31807
|
1 |
|
|
2 |
(* Author: Florian Haftmann, TU Muenchen *)
|
|
3 |
|
|
4 |
header {* Executable finite sets *}
|
|
5 |
|
|
6 |
theory Code_Set
|
|
7 |
imports List_Set
|
|
8 |
begin
|
|
9 |
|
|
10 |
lemma foldl_apply_inv:
|
|
11 |
assumes "\<And>x. g (h x) = x"
|
|
12 |
shows "foldl f (g s) xs = g (foldl (\<lambda>s x. h (f (g s) x)) s xs)"
|
|
13 |
by (rule sym, induct xs arbitrary: s) (simp_all add: assms)
|
|
14 |
|
|
15 |
subsection {* Lifting *}
|
|
16 |
|
|
17 |
datatype 'a fset = Fset "'a set"
|
|
18 |
|
|
19 |
primrec member :: "'a fset \<Rightarrow> 'a set" where
|
|
20 |
"member (Fset A) = A"
|
|
21 |
|
|
22 |
lemma Fset_member [simp]:
|
|
23 |
"Fset (member A) = A"
|
|
24 |
by (cases A) simp
|
|
25 |
|
|
26 |
definition Set :: "'a list \<Rightarrow> 'a fset" where
|
|
27 |
"Set xs = Fset (set xs)"
|
|
28 |
|
|
29 |
lemma member_Set [simp]:
|
|
30 |
"member (Set xs) = set xs"
|
|
31 |
by (simp add: Set_def)
|
|
32 |
|
|
33 |
code_datatype Set
|
|
34 |
|
|
35 |
|
|
36 |
subsection {* Basic operations *}
|
|
37 |
|
|
38 |
definition is_empty :: "'a fset \<Rightarrow> bool" where
|
|
39 |
"is_empty A \<longleftrightarrow> List_Set.is_empty (member A)"
|
|
40 |
|
|
41 |
lemma is_empty_Set [code]:
|
|
42 |
"is_empty (Set xs) \<longleftrightarrow> null xs"
|
|
43 |
by (simp add: is_empty_def is_empty_set)
|
|
44 |
|
|
45 |
definition empty :: "'a fset" where
|
|
46 |
"empty = Fset {}"
|
|
47 |
|
|
48 |
lemma empty_Set [code]:
|
|
49 |
"empty = Set []"
|
|
50 |
by (simp add: empty_def Set_def)
|
|
51 |
|
|
52 |
definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
53 |
"insert x A = Fset (Set.insert x (member A))"
|
|
54 |
|
|
55 |
lemma insert_Set [code]:
|
|
56 |
"insert x (Set xs) = Set (List_Set.insert x xs)"
|
|
57 |
by (simp add: insert_def Set_def insert_set)
|
|
58 |
|
|
59 |
definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
60 |
"remove x A = Fset (List_Set.remove x (member A))"
|
|
61 |
|
|
62 |
lemma remove_Set [code]:
|
|
63 |
"remove x (Set xs) = Set (remove_all x xs)"
|
|
64 |
by (simp add: remove_def Set_def remove_set)
|
|
65 |
|
|
66 |
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
|
|
67 |
"map f A = Fset (image f (member A))"
|
|
68 |
|
|
69 |
lemma map_Set [code]:
|
|
70 |
"map f (Set xs) = Set (remdups (List.map f xs))"
|
|
71 |
by (simp add: map_def Set_def)
|
|
72 |
|
|
73 |
definition project :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
74 |
"project P A = Fset (List_Set.project P (member A))"
|
|
75 |
|
|
76 |
lemma project_Set [code]:
|
|
77 |
"project P (Set xs) = Set (filter P xs)"
|
|
78 |
by (simp add: project_def Set_def project_set)
|
|
79 |
|
|
80 |
definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
81 |
"forall P A \<longleftrightarrow> Ball (member A) P"
|
|
82 |
|
|
83 |
lemma forall_Set [code]:
|
|
84 |
"forall P (Set xs) \<longleftrightarrow> list_all P xs"
|
|
85 |
by (simp add: forall_def Set_def ball_set)
|
|
86 |
|
|
87 |
definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
88 |
"exists P A \<longleftrightarrow> Bex (member A) P"
|
|
89 |
|
|
90 |
lemma exists_Set [code]:
|
|
91 |
"exists P (Set xs) \<longleftrightarrow> list_ex P xs"
|
|
92 |
by (simp add: exists_def Set_def bex_set)
|
|
93 |
|
|
94 |
|
|
95 |
subsection {* Functorial operations *}
|
|
96 |
|
|
97 |
definition union :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
98 |
"union A B = Fset (member A \<union> member B)"
|
|
99 |
|
|
100 |
lemma union_insert [code]:
|
|
101 |
"union (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
|
|
102 |
proof -
|
|
103 |
have "foldl (\<lambda>A x. Set.insert x A) (member A) xs =
|
|
104 |
member (foldl (\<lambda>A x. Fset (Set.insert x (member A))) A xs)"
|
|
105 |
by (rule foldl_apply_inv) simp
|
|
106 |
then show ?thesis by (simp add: union_def union_set insert_def)
|
|
107 |
qed
|
|
108 |
|
|
109 |
definition subtract :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
110 |
"subtract A B = Fset (member B - member A)"
|
|
111 |
|
|
112 |
lemma subtract_remove [code]:
|
|
113 |
"subtract (Set xs) A = foldl (\<lambda>A x. remove x A) A xs"
|
|
114 |
proof -
|
|
115 |
have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
|
|
116 |
member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
|
|
117 |
by (rule foldl_apply_inv) simp
|
|
118 |
then show ?thesis by (simp add: subtract_def minus_set remove_def)
|
|
119 |
qed
|
|
120 |
|
|
121 |
|
|
122 |
subsection {* Derived operations *}
|
|
123 |
|
|
124 |
lemma member_exists [code]:
|
|
125 |
"member A y \<longleftrightarrow> exists (\<lambda>x. y = x) A"
|
|
126 |
by (simp add: exists_def mem_def)
|
|
127 |
|
|
128 |
definition subfset_eq :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
129 |
"subfset_eq A B \<longleftrightarrow> member A \<subseteq> member B"
|
|
130 |
|
|
131 |
lemma subfset_eq_forall [code]:
|
|
132 |
"subfset_eq A B \<longleftrightarrow> forall (\<lambda>x. member B x) A"
|
|
133 |
by (simp add: subfset_eq_def subset_eq forall_def mem_def)
|
|
134 |
|
|
135 |
definition subfset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
|
|
136 |
"subfset A B \<longleftrightarrow> member A \<subset> member B"
|
|
137 |
|
|
138 |
lemma subfset_subfset_eq [code]:
|
|
139 |
"subfset A B \<longleftrightarrow> subfset_eq A B \<and> \<not> subfset_eq B A"
|
|
140 |
by (simp add: subfset_def subfset_eq_def subset)
|
|
141 |
|
|
142 |
lemma eq_fset_subfset_eq [code]:
|
|
143 |
"eq_class.eq A B \<longleftrightarrow> subfset_eq A B \<and> subfset_eq B A"
|
|
144 |
by (cases A, cases B) (simp add: eq subfset_eq_def set_eq)
|
|
145 |
|
|
146 |
definition inter :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
|
|
147 |
"inter A B = Fset (List_Set.project (member A) (member B))"
|
|
148 |
|
|
149 |
lemma inter_project [code]:
|
|
150 |
"inter A B = project (member A) B"
|
|
151 |
by (simp add: inter_def project_def inter)
|
|
152 |
|
|
153 |
|
|
154 |
subsection {* Misc operations *}
|
|
155 |
|
|
156 |
lemma size_fset [code]:
|
|
157 |
"fset_size f A = 0"
|
|
158 |
"size A = 0"
|
|
159 |
by (cases A, simp) (cases A, simp)
|
|
160 |
|
|
161 |
lemma fset_case_code [code]:
|
|
162 |
"fset_case f A = f (member A)"
|
|
163 |
by (cases A) simp
|
|
164 |
|
|
165 |
lemma fset_rec_code [code]:
|
|
166 |
"fset_rec f A = f (member A)"
|
|
167 |
by (cases A) simp
|
|
168 |
|
|
169 |
end
|