| author | haftmann | 
| Tue, 28 Jun 2005 10:24:53 +0200 | |
| changeset 16573 | cc86fd4eeee4 | 
| parent 16417 | 9bc16273c2d4 | 
| child 23755 | 1c4672d130b1 | 
| permissions | -rw-r--r-- | 
| 11376 | 1 | (* Title: HOL/NanoJava/Equivalence.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: David von Oheimb | |
| 4 | Copyright 2001 Technische Universitaet Muenchen | |
| 5 | *) | |
| 6 | ||
| 7 | header "Equivalence of Operational and Axiomatic Semantics" | |
| 8 | ||
| 16417 | 9 | theory Equivalence imports OpSem AxSem begin | 
| 11376 | 10 | |
| 11 | subsection "Validity" | |
| 12 | ||
| 13 | constdefs | |
| 11476 | 14 |   valid   :: "[assn,stmt, assn] => bool"  ("|= {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 15 |  "|=  {P} c {Q} \<equiv> \<forall>s   t. P s --> (\<exists>n. s -c  -n-> t) --> Q   t"
 | |
| 16 | ||
| 17 |  evalid   :: "[assn,expr,vassn] => bool" ("|=e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | |
| 18 |  "|=e {P} e {Q} \<equiv> \<forall>s v t. P s --> (\<exists>n. s -e>v-n-> t) --> Q v t"
 | |
| 19 | ||
| 11376 | 20 | |
| 11476 | 21 |  nvalid   :: "[nat, triple    ] => bool" ("|=_: _"  [61,61] 60)
 | 
| 22 | "|=n: t \<equiv> let (P,c,Q) = t in \<forall>s t. s -c -n-> t --> P s --> Q t" | |
| 11376 | 23 | |
| 11476 | 24 | envalid   :: "[nat,etriple    ] => bool" ("|=_:e _" [61,61] 60)
 | 
| 25 | "|=n:e t \<equiv> let (P,e,Q) = t in \<forall>s v t. s -e>v-n-> t --> P s --> Q v t" | |
| 26 | ||
| 27 |   nvalids :: "[nat,       triple set] => bool" ("||=_: _" [61,61] 60)
 | |
| 11376 | 28 | "||=n: T \<equiv> \<forall>t\<in>T. |=n: t" | 
| 29 | ||
| 11476 | 30 |  cnvalids :: "[triple set,triple set] => bool" ("_ ||=/ _"  [61,61] 60)
 | 
| 31 | "A ||= C \<equiv> \<forall>n. ||=n: A --> ||=n: C" | |
| 32 | ||
| 33 | cenvalid  :: "[triple set,etriple   ] => bool" ("_ ||=e/ _" [61,61] 60)
 | |
| 34 | "A ||=e t \<equiv> \<forall>n. ||=n: A --> |=n:e t" | |
| 11376 | 35 | |
| 36 | syntax (xsymbols) | |
| 11476 | 37 |    valid  :: "[assn,stmt, assn] => bool" ( "\<Turnstile> {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 11486 | 38 |   evalid  :: "[assn,expr,vassn] => bool" ("\<Turnstile>\<^sub>e {(1_)}/ (_)/ {(1_)}" [3,90,3] 60)
 | 
| 11476 | 39 |   nvalid  :: "[nat, triple          ] => bool" ("\<Turnstile>_: _"  [61,61] 60)
 | 
| 11486 | 40 |  envalid  :: "[nat,etriple          ] => bool" ("\<Turnstile>_:\<^sub>e _" [61,61] 60)
 | 
| 11476 | 41 |   nvalids :: "[nat,       triple set] => bool" ("|\<Turnstile>_: _"  [61,61] 60)
 | 
| 11376 | 42 |  cnvalids :: "[triple set,triple set] => bool" ("_ |\<Turnstile>/ _" [61,61] 60)
 | 
| 11486 | 43 | cenvalid  :: "[triple set,etriple   ] => bool" ("_ |\<Turnstile>\<^sub>e/ _"[61,61] 60)
 | 
| 11376 | 44 | |
| 45 | ||
| 11476 | 46 | lemma nvalid_def2: "\<Turnstile>n: (P,c,Q) \<equiv> \<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t" | 
| 11376 | 47 | by (simp add: nvalid_def Let_def) | 
| 48 | ||
| 11476 | 49 | lemma valid_def2: "\<Turnstile> {P} c {Q} = (\<forall>n. \<Turnstile>n: (P,c,Q))"
 | 
| 50 | apply (simp add: valid_def nvalid_def2) | |
| 11376 | 51 | apply blast | 
| 52 | done | |
| 53 | ||
| 11486 | 54 | lemma envalid_def2: "\<Turnstile>n:\<^sub>e (P,e,Q) \<equiv> \<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t" | 
| 11476 | 55 | by (simp add: envalid_def Let_def) | 
| 56 | ||
| 11486 | 57 | lemma evalid_def2: "\<Turnstile>\<^sub>e {P} e {Q} = (\<forall>n. \<Turnstile>n:\<^sub>e (P,e,Q))"
 | 
| 11476 | 58 | apply (simp add: evalid_def envalid_def2) | 
| 59 | apply blast | |
| 60 | done | |
| 61 | ||
| 62 | lemma cenvalid_def2: | |
| 11486 | 63 | "A|\<Turnstile>\<^sub>e (P,e,Q) = (\<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s v t. s -e\<succ>v-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q v t))" | 
| 11476 | 64 | by(simp add: cenvalid_def envalid_def2) | 
| 65 | ||
| 11376 | 66 | |
| 67 | subsection "Soundness" | |
| 68 | ||
| 11476 | 69 | declare exec_elim_cases [elim!] eval_elim_cases [elim!] | 
| 11376 | 70 | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 71 | lemma Impl_nvalid_0: "\<Turnstile>0: (P,Impl M,Q)" | 
| 11476 | 72 | by (clarsimp simp add: nvalid_def2) | 
| 11376 | 73 | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 74 | lemma Impl_nvalid_Suc: "\<Turnstile>n: (P,body M,Q) \<Longrightarrow> \<Turnstile>Suc n: (P,Impl M,Q)" | 
| 11476 | 75 | by (clarsimp simp add: nvalid_def2) | 
| 11376 | 76 | |
| 77 | lemma nvalid_SucD: "\<And>t. \<Turnstile>Suc n:t \<Longrightarrow> \<Turnstile>n:t" | |
| 11476 | 78 | by (force simp add: split_paired_all nvalid_def2 intro: exec_mono) | 
| 11376 | 79 | |
| 80 | lemma nvalids_SucD: "Ball A (nvalid (Suc n)) \<Longrightarrow> Ball A (nvalid n)" | |
| 81 | by (fast intro: nvalid_SucD) | |
| 82 | ||
| 83 | lemma Loop_sound_lemma [rule_format (no_asm)]: | |
| 11476 | 84 | "\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<and> s<x> \<noteq> Null \<longrightarrow> P t \<Longrightarrow> | 
| 85 | (s -c0-n0\<rightarrow> t \<longrightarrow> P s \<longrightarrow> c0 = While (x) c \<longrightarrow> n0 = n \<longrightarrow> P t \<and> t<x> = Null)" | |
| 14174 
f3cafd2929d5
Methods rule_tac etc support static (Isar) contexts.
 ballarin parents: 
12934diff
changeset | 86 | apply (rule_tac ?P2.1="%s e v n t. True" in exec_eval.induct [THEN conjunct1]) | 
| 11376 | 87 | apply clarsimp+ | 
| 88 | done | |
| 89 | ||
| 90 | lemma Impl_sound_lemma: | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 91 | "\<lbrakk>\<forall>z n. Ball (A \<union> B) (nvalid n) \<longrightarrow> Ball (f z ` Ms) (nvalid n); | 
| 12742 | 92 | Cm\<in>Ms; Ball A (nvalid na); Ball B (nvalid na)\<rbrakk> \<Longrightarrow> nvalid na (f z Cm)" | 
| 11376 | 93 | by blast | 
| 94 | ||
| 11476 | 95 | lemma all_conjunct2: "\<forall>l. P' l \<and> P l \<Longrightarrow> \<forall>l. P l" | 
| 96 | by fast | |
| 97 | ||
| 98 | lemma all3_conjunct2: | |
| 99 | "\<forall>a p l. (P' a p l \<and> P a p l) \<Longrightarrow> \<forall>a p l. P a p l" | |
| 100 | by fast | |
| 101 | ||
| 102 | lemma cnvalid1_eq: | |
| 103 |   "A |\<Turnstile> {(P,c,Q)} \<equiv> \<forall>n. |\<Turnstile>n: A \<longrightarrow> (\<forall>s t. s -c-n\<rightarrow> t \<longrightarrow> P s \<longrightarrow> Q t)"
 | |
| 104 | by(simp add: cnvalids_def nvalids_def nvalid_def2) | |
| 105 | ||
| 11486 | 106 | lemma hoare_sound_main:"\<And>t. (A |\<turnstile> C \<longrightarrow> A |\<Turnstile> C) \<and> (A |\<turnstile>\<^sub>e t \<longrightarrow> A |\<Turnstile>\<^sub>e t)" | 
| 11476 | 107 | apply (tactic "split_all_tac 1", rename_tac P e Q) | 
| 108 | apply (rule hoare_ehoare.induct) | |
| 12524 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 109 | (*18*) | 
| 11476 | 110 | apply (tactic {* ALLGOALS (REPEAT o dresolve_tac [thm "all_conjunct2", thm "all3_conjunct2"]) *})
 | 
| 111 | apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x :  hoare") *})
 | |
| 112 | apply (tactic {* ALLGOALS (REPEAT o thin_tac "?x : ehoare") *})
 | |
| 113 | apply (simp_all only: cnvalid1_eq cenvalid_def2) | |
| 12524 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 114 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 115 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 116 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 117 | apply (clarify,tactic "smp_tac 1 1",erule(2) Loop_sound_lemma,(rule HOL.refl)+) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 118 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 119 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 120 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 121 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 122 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 123 | apply fast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 124 | apply (clarsimp del: Meth_elim_cases) (* Call *) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 125 | apply (force del: Impl_elim_cases) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 126 | defer | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 127 | prefer 4 apply blast (* Conseq *) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 128 | prefer 4 apply blast (* eConseq *) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 129 | apply (simp_all (no_asm_use) only: cnvalids_def nvalids_def) | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 130 | apply blast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 131 | apply blast | 
| 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 132 | apply blast | 
| 11376 | 133 | apply (rule allI) | 
| 11565 | 134 | apply (rule_tac x=Z in spec) | 
| 11376 | 135 | apply (induct_tac "n") | 
| 12524 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 136 | apply (clarify intro!: Impl_nvalid_0) | 
| 11376 | 137 | apply (clarify intro!: Impl_nvalid_Suc) | 
| 138 | apply (drule nvalids_SucD) | |
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 139 | apply (simp only: all_simps) | 
| 11376 | 140 | apply (erule (1) impE) | 
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 141 | apply (drule (2) Impl_sound_lemma) | 
| 12524 
66eb843b1d35
mods due to mor powerful simprocs for 1-point rules (quantifier1).
 nipkow parents: 
11565diff
changeset | 142 | apply blast | 
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 143 | apply assumption | 
| 11376 | 144 | done | 
| 145 | ||
| 146 | theorem hoare_sound: "{} \<turnstile> {P} c {Q} \<Longrightarrow> \<Turnstile> {P} c {Q}"
 | |
| 147 | apply (simp only: valid_def2) | |
| 11476 | 148 | apply (drule hoare_sound_main [THEN conjunct1, rule_format]) | 
| 11376 | 149 | apply (unfold cnvalids_def nvalids_def) | 
| 150 | apply fast | |
| 151 | done | |
| 152 | ||
| 11486 | 153 | theorem ehoare_sound: "{} \<turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 154 | apply (simp only: evalid_def2) | 
| 155 | apply (drule hoare_sound_main [THEN conjunct2, rule_format]) | |
| 156 | apply (unfold cenvalid_def nvalids_def) | |
| 157 | apply fast | |
| 158 | done | |
| 159 | ||
| 11376 | 160 | |
| 161 | subsection "(Relative) Completeness" | |
| 162 | ||
| 11476 | 163 | constdefs MGT :: "stmt => state => triple" | 
| 11565 | 164 | "MGT c Z \<equiv> (\<lambda>s. Z = s, c, \<lambda> t. \<exists>n. Z -c- n-> t)" | 
| 11486 | 165 | MGTe :: "expr => state => etriple" | 
| 11565 | 166 | "MGTe e Z \<equiv> (\<lambda>s. Z = s, e, \<lambda>v t. \<exists>n. Z -e>v-n-> t)" | 
| 11486 | 167 | syntax (xsymbols) | 
| 168 |          MGTe    :: "expr => state => etriple" ("MGT\<^sub>e")
 | |
| 14565 | 169 | syntax (HTML output) | 
| 170 |          MGTe    :: "expr => state => etriple" ("MGT\<^sub>e")
 | |
| 11376 | 171 | |
| 172 | lemma MGF_implies_complete: | |
| 11565 | 173 |  "\<forall>Z. {} |\<turnstile> { MGT c Z} \<Longrightarrow> \<Turnstile>  {P} c {Q} \<Longrightarrow> {} \<turnstile>  {P} c {Q}"
 | 
| 11376 | 174 | apply (simp only: valid_def2) | 
| 175 | apply (unfold MGT_def) | |
| 11476 | 176 | apply (erule hoare_ehoare.Conseq) | 
| 177 | apply (clarsimp simp add: nvalid_def2) | |
| 11376 | 178 | done | 
| 179 | ||
| 11476 | 180 | lemma eMGF_implies_complete: | 
| 11565 | 181 |  "\<forall>Z. {} |\<turnstile>\<^sub>e MGT\<^sub>e e Z \<Longrightarrow> \<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 182 | apply (simp only: evalid_def2) | 
| 11486 | 183 | apply (unfold MGTe_def) | 
| 11476 | 184 | apply (erule hoare_ehoare.eConseq) | 
| 185 | apply (clarsimp simp add: envalid_def2) | |
| 186 | done | |
| 11376 | 187 | |
| 11476 | 188 | declare exec_eval.intros[intro!] | 
| 11376 | 189 | |
| 11565 | 190 | lemma MGF_Loop: "\<forall>Z. A \<turnstile> {op = Z} c {\<lambda>t. \<exists>n. Z -c-n\<rightarrow> t} \<Longrightarrow> 
 | 
| 191 |   A \<turnstile> {op = Z} While (x) c {\<lambda>t. \<exists>n. Z -While (x) c-n\<rightarrow> t}"
 | |
| 192 | apply (rule_tac P' = "\<lambda>Z s. (Z,s) \<in> ({(s,t). \<exists>n. s<x> \<noteq> Null \<and> s -c-n\<rightarrow> t})^*"
 | |
| 11476 | 193 | in hoare_ehoare.Conseq) | 
| 11376 | 194 | apply (rule allI) | 
| 11476 | 195 | apply (rule hoare_ehoare.Loop) | 
| 196 | apply (erule hoare_ehoare.Conseq) | |
| 11376 | 197 | apply clarsimp | 
| 198 | apply (blast intro:rtrancl_into_rtrancl) | |
| 199 | apply (erule thin_rl) | |
| 200 | apply clarsimp | |
| 11565 | 201 | apply (erule_tac x = Z in allE) | 
| 11376 | 202 | apply clarsimp | 
| 203 | apply (erule converse_rtrancl_induct) | |
| 204 | apply blast | |
| 205 | apply clarsimp | |
| 11476 | 206 | apply (drule (1) exec_exec_max) | 
| 11376 | 207 | apply (blast del: exec_elim_cases) | 
| 208 | done | |
| 209 | ||
| 11565 | 210 | lemma MGF_lemma: "\<forall>M Z. A |\<turnstile> {MGT (Impl M) Z} \<Longrightarrow> 
 | 
| 211 |  (\<forall>Z. A |\<turnstile> {MGT c Z}) \<and> (\<forall>Z. A |\<turnstile>\<^sub>e MGT\<^sub>e e Z)"
 | |
| 11486 | 212 | apply (simp add: MGT_def MGTe_def) | 
| 11476 | 213 | apply (rule stmt_expr.induct) | 
| 214 | apply (rule_tac [!] allI) | |
| 11376 | 215 | |
| 11476 | 216 | apply (rule Conseq1 [OF hoare_ehoare.Skip]) | 
| 11376 | 217 | apply blast | 
| 218 | ||
| 11476 | 219 | apply (rule hoare_ehoare.Comp) | 
| 11376 | 220 | apply (erule spec) | 
| 11476 | 221 | apply (erule hoare_ehoare.Conseq) | 
| 11376 | 222 | apply clarsimp | 
| 11476 | 223 | apply (drule (1) exec_exec_max) | 
| 11376 | 224 | apply blast | 
| 225 | ||
| 11476 | 226 | apply (erule thin_rl) | 
| 227 | apply (rule hoare_ehoare.Cond) | |
| 228 | apply (erule spec) | |
| 229 | apply (rule allI) | |
| 230 | apply (simp) | |
| 231 | apply (rule conjI) | |
| 232 | apply (rule impI, erule hoare_ehoare.Conseq, clarsimp, drule (1) eval_exec_max, | |
| 233 | erule thin_rl, erule thin_rl, force)+ | |
| 11376 | 234 | |
| 235 | apply (erule MGF_Loop) | |
| 236 | ||
| 11476 | 237 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.LAss]) | 
| 238 | apply fast | |
| 11376 | 239 | |
| 11476 | 240 | apply (erule thin_rl) | 
| 11565 | 241 | apply (rule_tac Q = "\<lambda>a s. \<exists>n. Z -expr1\<succ>Addr a-n\<rightarrow> s" in hoare_ehoare.FAss) | 
| 11476 | 242 | apply (drule spec) | 
| 243 | apply (erule eConseq2) | |
| 244 | apply fast | |
| 245 | apply (rule allI) | |
| 246 | apply (erule hoare_ehoare.eConseq) | |
| 247 | apply clarsimp | |
| 248 | apply (drule (1) eval_eval_max) | |
| 11376 | 249 | apply blast | 
| 250 | ||
| 11507 | 251 | apply (simp only: split_paired_all) | 
| 11476 | 252 | apply (rule hoare_ehoare.Meth) | 
| 11376 | 253 | apply (rule allI) | 
| 11476 | 254 | apply (drule spec, drule spec, erule hoare_ehoare.Conseq) | 
| 11376 | 255 | apply blast | 
| 256 | ||
| 11497 
0e66e0114d9a
corrected initialization of locals, streamlined Impl
 oheimb parents: 
11486diff
changeset | 257 | apply (simp add: split_paired_all) | 
| 11476 | 258 | |
| 259 | apply (rule eConseq1 [OF hoare_ehoare.NewC]) | |
| 260 | apply blast | |
| 261 | ||
| 262 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.Cast]) | |
| 263 | apply fast | |
| 264 | ||
| 265 | apply (rule eConseq1 [OF hoare_ehoare.LAcc]) | |
| 266 | apply blast | |
| 267 | ||
| 268 | apply (erule hoare_ehoare.eConseq [THEN hoare_ehoare.FAcc]) | |
| 269 | apply fast | |
| 270 | ||
| 11565 | 271 | apply (rule_tac R = "\<lambda>a v s. \<exists>n1 n2 t. Z -expr1\<succ>a-n1\<rightarrow> t \<and> t -expr2\<succ>v-n2\<rightarrow> s" in | 
| 11476 | 272 | hoare_ehoare.Call) | 
| 273 | apply (erule spec) | |
| 274 | apply (rule allI) | |
| 275 | apply (erule hoare_ehoare.eConseq) | |
| 276 | apply clarsimp | |
| 277 | apply blast | |
| 278 | apply (rule allI)+ | |
| 279 | apply (rule hoare_ehoare.Meth) | |
| 280 | apply (rule allI) | |
| 281 | apply (drule spec, drule spec, erule hoare_ehoare.Conseq) | |
| 282 | apply (erule thin_rl, erule thin_rl) | |
| 283 | apply (clarsimp del: Impl_elim_cases) | |
| 284 | apply (drule (2) eval_eval_exec_max) | |
| 11565 | 285 | apply (force del: Impl_elim_cases) | 
| 11376 | 286 | done | 
| 287 | ||
| 11565 | 288 | lemma MGF_Impl: "{} |\<turnstile> {MGT (Impl M) Z}"
 | 
| 11376 | 289 | apply (unfold MGT_def) | 
| 12934 
6003b4f916c0
Clarification wrt. use of polymorphic variants of Hoare logic rules
 oheimb parents: 
12742diff
changeset | 290 | apply (rule Impl1') | 
| 11376 | 291 | apply (rule_tac [2] UNIV_I) | 
| 292 | apply clarsimp | |
| 11476 | 293 | apply (rule hoare_ehoare.ConjI) | 
| 11376 | 294 | apply clarsimp | 
| 295 | apply (rule ssubst [OF Impl_body_eq]) | |
| 296 | apply (fold MGT_def) | |
| 11476 | 297 | apply (rule MGF_lemma [THEN conjunct1, rule_format]) | 
| 298 | apply (rule hoare_ehoare.Asm) | |
| 11376 | 299 | apply force | 
| 300 | done | |
| 301 | ||
| 302 | theorem hoare_relative_complete: "\<Turnstile> {P} c {Q} \<Longrightarrow> {} \<turnstile> {P} c {Q}"
 | |
| 303 | apply (rule MGF_implies_complete) | |
| 304 | apply (erule_tac [2] asm_rl) | |
| 305 | apply (rule allI) | |
| 11476 | 306 | apply (rule MGF_lemma [THEN conjunct1, rule_format]) | 
| 307 | apply (rule MGF_Impl) | |
| 308 | done | |
| 309 | ||
| 11486 | 310 | theorem ehoare_relative_complete: "\<Turnstile>\<^sub>e {P} e {Q} \<Longrightarrow> {} \<turnstile>\<^sub>e {P} e {Q}"
 | 
| 11476 | 311 | apply (rule eMGF_implies_complete) | 
| 312 | apply (erule_tac [2] asm_rl) | |
| 313 | apply (rule allI) | |
| 314 | apply (rule MGF_lemma [THEN conjunct2, rule_format]) | |
| 11376 | 315 | apply (rule MGF_Impl) | 
| 316 | done | |
| 317 | ||
| 11565 | 318 | lemma cFalse: "A \<turnstile> {\<lambda>s. False} c {Q}"
 | 
| 319 | apply (rule cThin) | |
| 320 | apply (rule hoare_relative_complete) | |
| 321 | apply (auto simp add: valid_def) | |
| 322 | done | |
| 323 | ||
| 324 | lemma eFalse: "A \<turnstile>\<^sub>e {\<lambda>s. False} e {Q}"
 | |
| 325 | apply (rule eThin) | |
| 326 | apply (rule ehoare_relative_complete) | |
| 327 | apply (auto simp add: evalid_def) | |
| 328 | done | |
| 329 | ||
| 11376 | 330 | end |