author | haftmann |
Fri, 04 Jul 2014 20:18:47 +0200 | |
changeset 57512 | cc97b347b301 |
parent 51489 | f738e6dbd844 |
child 58710 | 7216a10d69ba |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Library/Nat_Bijection.thy |
35700 | 2 |
Author: Brian Huffman |
3 |
Author: Florian Haftmann |
|
4 |
Author: Stefan Richter |
|
5 |
Author: Tobias Nipkow |
|
6 |
Author: Alexander Krauss |
|
7 |
*) |
|
8 |
||
9 |
header {* Bijections between natural numbers and other types *} |
|
10 |
||
11 |
theory Nat_Bijection |
|
12 |
imports Main Parity |
|
13 |
begin |
|
14 |
||
15 |
subsection {* Type @{typ "nat \<times> nat"} *} |
|
16 |
||
17 |
text "Triangle numbers: 0, 1, 3, 6, 10, 15, ..." |
|
18 |
||
19 |
definition |
|
20 |
triangle :: "nat \<Rightarrow> nat" |
|
21 |
where |
|
22 |
"triangle n = n * Suc n div 2" |
|
23 |
||
24 |
lemma triangle_0 [simp]: "triangle 0 = 0" |
|
25 |
unfolding triangle_def by simp |
|
26 |
||
27 |
lemma triangle_Suc [simp]: "triangle (Suc n) = triangle n + Suc n" |
|
28 |
unfolding triangle_def by simp |
|
29 |
||
30 |
definition |
|
31 |
prod_encode :: "nat \<times> nat \<Rightarrow> nat" |
|
32 |
where |
|
33 |
"prod_encode = (\<lambda>(m, n). triangle (m + n) + m)" |
|
34 |
||
35 |
text {* In this auxiliary function, @{term "triangle k + m"} is an invariant. *} |
|
36 |
||
37 |
fun |
|
38 |
prod_decode_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" |
|
39 |
where |
|
40 |
"prod_decode_aux k m = |
|
41 |
(if m \<le> k then (m, k - m) else prod_decode_aux (Suc k) (m - Suc k))" |
|
42 |
||
43 |
declare prod_decode_aux.simps [simp del] |
|
44 |
||
45 |
definition |
|
46 |
prod_decode :: "nat \<Rightarrow> nat \<times> nat" |
|
47 |
where |
|
48 |
"prod_decode = prod_decode_aux 0" |
|
49 |
||
50 |
lemma prod_encode_prod_decode_aux: |
|
51 |
"prod_encode (prod_decode_aux k m) = triangle k + m" |
|
52 |
apply (induct k m rule: prod_decode_aux.induct) |
|
53 |
apply (subst prod_decode_aux.simps) |
|
54 |
apply (simp add: prod_encode_def) |
|
55 |
done |
|
56 |
||
57 |
lemma prod_decode_inverse [simp]: "prod_encode (prod_decode n) = n" |
|
58 |
unfolding prod_decode_def by (simp add: prod_encode_prod_decode_aux) |
|
59 |
||
60 |
lemma prod_decode_triangle_add: |
|
61 |
"prod_decode (triangle k + m) = prod_decode_aux k m" |
|
62 |
apply (induct k arbitrary: m) |
|
63 |
apply (simp add: prod_decode_def) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
51489
diff
changeset
|
64 |
apply (simp only: triangle_Suc add.assoc) |
35700 | 65 |
apply (subst prod_decode_aux.simps, simp) |
66 |
done |
|
67 |
||
68 |
lemma prod_encode_inverse [simp]: "prod_decode (prod_encode x) = x" |
|
69 |
unfolding prod_encode_def |
|
70 |
apply (induct x) |
|
71 |
apply (simp add: prod_decode_triangle_add) |
|
72 |
apply (subst prod_decode_aux.simps, simp) |
|
73 |
done |
|
74 |
||
75 |
lemma inj_prod_encode: "inj_on prod_encode A" |
|
76 |
by (rule inj_on_inverseI, rule prod_encode_inverse) |
|
77 |
||
78 |
lemma inj_prod_decode: "inj_on prod_decode A" |
|
79 |
by (rule inj_on_inverseI, rule prod_decode_inverse) |
|
80 |
||
81 |
lemma surj_prod_encode: "surj prod_encode" |
|
82 |
by (rule surjI, rule prod_decode_inverse) |
|
83 |
||
84 |
lemma surj_prod_decode: "surj prod_decode" |
|
85 |
by (rule surjI, rule prod_encode_inverse) |
|
86 |
||
87 |
lemma bij_prod_encode: "bij prod_encode" |
|
88 |
by (rule bijI [OF inj_prod_encode surj_prod_encode]) |
|
89 |
||
90 |
lemma bij_prod_decode: "bij prod_decode" |
|
91 |
by (rule bijI [OF inj_prod_decode surj_prod_decode]) |
|
92 |
||
93 |
lemma prod_encode_eq: "prod_encode x = prod_encode y \<longleftrightarrow> x = y" |
|
94 |
by (rule inj_prod_encode [THEN inj_eq]) |
|
95 |
||
96 |
lemma prod_decode_eq: "prod_decode x = prod_decode y \<longleftrightarrow> x = y" |
|
97 |
by (rule inj_prod_decode [THEN inj_eq]) |
|
98 |
||
99 |
text {* Ordering properties *} |
|
100 |
||
101 |
lemma le_prod_encode_1: "a \<le> prod_encode (a, b)" |
|
102 |
unfolding prod_encode_def by simp |
|
103 |
||
104 |
lemma le_prod_encode_2: "b \<le> prod_encode (a, b)" |
|
105 |
unfolding prod_encode_def by (induct b, simp_all) |
|
106 |
||
107 |
||
108 |
subsection {* Type @{typ "nat + nat"} *} |
|
109 |
||
110 |
definition |
|
111 |
sum_encode :: "nat + nat \<Rightarrow> nat" |
|
112 |
where |
|
113 |
"sum_encode x = (case x of Inl a \<Rightarrow> 2 * a | Inr b \<Rightarrow> Suc (2 * b))" |
|
114 |
||
115 |
definition |
|
116 |
sum_decode :: "nat \<Rightarrow> nat + nat" |
|
117 |
where |
|
118 |
"sum_decode n = (if even n then Inl (n div 2) else Inr (n div 2))" |
|
119 |
||
120 |
lemma sum_encode_inverse [simp]: "sum_decode (sum_encode x) = x" |
|
121 |
unfolding sum_decode_def sum_encode_def |
|
122 |
by (induct x) simp_all |
|
123 |
||
124 |
lemma sum_decode_inverse [simp]: "sum_encode (sum_decode n) = n" |
|
125 |
unfolding sum_decode_def sum_encode_def numeral_2_eq_2 |
|
126 |
by (simp add: even_nat_div_two_times_two odd_nat_div_two_times_two_plus_one |
|
127 |
del: mult_Suc) |
|
128 |
||
129 |
lemma inj_sum_encode: "inj_on sum_encode A" |
|
130 |
by (rule inj_on_inverseI, rule sum_encode_inverse) |
|
131 |
||
132 |
lemma inj_sum_decode: "inj_on sum_decode A" |
|
133 |
by (rule inj_on_inverseI, rule sum_decode_inverse) |
|
134 |
||
135 |
lemma surj_sum_encode: "surj sum_encode" |
|
136 |
by (rule surjI, rule sum_decode_inverse) |
|
137 |
||
138 |
lemma surj_sum_decode: "surj sum_decode" |
|
139 |
by (rule surjI, rule sum_encode_inverse) |
|
140 |
||
141 |
lemma bij_sum_encode: "bij sum_encode" |
|
142 |
by (rule bijI [OF inj_sum_encode surj_sum_encode]) |
|
143 |
||
144 |
lemma bij_sum_decode: "bij sum_decode" |
|
145 |
by (rule bijI [OF inj_sum_decode surj_sum_decode]) |
|
146 |
||
147 |
lemma sum_encode_eq: "sum_encode x = sum_encode y \<longleftrightarrow> x = y" |
|
148 |
by (rule inj_sum_encode [THEN inj_eq]) |
|
149 |
||
150 |
lemma sum_decode_eq: "sum_decode x = sum_decode y \<longleftrightarrow> x = y" |
|
151 |
by (rule inj_sum_decode [THEN inj_eq]) |
|
152 |
||
153 |
||
154 |
subsection {* Type @{typ "int"} *} |
|
155 |
||
156 |
definition |
|
157 |
int_encode :: "int \<Rightarrow> nat" |
|
158 |
where |
|
159 |
"int_encode i = sum_encode (if 0 \<le> i then Inl (nat i) else Inr (nat (- i - 1)))" |
|
160 |
||
161 |
definition |
|
162 |
int_decode :: "nat \<Rightarrow> int" |
|
163 |
where |
|
164 |
"int_decode n = (case sum_decode n of Inl a \<Rightarrow> int a | Inr b \<Rightarrow> - int b - 1)" |
|
165 |
||
166 |
lemma int_encode_inverse [simp]: "int_decode (int_encode x) = x" |
|
167 |
unfolding int_decode_def int_encode_def by simp |
|
168 |
||
169 |
lemma int_decode_inverse [simp]: "int_encode (int_decode n) = n" |
|
170 |
unfolding int_decode_def int_encode_def using sum_decode_inverse [of n] |
|
171 |
by (cases "sum_decode n", simp_all) |
|
172 |
||
173 |
lemma inj_int_encode: "inj_on int_encode A" |
|
174 |
by (rule inj_on_inverseI, rule int_encode_inverse) |
|
175 |
||
176 |
lemma inj_int_decode: "inj_on int_decode A" |
|
177 |
by (rule inj_on_inverseI, rule int_decode_inverse) |
|
178 |
||
179 |
lemma surj_int_encode: "surj int_encode" |
|
180 |
by (rule surjI, rule int_decode_inverse) |
|
181 |
||
182 |
lemma surj_int_decode: "surj int_decode" |
|
183 |
by (rule surjI, rule int_encode_inverse) |
|
184 |
||
185 |
lemma bij_int_encode: "bij int_encode" |
|
186 |
by (rule bijI [OF inj_int_encode surj_int_encode]) |
|
187 |
||
188 |
lemma bij_int_decode: "bij int_decode" |
|
189 |
by (rule bijI [OF inj_int_decode surj_int_decode]) |
|
190 |
||
191 |
lemma int_encode_eq: "int_encode x = int_encode y \<longleftrightarrow> x = y" |
|
192 |
by (rule inj_int_encode [THEN inj_eq]) |
|
193 |
||
194 |
lemma int_decode_eq: "int_decode x = int_decode y \<longleftrightarrow> x = y" |
|
195 |
by (rule inj_int_decode [THEN inj_eq]) |
|
196 |
||
197 |
||
198 |
subsection {* Type @{typ "nat list"} *} |
|
199 |
||
200 |
fun |
|
201 |
list_encode :: "nat list \<Rightarrow> nat" |
|
202 |
where |
|
203 |
"list_encode [] = 0" |
|
204 |
| "list_encode (x # xs) = Suc (prod_encode (x, list_encode xs))" |
|
205 |
||
206 |
function |
|
207 |
list_decode :: "nat \<Rightarrow> nat list" |
|
208 |
where |
|
209 |
"list_decode 0 = []" |
|
210 |
| "list_decode (Suc n) = (case prod_decode n of (x, y) \<Rightarrow> x # list_decode y)" |
|
211 |
by pat_completeness auto |
|
212 |
||
213 |
termination list_decode |
|
214 |
apply (relation "measure id", simp_all) |
|
215 |
apply (drule arg_cong [where f="prod_encode"]) |
|
37591 | 216 |
apply (drule sym) |
35700 | 217 |
apply (simp add: le_imp_less_Suc le_prod_encode_2) |
218 |
done |
|
219 |
||
220 |
lemma list_encode_inverse [simp]: "list_decode (list_encode x) = x" |
|
221 |
by (induct x rule: list_encode.induct) simp_all |
|
222 |
||
223 |
lemma list_decode_inverse [simp]: "list_encode (list_decode n) = n" |
|
224 |
apply (induct n rule: list_decode.induct, simp) |
|
225 |
apply (simp split: prod.split) |
|
226 |
apply (simp add: prod_decode_eq [symmetric]) |
|
227 |
done |
|
228 |
||
229 |
lemma inj_list_encode: "inj_on list_encode A" |
|
230 |
by (rule inj_on_inverseI, rule list_encode_inverse) |
|
231 |
||
232 |
lemma inj_list_decode: "inj_on list_decode A" |
|
233 |
by (rule inj_on_inverseI, rule list_decode_inverse) |
|
234 |
||
235 |
lemma surj_list_encode: "surj list_encode" |
|
236 |
by (rule surjI, rule list_decode_inverse) |
|
237 |
||
238 |
lemma surj_list_decode: "surj list_decode" |
|
239 |
by (rule surjI, rule list_encode_inverse) |
|
240 |
||
241 |
lemma bij_list_encode: "bij list_encode" |
|
242 |
by (rule bijI [OF inj_list_encode surj_list_encode]) |
|
243 |
||
244 |
lemma bij_list_decode: "bij list_decode" |
|
245 |
by (rule bijI [OF inj_list_decode surj_list_decode]) |
|
246 |
||
247 |
lemma list_encode_eq: "list_encode x = list_encode y \<longleftrightarrow> x = y" |
|
248 |
by (rule inj_list_encode [THEN inj_eq]) |
|
249 |
||
250 |
lemma list_decode_eq: "list_decode x = list_decode y \<longleftrightarrow> x = y" |
|
251 |
by (rule inj_list_decode [THEN inj_eq]) |
|
252 |
||
253 |
||
254 |
subsection {* Finite sets of naturals *} |
|
255 |
||
256 |
subsubsection {* Preliminaries *} |
|
257 |
||
258 |
lemma finite_vimage_Suc_iff: "finite (Suc -` F) \<longleftrightarrow> finite F" |
|
259 |
apply (safe intro!: finite_vimageI inj_Suc) |
|
260 |
apply (rule finite_subset [where B="insert 0 (Suc ` Suc -` F)"]) |
|
261 |
apply (rule subsetI, case_tac x, simp, simp) |
|
262 |
apply (rule finite_insert [THEN iffD2]) |
|
263 |
apply (erule finite_imageI) |
|
264 |
done |
|
265 |
||
266 |
lemma vimage_Suc_insert_0: "Suc -` insert 0 A = Suc -` A" |
|
267 |
by auto |
|
268 |
||
269 |
lemma vimage_Suc_insert_Suc: |
|
270 |
"Suc -` insert (Suc n) A = insert n (Suc -` A)" |
|
271 |
by auto |
|
272 |
||
273 |
lemma even_nat_Suc_div_2: "even x \<Longrightarrow> Suc x div 2 = x div 2" |
|
274 |
by (simp only: numeral_2_eq_2 even_nat_plus_one_div_two) |
|
275 |
||
276 |
lemma div2_even_ext_nat: |
|
277 |
"\<lbrakk>x div 2 = y div 2; even x = even y\<rbrakk> \<Longrightarrow> (x::nat) = y" |
|
278 |
apply (rule mod_div_equality [of x 2, THEN subst]) |
|
279 |
apply (rule mod_div_equality [of y 2, THEN subst]) |
|
280 |
apply (case_tac "even x") |
|
281 |
apply (simp add: numeral_2_eq_2 even_nat_equiv_def) |
|
282 |
apply (simp add: numeral_2_eq_2 odd_nat_equiv_def) |
|
283 |
done |
|
284 |
||
285 |
subsubsection {* From sets to naturals *} |
|
286 |
||
287 |
definition |
|
288 |
set_encode :: "nat set \<Rightarrow> nat" |
|
289 |
where |
|
290 |
"set_encode = setsum (op ^ 2)" |
|
291 |
||
292 |
lemma set_encode_empty [simp]: "set_encode {} = 0" |
|
293 |
by (simp add: set_encode_def) |
|
294 |
||
295 |
lemma set_encode_insert [simp]: |
|
296 |
"\<lbrakk>finite A; n \<notin> A\<rbrakk> \<Longrightarrow> set_encode (insert n A) = 2^n + set_encode A" |
|
297 |
by (simp add: set_encode_def) |
|
298 |
||
299 |
lemma even_set_encode_iff: "finite A \<Longrightarrow> even (set_encode A) \<longleftrightarrow> 0 \<notin> A" |
|
300 |
unfolding set_encode_def by (induct set: finite, auto) |
|
301 |
||
302 |
lemma set_encode_vimage_Suc: "set_encode (Suc -` A) = set_encode A div 2" |
|
303 |
apply (cases "finite A") |
|
304 |
apply (erule finite_induct, simp) |
|
305 |
apply (case_tac x) |
|
306 |
apply (simp add: even_nat_Suc_div_2 even_set_encode_iff vimage_Suc_insert_0) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
51489
diff
changeset
|
307 |
apply (simp add: finite_vimageI add.commute vimage_Suc_insert_Suc) |
35700 | 308 |
apply (simp add: set_encode_def finite_vimage_Suc_iff) |
309 |
done |
|
310 |
||
311 |
lemmas set_encode_div_2 = set_encode_vimage_Suc [symmetric] |
|
312 |
||
313 |
subsubsection {* From naturals to sets *} |
|
314 |
||
315 |
definition |
|
316 |
set_decode :: "nat \<Rightarrow> nat set" |
|
317 |
where |
|
318 |
"set_decode x = {n. odd (x div 2 ^ n)}" |
|
319 |
||
320 |
lemma set_decode_0 [simp]: "0 \<in> set_decode x \<longleftrightarrow> odd x" |
|
321 |
by (simp add: set_decode_def) |
|
322 |
||
323 |
lemma set_decode_Suc [simp]: |
|
324 |
"Suc n \<in> set_decode x \<longleftrightarrow> n \<in> set_decode (x div 2)" |
|
325 |
by (simp add: set_decode_def div_mult2_eq) |
|
326 |
||
327 |
lemma set_decode_zero [simp]: "set_decode 0 = {}" |
|
328 |
by (simp add: set_decode_def) |
|
329 |
||
330 |
lemma set_decode_div_2: "set_decode (x div 2) = Suc -` set_decode x" |
|
331 |
by auto |
|
332 |
||
333 |
lemma set_decode_plus_power_2: |
|
334 |
"n \<notin> set_decode z \<Longrightarrow> set_decode (2 ^ n + z) = insert n (set_decode z)" |
|
335 |
apply (induct n arbitrary: z, simp_all) |
|
39302
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
nipkow
parents:
37591
diff
changeset
|
336 |
apply (rule set_eqI, induct_tac x, simp, simp add: even_nat_Suc_div_2) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
51489
diff
changeset
|
337 |
apply (rule set_eqI, induct_tac x, simp, simp add: add.commute) |
35700 | 338 |
done |
339 |
||
340 |
lemma finite_set_decode [simp]: "finite (set_decode n)" |
|
341 |
apply (induct n rule: nat_less_induct) |
|
342 |
apply (case_tac "n = 0", simp) |
|
343 |
apply (drule_tac x="n div 2" in spec, simp) |
|
344 |
apply (simp add: set_decode_div_2) |
|
345 |
apply (simp add: finite_vimage_Suc_iff) |
|
346 |
done |
|
347 |
||
348 |
subsubsection {* Proof of isomorphism *} |
|
349 |
||
350 |
lemma set_decode_inverse [simp]: "set_encode (set_decode n) = n" |
|
351 |
apply (induct n rule: nat_less_induct) |
|
352 |
apply (case_tac "n = 0", simp) |
|
353 |
apply (drule_tac x="n div 2" in spec, simp) |
|
354 |
apply (simp add: set_decode_div_2 set_encode_vimage_Suc) |
|
355 |
apply (erule div2_even_ext_nat) |
|
356 |
apply (simp add: even_set_encode_iff) |
|
357 |
done |
|
358 |
||
359 |
lemma set_encode_inverse [simp]: "finite A \<Longrightarrow> set_decode (set_encode A) = A" |
|
360 |
apply (erule finite_induct, simp_all) |
|
361 |
apply (simp add: set_decode_plus_power_2) |
|
362 |
done |
|
363 |
||
364 |
lemma inj_on_set_encode: "inj_on set_encode (Collect finite)" |
|
365 |
by (rule inj_on_inverseI [where g="set_decode"], simp) |
|
366 |
||
367 |
lemma set_encode_eq: |
|
368 |
"\<lbrakk>finite A; finite B\<rbrakk> \<Longrightarrow> set_encode A = set_encode B \<longleftrightarrow> A = B" |
|
369 |
by (rule iffI, simp add: inj_onD [OF inj_on_set_encode], simp) |
|
370 |
||
51414 | 371 |
lemma subset_decode_imp_le: assumes "set_decode m \<subseteq> set_decode n" shows "m \<le> n" |
372 |
proof - |
|
373 |
have "n = m + set_encode (set_decode n - set_decode m)" |
|
374 |
proof - |
|
375 |
obtain A B where "m = set_encode A" "finite A" |
|
376 |
"n = set_encode B" "finite B" |
|
377 |
by (metis finite_set_decode set_decode_inverse) |
|
378 |
thus ?thesis using assms |
|
379 |
apply auto |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
51489
diff
changeset
|
380 |
apply (simp add: set_encode_def add.commute setsum.subset_diff) |
51414 | 381 |
done |
382 |
qed |
|
383 |
thus ?thesis |
|
384 |
by (metis le_add1) |
|
385 |
qed |
|
386 |
||
35700 | 387 |
end |
51489 | 388 |