
319  | 
||
| 60758 | 320  | 
text \<open>first-order quantifiers\<close>  | 
| 31708 | 321  | 
|
322  | 
lemma transfer_int_nat_quantifiers:  | 
|
323  | 
"(ALL (x::int) >= 0. P x) = (ALL (x::nat). P (int x))"  | 
|
324  | 
"(EX (x::int) >= 0. P x) = (EX (x::nat). P (int x))"  | 
|
325  | 
apply (subst all_nat)  | 
|
326  | 
apply auto [1]  | 
|
327  | 
apply (subst ex_nat)  | 
|
328  | 
apply auto  | 
|
329  | 
done  | 
|
330  | 
||
| 35644 | 331  | 
declare transfer_morphism_int_nat [transfer add  | 
| 31708 | 332  | 
return: transfer_int_nat_quantifiers]  | 
333  | 
||
334  | 
||
| 60758 | 335  | 
text \<open>if\<close>  | 
| 31708 | 336  | 
|
337  | 
lemma int_if_cong: "(if P then (int x) else (int y)) =  | 
|
338  | 
int (if P then x else y)"  | 
|
339  | 
by auto  | 
|
340  | 
||
| 35644 | 341  | 
declare transfer_morphism_int_nat [transfer add return: int_if_cong]  | 
| 31708 | 342  | 
|
343  | 
||
344  | 
||
| 60758 | 345  | 
text \<open>operations with sets\<close>  | 
| 31708 | 346  | 
|
347  | 
lemma transfer_int_nat_set_functions:  | 
|
348  | 
"nat_set A \<Longrightarrow> card A = card (nat ` A)"  | 
|
349  | 
    "{} = int ` ({}::nat set)"
 | 
|
350  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Un B = int ` (nat ` A Un nat ` B)"  | 
|
351  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> A Int B = int ` (nat ` A Int nat ` B)"  | 
|
352  | 
    "{x. x >= 0 & P x} = int ` {x. P(int x)}"
 | 
|
353  | 
(* need all variants of these! *)  | 
|
354  | 
by (simp_all only: is_nat_def transfer_nat_int_set_functions  | 
|
355  | 
transfer_nat_int_set_function_closures  | 
|
356  | 
transfer_nat_int_set_return_embed nat_0_le  | 
|
357  | 
cong: transfer_nat_int_set_cong)  | 
|
358  | 
||
359  | 
lemma transfer_int_nat_set_function_closures:  | 
|
360  | 
    "nat_set {}"
 | 
|
361  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Un B)"  | 
|
362  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> nat_set (A Int B)"  | 
|
363  | 
    "nat_set {x. x >= 0 & P x}"
 | 
|
364  | 
"nat_set (int ` C)"  | 
|
365  | 
"nat_set A \<Longrightarrow> x : A \<Longrightarrow> is_nat x"  | 
|
366  | 
by (simp_all only: transfer_nat_int_set_function_closures is_nat_def)  | 
|
367  | 
||
368  | 
lemma transfer_int_nat_set_relations:  | 
|
369  | 
"nat_set A \<Longrightarrow> finite A = finite (nat ` A)"  | 
|
370  | 
"is_nat x \<Longrightarrow> nat_set A \<Longrightarrow> (x : A) = (nat x : nat ` A)"  | 
|
371  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A = B) = (nat ` A = nat ` B)"  | 
|
372  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A < B) = (nat ` A < nat ` B)"  | 
|
373  | 
"nat_set A \<Longrightarrow> nat_set B \<Longrightarrow> (A <= B) = (nat ` A <= nat ` B)"  | 
|
374  | 
by (simp_all only: is_nat_def transfer_nat_int_set_relations  | 
|
375  | 
transfer_nat_int_set_return_embed nat_0_le)  | 
|
376  | 
||
377  | 
lemma transfer_int_nat_set_return_embed: "nat ` int ` A = A"  | 
|
378  | 
by (simp only: transfer_nat_int_set_relations  | 
|
379  | 
transfer_nat_int_set_function_closures  | 
|
380  | 
transfer_nat_int_set_return_embed nat_0_le)  | 
|
381  | 
||
382  | 
lemma transfer_int_nat_set_cong: "(!!x. P x = P' x) \<Longrightarrow>  | 
|
383  | 
    {(x::nat). P x} = {x. P' x}"
 | 
|
384  | 
by auto  | 
|
385  | 
||
| 35644 | 386  | 
declare transfer_morphism_int_nat [transfer add  | 
| 31708 | 387  | 
return: transfer_int_nat_set_functions  | 
388  | 
transfer_int_nat_set_function_closures  | 
|
389  | 
transfer_int_nat_set_relations  | 
|
390  | 
transfer_int_nat_set_return_embed  | 
|
391  | 
cong: transfer_int_nat_set_cong  | 
|
392  | 
]  | 
|
393  | 
||
394  | 
||
| 60758 | 395  | 
text \<open>setsum and setprod\<close>  | 
| 31708 | 396  | 
|
397  | 
(* this handles the case where the *domain* of f is int *)  | 
|
398  | 
lemma transfer_int_nat_sum_prod:  | 
|
399  | 
"nat_set A \<Longrightarrow> setsum f A = setsum (%x. f (int x)) (nat ` A)"  | 
|
400  | 
"nat_set A \<Longrightarrow> setprod f A = setprod (%x. f (int x)) (nat ` A)"  | 
|
| 57418 | 401  | 
apply (subst setsum.reindex)  | 
| 31708 | 402  | 
apply (unfold inj_on_def nat_set_def, auto simp add: eq_nat_nat_iff)  | 
| 57418 | 403  | 
apply (subst setprod.reindex)  | 
| 31708 | 404  | 
apply (unfold inj_on_def nat_set_def o_def, auto simp add: eq_nat_nat_iff  | 
| 57418 | 405  | 
cong: setprod.cong)  | 
| 31708 | 406  | 
done  | 
407  | 
||
408  | 
(* this handles the case where the *range* of f is int *)  | 
|
409  | 
lemma transfer_int_nat_sum_prod2:  | 
|
410  | 
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow> setsum f A = int(setsum (%x. nat (f x)) A)"  | 
|
411  | 
"(!!x. x:A \<Longrightarrow> is_nat (f x)) \<Longrightarrow>  | 
|
412  | 
setprod f A = int(setprod (%x. nat (f x)) A)"  | 
|
413  | 
unfolding is_nat_def  | 
|
414  | 
apply (subst int_setsum, auto)  | 
|
| 57418 | 415  | 
apply (subst int_setprod, auto simp add: cong: setprod.cong)  | 
| 31708 | 416  | 
done  | 
417  | 
||
| 35644 | 418  | 
declare transfer_morphism_int_nat [transfer add  | 
| 31708 | 419  | 
return: transfer_int_nat_sum_prod transfer_int_nat_sum_prod2  | 
| 57418 | 420  | 
cong: setsum.cong setprod.cong]  | 
| 31708 | 421  | 
|
422  | 
end  |