| author | paulson |
| Thu, 19 Feb 2004 10:40:28 +0100 | |
| changeset 14395 | cc96cc06abf9 |
| parent 14378 | 69c4d5997669 |
| child 14468 | 6be497cacab5 |
| permissions | -rw-r--r-- |
| 10751 | 1 |
(* Title : Star.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
| 14370 | 4 |
Description : defining *-transforms in NSA which extends sets of reals, |
| 10751 | 5 |
and real=>real functions |
| 14370 | 6 |
*) |
| 10751 | 7 |
|
| 14370 | 8 |
header{*Star-Transforms in Non-Standard Analysis*}
|
9 |
||
10 |
theory Star = NSA: |
|
| 10751 | 11 |
|
12 |
constdefs |
|
13 |
(* nonstandard extension of sets *) |
|
| 14370 | 14 |
starset :: "real set => hypreal set" ("*s* _" [80] 80)
|
| 10751 | 15 |
"*s* A == {x. ALL X: Rep_hypreal(x). {n::nat. X n : A}: FreeUltrafilterNat}"
|
16 |
||
17 |
(* internal sets *) |
|
| 14370 | 18 |
starset_n :: "(nat => real set) => hypreal set" ("*sn* _" [80] 80)
|
19 |
"*sn* As == {x. ALL X: Rep_hypreal(x). {n::nat. X n : (As n)}: FreeUltrafilterNat}"
|
|
20 |
||
| 10751 | 21 |
InternalSets :: "hypreal set set" |
22 |
"InternalSets == {X. EX As. X = *sn* As}"
|
|
23 |
||
24 |
(* nonstandard extension of function *) |
|
| 14370 | 25 |
is_starext :: "[hypreal => hypreal, real => real] => bool" |
| 10751 | 26 |
"is_starext F f == (ALL x y. EX X: Rep_hypreal(x). EX Y: Rep_hypreal(y). |
27 |
((y = (F x)) = ({n. Y n = f(X n)} : FreeUltrafilterNat)))"
|
|
| 14370 | 28 |
|
29 |
starfun :: "(real => real) => hypreal => hypreal" ("*f* _" [80] 80)
|
|
30 |
"*f* f == (%x. Abs_hypreal(UN X: Rep_hypreal(x). hyprel``{%n. f(X n)}))"
|
|
| 10751 | 31 |
|
32 |
(* internal functions *) |
|
| 14370 | 33 |
starfun_n :: "(nat => (real => real)) => hypreal => hypreal" |
34 |
("*fn* _" [80] 80)
|
|
35 |
"*fn* F == (%x. Abs_hypreal(UN X: Rep_hypreal(x). hyprel``{%n. (F n)(X n)}))"
|
|
| 10751 | 36 |
|
| 14370 | 37 |
InternalFuns :: "(hypreal => hypreal) set" |
| 10751 | 38 |
"InternalFuns == {X. EX F. X = *fn* F}"
|
39 |
||
40 |
||
41 |
||
| 14370 | 42 |
(*-------------------------------------------------------- |
43 |
Preamble - Pulling "EX" over "ALL" |
|
44 |
---------------------------------------------------------*) |
|
45 |
||
46 |
(* This proof does not need AC and was suggested by the |
|
47 |
referee for the JCM Paper: let f(x) be least y such |
|
48 |
that Q(x,y) |
|
49 |
*) |
|
50 |
lemma no_choice: "ALL x. EX y. Q x y ==> EX (f :: nat => nat). ALL x. Q x (f x)" |
|
51 |
apply (rule_tac x = "%x. LEAST y. Q x y" in exI) |
|
52 |
apply (blast intro: LeastI) |
|
53 |
done |
|
54 |
||
55 |
(*------------------------------------------------------------ |
|
56 |
Properties of the *-transform applied to sets of reals |
|
57 |
------------------------------------------------------------*) |
|
58 |
||
59 |
lemma STAR_real_set: "*s*(UNIV::real set) = (UNIV::hypreal set)" |
|
60 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
61 |
apply (unfold starset_def, auto) |
| 14370 | 62 |
done |
63 |
declare STAR_real_set [simp] |
|
64 |
||
65 |
lemma STAR_empty_set: "*s* {} = {}"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
66 |
apply (unfold starset_def, safe) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
67 |
apply (rule_tac z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
68 |
apply (drule_tac x = "%n. xa n" in bspec, auto) |
| 14370 | 69 |
done |
70 |
declare STAR_empty_set [simp] |
|
71 |
||
72 |
lemma STAR_Un: "*s* (A Un B) = *s* A Un *s* B" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
73 |
apply (unfold starset_def, auto) |
| 14370 | 74 |
prefer 3 apply (blast intro: FreeUltrafilterNat_subset) |
75 |
prefer 2 apply (blast intro: FreeUltrafilterNat_subset) |
|
76 |
apply (drule FreeUltrafilterNat_Compl_mem) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
77 |
apply (drule bspec, assumption) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
78 |
apply (rule_tac z = x in eq_Abs_hypreal, auto, ultra) |
| 14370 | 79 |
done |
80 |
||
81 |
lemma STAR_Int: "*s* (A Int B) = *s* A Int *s* B" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
82 |
apply (unfold starset_def, auto) |
| 14370 | 83 |
prefer 3 apply (blast intro: FreeUltrafilterNat_Int FreeUltrafilterNat_subset) |
84 |
apply (blast intro: FreeUltrafilterNat_subset)+ |
|
85 |
done |
|
86 |
||
87 |
lemma STAR_Compl: "*s* -A = -( *s* A)" |
|
88 |
apply (auto simp add: starset_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
89 |
apply (rule_tac [!] z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
90 |
apply (auto dest!: bspec, ultra) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
91 |
apply (drule FreeUltrafilterNat_Compl_mem, ultra) |
| 14370 | 92 |
done |
93 |
||
94 |
lemma STAR_mem_Compl: "x \<notin> *s* F ==> x : *s* (- F)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
95 |
by (auto simp add: STAR_Compl) |
| 14370 | 96 |
|
97 |
lemma STAR_diff: "*s* (A - B) = *s* A - *s* B" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
98 |
by (auto simp add: Diff_eq STAR_Int STAR_Compl) |
| 14370 | 99 |
|
100 |
lemma STAR_subset: "A <= B ==> *s* A <= *s* B" |
|
101 |
apply (unfold starset_def) |
|
102 |
apply (blast intro: FreeUltrafilterNat_subset)+ |
|
103 |
done |
|
104 |
||
105 |
lemma STAR_mem: "a : A ==> hypreal_of_real a : *s* A" |
|
106 |
apply (unfold starset_def hypreal_of_real_def) |
|
107 |
apply (auto intro: FreeUltrafilterNat_subset) |
|
108 |
done |
|
109 |
||
110 |
lemma STAR_hypreal_of_real_image_subset: "hypreal_of_real ` A <= *s* A" |
|
111 |
apply (unfold starset_def) |
|
112 |
apply (auto simp add: hypreal_of_real_def) |
|
113 |
apply (blast intro: FreeUltrafilterNat_subset) |
|
114 |
done |
|
115 |
||
116 |
lemma STAR_hypreal_of_real_Int: "*s* X Int Reals = hypreal_of_real ` X" |
|
117 |
apply (unfold starset_def) |
|
118 |
apply (auto simp add: hypreal_of_real_def SReal_def) |
|
119 |
apply (simp add: hypreal_of_real_def [symmetric]) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
120 |
apply (rule imageI, rule ccontr) |
| 14370 | 121 |
apply (drule bspec) |
122 |
apply (rule lemma_hyprel_refl) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
123 |
prefer 2 apply (blast intro: FreeUltrafilterNat_subset, auto) |
| 14370 | 124 |
done |
125 |
||
126 |
lemma lemma_not_hyprealA: "x \<notin> hypreal_of_real ` A ==> ALL y: A. x \<noteq> hypreal_of_real y" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
127 |
by auto |
| 14370 | 128 |
|
129 |
lemma lemma_Compl_eq: "- {n. X n = xa} = {n. X n \<noteq> xa}"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
130 |
by auto |
| 14370 | 131 |
|
132 |
lemma STAR_real_seq_to_hypreal: |
|
133 |
"ALL n. (X n) \<notin> M |
|
134 |
==> Abs_hypreal(hyprel``{X}) \<notin> *s* M"
|
|
135 |
apply (unfold starset_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
136 |
apply (auto, rule bexI, rule_tac [2] lemma_hyprel_refl, auto) |
| 14370 | 137 |
done |
138 |
||
139 |
lemma STAR_singleton: "*s* {x} = {hypreal_of_real x}"
|
|
140 |
apply (unfold starset_def) |
|
141 |
apply (auto simp add: hypreal_of_real_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
142 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 143 |
apply (auto intro: FreeUltrafilterNat_subset) |
144 |
done |
|
145 |
declare STAR_singleton [simp] |
|
146 |
||
147 |
lemma STAR_not_mem: "x \<notin> F ==> hypreal_of_real x \<notin> *s* F" |
|
148 |
apply (auto simp add: starset_def hypreal_of_real_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
149 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl, auto) |
| 14370 | 150 |
done |
151 |
||
152 |
lemma STAR_subset_closed: "[| x : *s* A; A <= B |] ==> x : *s* B" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
153 |
by (blast dest: STAR_subset) |
| 14370 | 154 |
|
155 |
(*------------------------------------------------------------------ |
|
156 |
Nonstandard extension of a set (defined using a constant |
|
157 |
sequence) as a special case of an internal set |
|
158 |
-----------------------------------------------------------------*) |
|
159 |
||
160 |
lemma starset_n_starset: |
|
161 |
"ALL n. (As n = A) ==> *sn* As = *s* A" |
|
162 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
163 |
apply (unfold starset_n_def starset_def, auto) |
| 14370 | 164 |
done |
165 |
||
166 |
||
167 |
(*----------------------------------------------------------------*) |
|
168 |
(* Theorems about nonstandard extensions of functions *) |
|
169 |
(*----------------------------------------------------------------*) |
|
170 |
||
171 |
(*----------------------------------------------------------------*) |
|
172 |
(* Nonstandard extension of a function (defined using a *) |
|
173 |
(* constant sequence) as a special case of an internal function *) |
|
174 |
(*----------------------------------------------------------------*) |
|
175 |
||
176 |
lemma starfun_n_starfun: |
|
177 |
"ALL n. (F n = f) ==> *fn* F = *f* f" |
|
178 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
179 |
apply (unfold starfun_n_def starfun_def, auto) |
| 14370 | 180 |
done |
181 |
||
182 |
||
183 |
(* |
|
184 |
Prove that hrabs is a nonstandard extension of rabs without |
|
185 |
use of congruence property (proved after this for general |
|
186 |
nonstandard extensions of real valued functions). This makes |
|
187 |
proof much longer- see comments at end of HREALABS.thy where |
|
188 |
we proved a congruence theorem for hrabs. |
|
189 |
||
190 |
NEW!!! No need to prove all the lemmas anymore. Use the ultrafilter |
|
191 |
tactic! |
|
192 |
*) |
|
193 |
||
194 |
lemma hrabs_is_starext_rabs: "is_starext abs abs" |
|
195 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
196 |
apply (unfold is_starext_def, safe) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
197 |
apply (rule_tac z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
198 |
apply (rule_tac z = y in eq_Abs_hypreal, auto) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
199 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
200 |
apply (rule bexI, rule_tac [2] lemma_hyprel_refl) |
| 14370 | 201 |
apply (auto dest!: spec simp add: hypreal_minus hrabs_def hypreal_zero_def hypreal_le_def hypreal_less_def) |
202 |
apply (arith | ultra)+ |
|
203 |
done |
|
204 |
||
205 |
lemma Rep_hypreal_FreeUltrafilterNat: "[| X: Rep_hypreal z; Y: Rep_hypreal z |] |
|
206 |
==> {n. X n = Y n} : FreeUltrafilterNat"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
207 |
apply (rule_tac z = z in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
208 |
apply (auto, ultra) |
| 14370 | 209 |
done |
210 |
||
211 |
(*----------------------------------------------------------------------- |
|
212 |
Nonstandard extension of functions- congruence |
|
213 |
-----------------------------------------------------------------------*) |
|
214 |
||
215 |
lemma starfun_congruent: "congruent hyprel (%X. hyprel``{%n. f (X n)})"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
216 |
by (unfold congruent_def, auto, ultra) |
| 14370 | 217 |
|
218 |
lemma starfun: |
|
219 |
"( *f* f) (Abs_hypreal(hyprel``{%n. X n})) =
|
|
220 |
Abs_hypreal(hyprel `` {%n. f (X n)})"
|
|
221 |
apply (unfold starfun_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
222 |
apply (rule_tac f = Abs_hypreal in arg_cong) |
| 14370 | 223 |
apply (simp add: hyprel_in_hypreal [THEN Abs_hypreal_inverse] |
224 |
UN_equiv_class [OF equiv_hyprel starfun_congruent]) |
|
225 |
done |
|
226 |
||
227 |
(*------------------------------------------- |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
228 |
multiplication: ( *f) x ( *g) = *(f x g) |
| 14370 | 229 |
------------------------------------------*) |
230 |
lemma starfun_mult: "( *f* f) xa * ( *f* g) xa = ( *f* (%x. f x * g x)) xa" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
231 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 232 |
apply (auto simp add: starfun hypreal_mult) |
233 |
done |
|
234 |
declare starfun_mult [symmetric, simp] |
|
235 |
||
236 |
(*--------------------------------------- |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
237 |
addition: ( *f) + ( *g) = *(f + g) |
| 14370 | 238 |
---------------------------------------*) |
239 |
lemma starfun_add: "( *f* f) xa + ( *f* g) xa = ( *f* (%x. f x + g x)) xa" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
240 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 241 |
apply (auto simp add: starfun hypreal_add) |
242 |
done |
|
243 |
declare starfun_add [symmetric, simp] |
|
244 |
||
245 |
(*-------------------------------------------- |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
246 |
subtraction: ( *f) + -( *g) = *(f + -g) |
| 14370 | 247 |
-------------------------------------------*) |
248 |
||
249 |
lemma starfun_minus: "- ( *f* f) x = ( *f* (%x. - f x)) x" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
250 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 251 |
apply (auto simp add: starfun hypreal_minus) |
252 |
done |
|
253 |
declare starfun_minus [symmetric, simp] |
|
254 |
||
255 |
(*FIXME: delete*) |
|
256 |
lemma starfun_add_minus: "( *f* f) xa + -( *f* g) xa = ( *f* (%x. f x + -g x)) xa" |
|
257 |
apply (simp (no_asm)) |
|
258 |
done |
|
259 |
declare starfun_add_minus [symmetric, simp] |
|
260 |
||
261 |
lemma starfun_diff: |
|
262 |
"( *f* f) xa - ( *f* g) xa = ( *f* (%x. f x - g x)) xa" |
|
263 |
apply (unfold hypreal_diff_def real_diff_def) |
|
264 |
apply (rule starfun_add_minus) |
|
265 |
done |
|
266 |
declare starfun_diff [symmetric, simp] |
|
267 |
||
268 |
(*-------------------------------------- |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
269 |
composition: ( *f) o ( *g) = *(f o g) |
| 14370 | 270 |
---------------------------------------*) |
271 |
||
272 |
lemma starfun_o2: "(%x. ( *f* f) (( *f* g) x)) = *f* (%x. f (g x))" |
|
273 |
apply (rule ext) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
274 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 275 |
apply (auto simp add: starfun) |
276 |
done |
|
277 |
||
278 |
lemma starfun_o: "( *f* f) o ( *f* g) = ( *f* (f o g))" |
|
279 |
apply (unfold o_def) |
|
280 |
apply (simp (no_asm) add: starfun_o2) |
|
281 |
done |
|
282 |
||
283 |
(*-------------------------------------- |
|
284 |
NS extension of constant function |
|
285 |
--------------------------------------*) |
|
286 |
lemma starfun_const_fun: "( *f* (%x. k)) xa = hypreal_of_real k" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
287 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 288 |
apply (auto simp add: starfun hypreal_of_real_def) |
289 |
done |
|
290 |
||
291 |
declare starfun_const_fun [simp] |
|
292 |
||
293 |
(*---------------------------------------------------- |
|
294 |
the NS extension of the identity function |
|
295 |
----------------------------------------------------*) |
|
296 |
||
297 |
lemma starfun_Idfun_approx: "x @= hypreal_of_real a ==> ( *f* (%x. x)) x @= hypreal_of_real a" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
298 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 299 |
apply (auto simp add: starfun) |
300 |
done |
|
301 |
||
302 |
lemma starfun_Id: "( *f* (%x. x)) x = x" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
303 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 304 |
apply (auto simp add: starfun) |
305 |
done |
|
306 |
declare starfun_Id [simp] |
|
307 |
||
308 |
(*---------------------------------------------------------------------- |
|
309 |
the *-function is a (nonstandard) extension of the function |
|
310 |
----------------------------------------------------------------------*) |
|
311 |
||
312 |
lemma is_starext_starfun: "is_starext ( *f* f) f" |
|
313 |
||
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
314 |
apply (unfold is_starext_def, auto) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
315 |
apply (rule_tac z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
316 |
apply (rule_tac z = y in eq_Abs_hypreal) |
| 14370 | 317 |
apply (auto intro!: bexI simp add: starfun) |
318 |
done |
|
319 |
||
320 |
(*---------------------------------------------------------------------- |
|
321 |
Any nonstandard extension is in fact the *-function |
|
322 |
----------------------------------------------------------------------*) |
|
323 |
||
324 |
lemma is_starfun_starext: "is_starext F f ==> F = *f* f" |
|
325 |
||
326 |
apply (unfold is_starext_def) |
|
327 |
apply (rule ext) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
328 |
apply (rule_tac z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
329 |
apply (drule_tac x = x in spec) |
| 14370 | 330 |
apply (drule_tac x = "( *f* f) x" in spec) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
331 |
apply (auto dest!: FreeUltrafilterNat_Compl_mem simp add: starfun, ultra) |
| 14370 | 332 |
done |
333 |
||
334 |
lemma is_starext_starfun_iff: "(is_starext F f) = (F = *f* f)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
335 |
by (blast intro: is_starfun_starext is_starext_starfun) |
| 14370 | 336 |
|
337 |
(*-------------------------------------------------------- |
|
338 |
extented function has same solution as its standard |
|
339 |
version for real arguments. i.e they are the same |
|
340 |
for all real arguments |
|
341 |
-------------------------------------------------------*) |
|
342 |
lemma starfun_eq: "( *f* f) (hypreal_of_real a) = hypreal_of_real (f a)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
343 |
by (auto simp add: starfun hypreal_of_real_def) |
| 14370 | 344 |
|
345 |
declare starfun_eq [simp] |
|
346 |
||
347 |
lemma starfun_approx: "( *f* f) (hypreal_of_real a) @= hypreal_of_real (f a)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
348 |
by auto |
| 14370 | 349 |
|
350 |
(* useful for NS definition of derivatives *) |
|
351 |
lemma starfun_lambda_cancel: "( *f* (%h. f (x + h))) xa = ( *f* f) (hypreal_of_real x + xa)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
352 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 353 |
apply (auto simp add: starfun hypreal_of_real_def hypreal_add) |
354 |
done |
|
355 |
||
356 |
lemma starfun_lambda_cancel2: "( *f* (%h. f(g(x + h)))) xa = ( *f* (f o g)) (hypreal_of_real x + xa)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
357 |
apply (rule_tac z = xa in eq_Abs_hypreal) |
| 14370 | 358 |
apply (auto simp add: starfun hypreal_of_real_def hypreal_add) |
359 |
done |
|
360 |
||
361 |
lemma starfun_mult_HFinite_approx: "[| ( *f* f) xa @= l; ( *f* g) xa @= m; |
|
362 |
l: HFinite; m: HFinite |
|
363 |
|] ==> ( *f* (%x. f x * g x)) xa @= l * m" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
364 |
apply (drule approx_mult_HFinite, assumption+) |
| 14370 | 365 |
apply (auto intro: approx_HFinite [OF _ approx_sym]) |
366 |
done |
|
367 |
||
368 |
lemma starfun_add_approx: "[| ( *f* f) xa @= l; ( *f* g) xa @= m |
|
369 |
|] ==> ( *f* (%x. f x + g x)) xa @= l + m" |
|
370 |
apply (auto intro: approx_add) |
|
371 |
done |
|
372 |
||
373 |
(*---------------------------------------------------- |
|
374 |
Examples: hrabs is nonstandard extension of rabs |
|
375 |
inverse is nonstandard extension of inverse |
|
376 |
---------------------------------------------------*) |
|
377 |
||
378 |
(* can be proved easily using theorem "starfun" and *) |
|
379 |
(* properties of ultrafilter as for inverse below we *) |
|
380 |
(* use the theorem we proved above instead *) |
|
381 |
||
382 |
lemma starfun_rabs_hrabs: "*f* abs = abs" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
383 |
by (rule hrabs_is_starext_rabs [THEN is_starext_starfun_iff [THEN iffD1], symmetric]) |
| 14370 | 384 |
|
385 |
lemma starfun_inverse_inverse: "( *f* inverse) x = inverse(x)" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
386 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 387 |
apply (auto simp add: starfun hypreal_inverse hypreal_zero_def) |
388 |
done |
|
389 |
declare starfun_inverse_inverse [simp] |
|
390 |
||
391 |
lemma starfun_inverse: "inverse (( *f* f) x) = ( *f* (%x. inverse (f x))) x" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
392 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 393 |
apply (auto simp add: starfun hypreal_inverse) |
394 |
done |
|
395 |
declare starfun_inverse [symmetric, simp] |
|
396 |
||
397 |
lemma starfun_divide: |
|
398 |
"( *f* f) xa / ( *f* g) xa = ( *f* (%x. f x / g x)) xa" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
399 |
apply (unfold hypreal_divide_def real_divide_def, auto) |
| 14370 | 400 |
done |
401 |
declare starfun_divide [symmetric, simp] |
|
402 |
||
403 |
lemma starfun_inverse2: "inverse (( *f* f) x) = ( *f* (%x. inverse (f x))) x" |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
404 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 405 |
apply (auto intro: FreeUltrafilterNat_subset dest!: FreeUltrafilterNat_Compl_mem simp add: starfun hypreal_inverse hypreal_zero_def) |
406 |
done |
|
407 |
||
408 |
(*------------------------------------------------------------- |
|
409 |
General lemma/theorem needed for proofs in elementary |
|
410 |
topology of the reals |
|
411 |
------------------------------------------------------------*) |
|
412 |
lemma starfun_mem_starset: |
|
413 |
"( *f* f) x : *s* A ==> x : *s* {x. f x : A}"
|
|
414 |
apply (unfold starset_def) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
415 |
apply (rule_tac z = x in eq_Abs_hypreal) |
| 14370 | 416 |
apply (auto simp add: starfun) |
417 |
apply (rename_tac "X") |
|
418 |
apply (drule_tac x = "%n. f (X n) " in bspec) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
419 |
apply (auto, ultra) |
| 14370 | 420 |
done |
421 |
||
422 |
(*------------------------------------------------------------ |
|
423 |
Alternative definition for hrabs with rabs function |
|
424 |
applied entrywise to equivalence class representative. |
|
425 |
This is easily proved using starfun and ns extension thm |
|
426 |
------------------------------------------------------------*) |
|
427 |
lemma hypreal_hrabs: "abs (Abs_hypreal (hyprel `` {X})) =
|
|
428 |
Abs_hypreal(hyprel `` {%n. abs (X n)})"
|
|
429 |
apply (simp (no_asm) add: starfun_rabs_hrabs [symmetric] starfun) |
|
430 |
done |
|
431 |
||
432 |
(*---------------------------------------------------------------- |
|
433 |
nonstandard extension of set through nonstandard extension |
|
434 |
of rabs function i.e hrabs. A more general result should be |
|
435 |
where we replace rabs by some arbitrary function f and hrabs |
|
436 |
by its NS extenson ( *f* f). See second NS set extension below. |
|
437 |
----------------------------------------------------------------*) |
|
438 |
lemma STAR_rabs_add_minus: |
|
439 |
"*s* {x. abs (x + - y) < r} =
|
|
440 |
{x. abs(x + -hypreal_of_real y) < hypreal_of_real r}"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
441 |
apply (unfold starset_def, safe) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
442 |
apply (rule_tac [!] z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
443 |
apply (auto intro!: exI dest!: bspec simp add: hypreal_minus hypreal_of_real_def hypreal_add hypreal_hrabs hypreal_less, ultra) |
| 14370 | 444 |
done |
445 |
||
446 |
lemma STAR_starfun_rabs_add_minus: |
|
447 |
"*s* {x. abs (f x + - y) < r} =
|
|
448 |
{x. abs(( *f* f) x + -hypreal_of_real y) < hypreal_of_real r}"
|
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
449 |
apply (unfold starset_def, safe) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
450 |
apply (rule_tac [!] z = x in eq_Abs_hypreal) |
|
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
451 |
apply (auto intro!: exI dest!: bspec simp add: hypreal_minus hypreal_of_real_def hypreal_add hypreal_hrabs hypreal_less starfun, ultra) |
| 14370 | 452 |
done |
453 |
||
454 |
(*------------------------------------------------------------------- |
|
455 |
Another characterization of Infinitesimal and one of @= relation. |
|
456 |
In this theory since hypreal_hrabs proved here. (To Check:) Maybe |
|
457 |
move both if possible? |
|
458 |
-------------------------------------------------------------------*) |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
459 |
lemma Infinitesimal_FreeUltrafilterNat_iff2: |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
460 |
"(x:Infinitesimal) = |
| 14370 | 461 |
(EX X:Rep_hypreal(x). |
462 |
ALL m. {n. abs(X n) < inverse(real(Suc m))}
|
|
463 |
: FreeUltrafilterNat)" |
|
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
464 |
apply (rule eq_Abs_hypreal [of x]) |
| 14370 | 465 |
apply (auto intro!: bexI lemma_hyprel_refl |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
466 |
simp add: Infinitesimal_hypreal_of_nat_iff hypreal_of_real_def |
|
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
467 |
hypreal_inverse hypreal_hrabs hypreal_less hypreal_of_nat_eq) |
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
468 |
apply (drule_tac x = n in spec, ultra) |
| 14370 | 469 |
done |
470 |
||
471 |
lemma approx_FreeUltrafilterNat_iff: "(Abs_hypreal(hyprel``{X}) @= Abs_hypreal(hyprel``{Y})) =
|
|
472 |
(ALL m. {n. abs (X n + - Y n) <
|
|
473 |
inverse(real(Suc m))} : FreeUltrafilterNat)" |
|
474 |
apply (subst approx_minus_iff) |
|
475 |
apply (rule mem_infmal_iff [THEN subst]) |
|
476 |
apply (auto simp add: hypreal_minus hypreal_add Infinitesimal_FreeUltrafilterNat_iff2) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
477 |
apply (drule_tac x = m in spec, ultra) |
| 14370 | 478 |
done |
479 |
||
480 |
lemma inj_starfun: "inj starfun" |
|
481 |
apply (rule inj_onI) |
|
|
14371
c78c7da09519
Conversion of HyperNat to Isar format and its declaration as a semiring
paulson
parents:
14370
diff
changeset
|
482 |
apply (rule ext, rule ccontr) |
| 14370 | 483 |
apply (drule_tac x = "Abs_hypreal (hyprel ``{%n. xa}) " in fun_cong)
|
484 |
apply (auto simp add: starfun) |
|
485 |
done |
|
486 |
||
487 |
ML |
|
488 |
{*
|
|
489 |
val starset_def = thm"starset_def"; |
|
490 |
val starset_n_def = thm"starset_n_def"; |
|
491 |
val InternalSets_def = thm"InternalSets_def"; |
|
492 |
val is_starext_def = thm"is_starext_def"; |
|
493 |
val starfun_def = thm"starfun_def"; |
|
494 |
val starfun_n_def = thm"starfun_n_def"; |
|
495 |
val InternalFuns_def = thm"InternalFuns_def"; |
|
496 |
||
497 |
val no_choice = thm "no_choice"; |
|
498 |
val STAR_real_set = thm "STAR_real_set"; |
|
499 |
val STAR_empty_set = thm "STAR_empty_set"; |
|
500 |
val STAR_Un = thm "STAR_Un"; |
|
501 |
val STAR_Int = thm "STAR_Int"; |
|
502 |
val STAR_Compl = thm "STAR_Compl"; |
|
503 |
val STAR_mem_Compl = thm "STAR_mem_Compl"; |
|
504 |
val STAR_diff = thm "STAR_diff"; |
|
505 |
val STAR_subset = thm "STAR_subset"; |
|
506 |
val STAR_mem = thm "STAR_mem"; |
|
507 |
val STAR_hypreal_of_real_image_subset = thm "STAR_hypreal_of_real_image_subset"; |
|
508 |
val STAR_hypreal_of_real_Int = thm "STAR_hypreal_of_real_Int"; |
|
509 |
val STAR_real_seq_to_hypreal = thm "STAR_real_seq_to_hypreal"; |
|
510 |
val STAR_singleton = thm "STAR_singleton"; |
|
511 |
val STAR_not_mem = thm "STAR_not_mem"; |
|
512 |
val STAR_subset_closed = thm "STAR_subset_closed"; |
|
513 |
val starset_n_starset = thm "starset_n_starset"; |
|
514 |
val starfun_n_starfun = thm "starfun_n_starfun"; |
|
515 |
val hrabs_is_starext_rabs = thm "hrabs_is_starext_rabs"; |
|
516 |
val Rep_hypreal_FreeUltrafilterNat = thm "Rep_hypreal_FreeUltrafilterNat"; |
|
517 |
val starfun_congruent = thm "starfun_congruent"; |
|
518 |
val starfun = thm "starfun"; |
|
519 |
val starfun_mult = thm "starfun_mult"; |
|
520 |
val starfun_add = thm "starfun_add"; |
|
521 |
val starfun_minus = thm "starfun_minus"; |
|
522 |
val starfun_add_minus = thm "starfun_add_minus"; |
|
523 |
val starfun_diff = thm "starfun_diff"; |
|
524 |
val starfun_o2 = thm "starfun_o2"; |
|
525 |
val starfun_o = thm "starfun_o"; |
|
526 |
val starfun_const_fun = thm "starfun_const_fun"; |
|
527 |
val starfun_Idfun_approx = thm "starfun_Idfun_approx"; |
|
528 |
val starfun_Id = thm "starfun_Id"; |
|
529 |
val is_starext_starfun = thm "is_starext_starfun"; |
|
530 |
val is_starfun_starext = thm "is_starfun_starext"; |
|
531 |
val is_starext_starfun_iff = thm "is_starext_starfun_iff"; |
|
532 |
val starfun_eq = thm "starfun_eq"; |
|
533 |
val starfun_approx = thm "starfun_approx"; |
|
534 |
val starfun_lambda_cancel = thm "starfun_lambda_cancel"; |
|
535 |
val starfun_lambda_cancel2 = thm "starfun_lambda_cancel2"; |
|
536 |
val starfun_mult_HFinite_approx = thm "starfun_mult_HFinite_approx"; |
|
537 |
val starfun_add_approx = thm "starfun_add_approx"; |
|
538 |
val starfun_rabs_hrabs = thm "starfun_rabs_hrabs"; |
|
539 |
val starfun_inverse_inverse = thm "starfun_inverse_inverse"; |
|
540 |
val starfun_inverse = thm "starfun_inverse"; |
|
541 |
val starfun_divide = thm "starfun_divide"; |
|
542 |
val starfun_inverse2 = thm "starfun_inverse2"; |
|
543 |
val starfun_mem_starset = thm "starfun_mem_starset"; |
|
544 |
val hypreal_hrabs = thm "hypreal_hrabs"; |
|
545 |
val STAR_rabs_add_minus = thm "STAR_rabs_add_minus"; |
|
546 |
val STAR_starfun_rabs_add_minus = thm "STAR_starfun_rabs_add_minus"; |
|
547 |
val Infinitesimal_FreeUltrafilterNat_iff2 = thm "Infinitesimal_FreeUltrafilterNat_iff2"; |
|
548 |
val approx_FreeUltrafilterNat_iff = thm "approx_FreeUltrafilterNat_iff"; |
|
549 |
val inj_starfun = thm "inj_starfun"; |
|
550 |
*} |
|
551 |
||
552 |
end |