|
4832
|
1 |
(* Title: HOL/Lex/NA.thy
|
|
|
2 |
ID: $Id$
|
|
|
3 |
Author: Tobias Nipkow
|
|
|
4 |
Copyright 1998 TUM
|
|
|
5 |
|
|
|
6 |
Nondeterministic automata
|
|
|
7 |
*)
|
|
|
8 |
|
|
14428
|
9 |
theory NA = AutoProj:
|
|
4832
|
10 |
|
|
|
11 |
types ('a,'s)na = "'s * ('a => 's => 's set) * ('s => bool)"
|
|
|
12 |
|
|
|
13 |
consts delta :: "('a,'s)na => 'a list => 's => 's set"
|
|
5184
|
14 |
primrec
|
|
4832
|
15 |
"delta A [] p = {p}"
|
|
10834
|
16 |
"delta A (a#w) p = Union(delta A w ` next A a p)"
|
|
4832
|
17 |
|
|
|
18 |
constdefs
|
|
14428
|
19 |
accepts :: "('a,'s)na => 'a list => bool"
|
|
|
20 |
"accepts A w == EX q : delta A w (start A). fin A q"
|
|
4832
|
21 |
|
|
5323
|
22 |
step :: "('a,'s)na => 'a => ('s * 's)set"
|
|
|
23 |
"step A a == {(p,q) . q : next A a p}"
|
|
|
24 |
|
|
|
25 |
consts steps :: "('a,'s)na => 'a list => ('s * 's)set"
|
|
|
26 |
primrec
|
|
5608
|
27 |
"steps A [] = Id"
|
|
5323
|
28 |
"steps A (a#w) = steps A w O step A a"
|
|
|
29 |
|
|
14428
|
30 |
lemma steps_append[simp]:
|
|
|
31 |
"steps A (v@w) = steps A w O steps A v";
|
|
|
32 |
by(induct v, simp_all add:O_assoc)
|
|
|
33 |
|
|
|
34 |
lemma in_steps_append[iff]:
|
|
|
35 |
"(p,r) : steps A (v@w) = ((p,r) : (steps A w O steps A v))"
|
|
|
36 |
apply(rule steps_append[THEN equalityE])
|
|
|
37 |
apply blast
|
|
|
38 |
done
|
|
|
39 |
|
|
|
40 |
lemma delta_conv_steps: "!!p. delta A w p = {q. (p,q) : steps A w}"
|
|
|
41 |
by(induct w)(auto simp:step_def)
|
|
|
42 |
|
|
|
43 |
lemma accepts_conv_steps:
|
|
|
44 |
"accepts A w = (? q. (start A,q) : steps A w & fin A q)";
|
|
|
45 |
by(simp add: delta_conv_steps accepts_def)
|
|
|
46 |
|
|
4832
|
47 |
end
|