doc-src/TutorialI/Inductive/document/Mutual.tex
author nipkow
Tue, 02 Jan 2001 12:04:33 +0100
changeset 10762 cd1a2bee5549
child 10790 520dd8696927
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10762
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     1
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{Mutual}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     4
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     5
\isamarkupsubsection{Mutual inductive definitions%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     6
}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     7
%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     8
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
     9
Just as there are datatypes defined by mutual recursion, there are sets defined
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    10
by mutual induction. As a trivial example we consider the even and odd natural numbers:%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    11
\end{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    12
\isacommand{consts}\ even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    13
\ \ \ \ \ \ \ odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ set{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    14
\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    15
\isacommand{inductive}\ even\ odd\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    16
\isakeyword{intros}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    17
zero{\isacharcolon}\ \ {\isachardoublequote}{\isadigit{0}}\ {\isasymin}\ even{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    18
evenI{\isacharcolon}\ {\isachardoublequote}n\ {\isasymin}\ odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ even{\isachardoublequote}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    19
oddI{\isacharcolon}\ \ {\isachardoublequote}n\ {\isasymin}\ even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ odd{\isachardoublequote}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    20
\begin{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    21
\noindent
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    22
The simultaneous inductive definition of multiple sets is no different from that
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    23
of a single set, except for induction: just as for mutually recursive datatypes,
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    24
induction needs to involve all the simultaneously defined sets. In the above case,
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    25
the induction rule is called \isa{even{\isacharunderscore}odd{\isachardot}induct} (simply concenate the names
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    26
of the sets involved) and has the conclusion
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    27
\begin{isabelle}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    28
\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    29
\end{isabelle}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    30
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    31
If we want to prove that all even numbers are divisible by 2, we have to generalize
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    32
the statement as follows:%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    33
\end{isamarkuptext}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    34
\isacommand{lemma}\ {\isachardoublequote}{\isacharparenleft}m\ {\isasymin}\ even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    35
\begin{isamarkuptxt}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    36
\noindent
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    37
The proof is by rule induction. Because of the form of the induction theorem, it is
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    38
applied by \isa{rule} rather than \isa{erule} as for ordinary inductive definitions:%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    39
\end{isamarkuptxt}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    40
\isacommand{apply}{\isacharparenleft}rule\ even{\isacharunderscore}odd{\isachardot}induct{\isacharparenright}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    41
\begin{isamarkuptxt}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    42
\begin{isabelle}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    43
\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    44
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ odd{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ Suc\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    45
\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    46
\end{isabelle}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    47
The first two subgoals are proved by simplification and the final one can be
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    48
proved in the same manner as in \S\ref{sec:rule-induction}
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    49
where the same subgoal was encountered before.
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    50
We do not show the proof script.%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    51
\end{isamarkuptxt}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    52
\end{isabellebody}%
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    53
%%% Local Variables:
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    54
%%% mode: latex
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    55
%%% TeX-master: "root"
cd1a2bee5549 *** empty log message ***
nipkow
parents:
diff changeset
    56
%%% End: