| 0 |      1 | (*  Title: 	ZF/ex/llist-fn.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Functions for Lazy Lists in Zermelo-Fraenkel Set Theory 
 | 
| 120 |      7 | 
 | 
|  |      8 | Examples of coinduction for type-checking and to prove llist equations
 | 
| 0 |      9 | *)
 | 
|  |     10 | 
 | 
|  |     11 | open LListFn;
 | 
|  |     12 | 
 | 
|  |     13 | (*** lconst -- defined directly using lfp, but equivalent to a LList_corec ***)
 | 
|  |     14 | 
 | 
|  |     15 | goalw LListFn.thy LList.con_defs "bnd_mono(univ(a), %l. LCons(a,l))";
 | 
|  |     16 | by (rtac bnd_monoI 1);
 | 
|  |     17 | by (REPEAT (ares_tac [subset_refl, QInr_mono, QPair_mono] 2));
 | 
|  |     18 | by (REPEAT (ares_tac [subset_refl, A_subset_univ, 
 | 
|  |     19 | 		      QInr_subset_univ, QPair_subset_univ] 1));
 | 
|  |     20 | val lconst_fun_bnd_mono = result();
 | 
|  |     21 | 
 | 
|  |     22 | (* lconst(a) = LCons(a,lconst(a)) *)
 | 
|  |     23 | val lconst = standard 
 | 
|  |     24 |     ([lconst_def, lconst_fun_bnd_mono] MRS def_lfp_Tarski);
 | 
|  |     25 | 
 | 
|  |     26 | val lconst_subset = lconst_def RS def_lfp_subset;
 | 
|  |     27 | 
 | 
|  |     28 | val member_subset_Union_eclose = standard (arg_into_eclose RS Union_upper);
 | 
|  |     29 | 
 | 
|  |     30 | goal LListFn.thy "!!a A. a : A ==> lconst(a) : quniv(A)";
 | 
|  |     31 | by (rtac (lconst_subset RS subset_trans RS qunivI) 1);
 | 
|  |     32 | by (etac (arg_into_eclose RS eclose_subset RS univ_mono) 1);
 | 
|  |     33 | val lconst_in_quniv = result();
 | 
|  |     34 | 
 | 
|  |     35 | goal LListFn.thy "!!a A. a:A ==> lconst(a): llist(A)";
 | 
| 120 |     36 | by (rtac (singletonI RS LList.coinduct) 1);
 | 
| 0 |     37 | by (fast_tac (ZF_cs addSIs [lconst_in_quniv]) 1);
 | 
|  |     38 | by (fast_tac (ZF_cs addSIs [lconst]) 1);
 | 
|  |     39 | val lconst_type = result();
 | 
| 120 |     40 | 
 | 
|  |     41 | (*** flip --- equations merely assumed; certain consequences proved ***)
 | 
|  |     42 | 
 | 
|  |     43 | val flip_ss = ZF_ss addsimps [flip_LNil, flip_LCons, not_type];
 | 
|  |     44 | 
 | 
| 173 |     45 | goal QUniv.thy "!!b. b:bool ==> b Int X <= univ(eclose(A))";
 | 
|  |     46 | by (fast_tac (quniv_cs addSEs [boolE]) 1);
 | 
|  |     47 | val bool_Int_subset_univ = result();
 | 
| 120 |     48 | 
 | 
| 173 |     49 | val flip_cs = quniv_cs addSIs [not_type]
 | 
|  |     50 |                        addIs  [bool_Int_subset_univ];
 | 
| 120 |     51 | 
 | 
|  |     52 | (*Reasoning borrowed from llist_eq.ML; a similar proof works for all
 | 
|  |     53 |   "productive" functions -- cf Coquand's "Infinite Objects in Type Theory".*)
 | 
|  |     54 | goal LListFn.thy
 | 
| 173 |     55 |    "!!i. Ord(i) ==> ALL l: llist(bool). flip(l) Int Vset(i) <= \
 | 
|  |     56 | \                   univ(eclose(bool))";
 | 
| 120 |     57 | by (etac trans_induct 1);
 | 
| 173 |     58 | by (rtac ballI 1);
 | 
| 120 |     59 | by (etac LList.elim 1);
 | 
|  |     60 | by (asm_simp_tac flip_ss 1);
 | 
|  |     61 | by (asm_simp_tac flip_ss 2);
 | 
|  |     62 | by (rewrite_goals_tac ([QInl_def,QInr_def]@LList.con_defs));
 | 
| 173 |     63 | (*LNil case*)
 | 
| 120 |     64 | by (fast_tac flip_cs 1);
 | 
| 173 |     65 | (*LCons case*)
 | 
|  |     66 | by (safe_tac flip_cs);
 | 
|  |     67 | by (ALLGOALS (fast_tac (flip_cs addSEs [Ord_trans, make_elim bspec])));
 | 
| 120 |     68 | val flip_llist_quniv_lemma = result();
 | 
|  |     69 | 
 | 
|  |     70 | goal LListFn.thy "!!l. l: llist(bool) ==> flip(l) : quniv(bool)";
 | 
| 173 |     71 | by (rtac (flip_llist_quniv_lemma RS bspec RS Int_Vset_subset RS qunivI) 1);
 | 
| 120 |     72 | by (REPEAT (assume_tac 1));
 | 
|  |     73 | val flip_in_quniv = result();
 | 
|  |     74 | 
 | 
|  |     75 | val [prem] = goal LListFn.thy "l : llist(bool) ==> flip(l): llist(bool)";
 | 
|  |     76 | by (res_inst_tac [("X", "{flip(l) . l:llist(bool)}")]
 | 
|  |     77 |        LList.coinduct 1);
 | 
| 128 |     78 | by (rtac (prem RS RepFunI) 1);
 | 
| 120 |     79 | by (fast_tac (ZF_cs addSIs [flip_in_quniv]) 1);
 | 
| 128 |     80 | by (etac RepFunE 1);
 | 
| 120 |     81 | by (etac LList.elim 1);
 | 
|  |     82 | by (asm_simp_tac flip_ss 1);
 | 
|  |     83 | by (asm_simp_tac flip_ss 1);
 | 
|  |     84 | by (fast_tac (ZF_cs addSIs [not_type]) 1);
 | 
|  |     85 | val flip_type = result();
 | 
|  |     86 | 
 | 
|  |     87 | val [prem] = goal LListFn.thy
 | 
|  |     88 |     "l : llist(bool) ==> flip(flip(l)) = l";
 | 
|  |     89 | by (res_inst_tac [("X1", "{<flip(flip(l)),l> . l:llist(bool)}")]
 | 
|  |     90 |        (LList_Eq.coinduct RS lleq_implies_equal) 1);
 | 
| 128 |     91 | by (rtac (prem RS RepFunI) 1);
 | 
| 120 |     92 | by (fast_tac (ZF_cs addSIs [flip_type]) 1);
 | 
| 128 |     93 | by (etac RepFunE 1);
 | 
| 120 |     94 | by (etac LList.elim 1);
 | 
|  |     95 | by (asm_simp_tac flip_ss 1);
 | 
|  |     96 | by (asm_simp_tac (flip_ss addsimps [flip_type, not_not]) 1);
 | 
|  |     97 | by (fast_tac (ZF_cs addSIs [not_type]) 1);
 | 
|  |     98 | val flip_flip = result();
 |