| 30096 |      1 | (* Title:      Archimedean_Field.thy
 | 
|  |      2 |    Author:     Brian Huffman
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header {* Archimedean Fields, Floor and Ceiling Functions *}
 | 
|  |      6 | 
 | 
|  |      7 | theory Archimedean_Field
 | 
|  |      8 | imports Main
 | 
|  |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | subsection {* Class of Archimedean fields *}
 | 
|  |     12 | 
 | 
|  |     13 | text {* Archimedean fields have no infinite elements. *}
 | 
|  |     14 | 
 | 
|  |     15 | class archimedean_field = ordered_field + number_ring +
 | 
|  |     16 |   assumes ex_le_of_int: "\<exists>z. x \<le> of_int z"
 | 
|  |     17 | 
 | 
|  |     18 | lemma ex_less_of_int:
 | 
|  |     19 |   fixes x :: "'a::archimedean_field" shows "\<exists>z. x < of_int z"
 | 
|  |     20 | proof -
 | 
|  |     21 |   from ex_le_of_int obtain z where "x \<le> of_int z" ..
 | 
|  |     22 |   then have "x < of_int (z + 1)" by simp
 | 
|  |     23 |   then show ?thesis ..
 | 
|  |     24 | qed
 | 
|  |     25 | 
 | 
|  |     26 | lemma ex_of_int_less:
 | 
|  |     27 |   fixes x :: "'a::archimedean_field" shows "\<exists>z. of_int z < x"
 | 
|  |     28 | proof -
 | 
|  |     29 |   from ex_less_of_int obtain z where "- x < of_int z" ..
 | 
|  |     30 |   then have "of_int (- z) < x" by simp
 | 
|  |     31 |   then show ?thesis ..
 | 
|  |     32 | qed
 | 
|  |     33 | 
 | 
|  |     34 | lemma ex_less_of_nat:
 | 
|  |     35 |   fixes x :: "'a::archimedean_field" shows "\<exists>n. x < of_nat n"
 | 
|  |     36 | proof -
 | 
|  |     37 |   obtain z where "x < of_int z" using ex_less_of_int ..
 | 
|  |     38 |   also have "\<dots> \<le> of_int (int (nat z))" by simp
 | 
|  |     39 |   also have "\<dots> = of_nat (nat z)" by (simp only: of_int_of_nat_eq)
 | 
|  |     40 |   finally show ?thesis ..
 | 
|  |     41 | qed
 | 
|  |     42 | 
 | 
|  |     43 | lemma ex_le_of_nat:
 | 
|  |     44 |   fixes x :: "'a::archimedean_field" shows "\<exists>n. x \<le> of_nat n"
 | 
|  |     45 | proof -
 | 
|  |     46 |   obtain n where "x < of_nat n" using ex_less_of_nat ..
 | 
|  |     47 |   then have "x \<le> of_nat n" by simp
 | 
|  |     48 |   then show ?thesis ..
 | 
|  |     49 | qed
 | 
|  |     50 | 
 | 
|  |     51 | text {* Archimedean fields have no infinitesimal elements. *}
 | 
|  |     52 | 
 | 
|  |     53 | lemma ex_inverse_of_nat_Suc_less:
 | 
|  |     54 |   fixes x :: "'a::archimedean_field"
 | 
|  |     55 |   assumes "0 < x" shows "\<exists>n. inverse (of_nat (Suc n)) < x"
 | 
|  |     56 | proof -
 | 
|  |     57 |   from `0 < x` have "0 < inverse x"
 | 
|  |     58 |     by (rule positive_imp_inverse_positive)
 | 
|  |     59 |   obtain n where "inverse x < of_nat n"
 | 
|  |     60 |     using ex_less_of_nat ..
 | 
|  |     61 |   then obtain m where "inverse x < of_nat (Suc m)"
 | 
|  |     62 |     using `0 < inverse x` by (cases n) (simp_all del: of_nat_Suc)
 | 
|  |     63 |   then have "inverse (of_nat (Suc m)) < inverse (inverse x)"
 | 
|  |     64 |     using `0 < inverse x` by (rule less_imp_inverse_less)
 | 
|  |     65 |   then have "inverse (of_nat (Suc m)) < x"
 | 
|  |     66 |     using `0 < x` by (simp add: nonzero_inverse_inverse_eq)
 | 
|  |     67 |   then show ?thesis ..
 | 
|  |     68 | qed
 | 
|  |     69 | 
 | 
|  |     70 | lemma ex_inverse_of_nat_less:
 | 
|  |     71 |   fixes x :: "'a::archimedean_field"
 | 
|  |     72 |   assumes "0 < x" shows "\<exists>n>0. inverse (of_nat n) < x"
 | 
|  |     73 |   using ex_inverse_of_nat_Suc_less [OF `0 < x`] by auto
 | 
|  |     74 | 
 | 
|  |     75 | lemma ex_less_of_nat_mult:
 | 
|  |     76 |   fixes x :: "'a::archimedean_field"
 | 
|  |     77 |   assumes "0 < x" shows "\<exists>n. y < of_nat n * x"
 | 
|  |     78 | proof -
 | 
|  |     79 |   obtain n where "y / x < of_nat n" using ex_less_of_nat ..
 | 
|  |     80 |   with `0 < x` have "y < of_nat n * x" by (simp add: pos_divide_less_eq)
 | 
|  |     81 |   then show ?thesis ..
 | 
|  |     82 | qed
 | 
|  |     83 | 
 | 
|  |     84 | 
 | 
|  |     85 | subsection {* Existence and uniqueness of floor function *}
 | 
|  |     86 | 
 | 
|  |     87 | lemma exists_least_lemma:
 | 
|  |     88 |   assumes "\<not> P 0" and "\<exists>n. P n"
 | 
|  |     89 |   shows "\<exists>n. \<not> P n \<and> P (Suc n)"
 | 
|  |     90 | proof -
 | 
|  |     91 |   from `\<exists>n. P n` have "P (Least P)" by (rule LeastI_ex)
 | 
|  |     92 |   with `\<not> P 0` obtain n where "Least P = Suc n"
 | 
|  |     93 |     by (cases "Least P") auto
 | 
|  |     94 |   then have "n < Least P" by simp
 | 
|  |     95 |   then have "\<not> P n" by (rule not_less_Least)
 | 
|  |     96 |   then have "\<not> P n \<and> P (Suc n)"
 | 
|  |     97 |     using `P (Least P)` `Least P = Suc n` by simp
 | 
|  |     98 |   then show ?thesis ..
 | 
|  |     99 | qed
 | 
|  |    100 | 
 | 
|  |    101 | lemma floor_exists:
 | 
|  |    102 |   fixes x :: "'a::archimedean_field"
 | 
|  |    103 |   shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
 | 
|  |    104 | proof (cases)
 | 
|  |    105 |   assume "0 \<le> x"
 | 
|  |    106 |   then have "\<not> x < of_nat 0" by simp
 | 
|  |    107 |   then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)"
 | 
|  |    108 |     using ex_less_of_nat by (rule exists_least_lemma)
 | 
|  |    109 |   then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" ..
 | 
|  |    110 |   then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" by simp
 | 
|  |    111 |   then show ?thesis ..
 | 
|  |    112 | next
 | 
|  |    113 |   assume "\<not> 0 \<le> x"
 | 
|  |    114 |   then have "\<not> - x \<le> of_nat 0" by simp
 | 
|  |    115 |   then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)"
 | 
|  |    116 |     using ex_le_of_nat by (rule exists_least_lemma)
 | 
|  |    117 |   then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" ..
 | 
|  |    118 |   then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" by simp
 | 
|  |    119 |   then show ?thesis ..
 | 
|  |    120 | qed
 | 
|  |    121 | 
 | 
|  |    122 | lemma floor_exists1:
 | 
|  |    123 |   fixes x :: "'a::archimedean_field"
 | 
|  |    124 |   shows "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)"
 | 
|  |    125 | proof (rule ex_ex1I)
 | 
|  |    126 |   show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)"
 | 
|  |    127 |     by (rule floor_exists)
 | 
|  |    128 | next
 | 
|  |    129 |   fix y z assume
 | 
|  |    130 |     "of_int y \<le> x \<and> x < of_int (y + 1)"
 | 
|  |    131 |     "of_int z \<le> x \<and> x < of_int (z + 1)"
 | 
|  |    132 |   then have
 | 
|  |    133 |     "of_int y \<le> x" "x < of_int (y + 1)"
 | 
|  |    134 |     "of_int z \<le> x" "x < of_int (z + 1)"
 | 
|  |    135 |     by simp_all
 | 
|  |    136 |   from le_less_trans [OF `of_int y \<le> x` `x < of_int (z + 1)`]
 | 
|  |    137 |        le_less_trans [OF `of_int z \<le> x` `x < of_int (y + 1)`]
 | 
|  |    138 |   show "y = z" by (simp del: of_int_add)
 | 
|  |    139 | qed
 | 
|  |    140 | 
 | 
|  |    141 | 
 | 
|  |    142 | subsection {* Floor function *}
 | 
|  |    143 | 
 | 
|  |    144 | definition
 | 
|  |    145 |   floor :: "'a::archimedean_field \<Rightarrow> int" where
 | 
|  |    146 |   [code del]: "floor x = (THE z. of_int z \<le> x \<and> x < of_int (z + 1))"
 | 
|  |    147 | 
 | 
|  |    148 | notation (xsymbols)
 | 
|  |    149 |   floor  ("\<lfloor>_\<rfloor>")
 | 
|  |    150 | 
 | 
|  |    151 | notation (HTML output)
 | 
|  |    152 |   floor  ("\<lfloor>_\<rfloor>")
 | 
|  |    153 | 
 | 
|  |    154 | lemma floor_correct: "of_int (floor x) \<le> x \<and> x < of_int (floor x + 1)"
 | 
|  |    155 |   unfolding floor_def using floor_exists1 by (rule theI')
 | 
|  |    156 | 
 | 
|  |    157 | lemma floor_unique: "\<lbrakk>of_int z \<le> x; x < of_int z + 1\<rbrakk> \<Longrightarrow> floor x = z"
 | 
|  |    158 |   using floor_correct [of x] floor_exists1 [of x] by auto
 | 
|  |    159 | 
 | 
|  |    160 | lemma of_int_floor_le: "of_int (floor x) \<le> x"
 | 
|  |    161 |   using floor_correct ..
 | 
|  |    162 | 
 | 
|  |    163 | lemma le_floor_iff: "z \<le> floor x \<longleftrightarrow> of_int z \<le> x"
 | 
|  |    164 | proof
 | 
|  |    165 |   assume "z \<le> floor x"
 | 
|  |    166 |   then have "(of_int z :: 'a) \<le> of_int (floor x)" by simp
 | 
|  |    167 |   also have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
 | 
|  |    168 |   finally show "of_int z \<le> x" .
 | 
|  |    169 | next
 | 
|  |    170 |   assume "of_int z \<le> x"
 | 
|  |    171 |   also have "x < of_int (floor x + 1)" using floor_correct ..
 | 
|  |    172 |   finally show "z \<le> floor x" by (simp del: of_int_add)
 | 
|  |    173 | qed
 | 
|  |    174 | 
 | 
|  |    175 | lemma floor_less_iff: "floor x < z \<longleftrightarrow> x < of_int z"
 | 
|  |    176 |   by (simp add: not_le [symmetric] le_floor_iff)
 | 
|  |    177 | 
 | 
|  |    178 | lemma less_floor_iff: "z < floor x \<longleftrightarrow> of_int z + 1 \<le> x"
 | 
|  |    179 |   using le_floor_iff [of "z + 1" x] by auto
 | 
|  |    180 | 
 | 
|  |    181 | lemma floor_le_iff: "floor x \<le> z \<longleftrightarrow> x < of_int z + 1"
 | 
|  |    182 |   by (simp add: not_less [symmetric] less_floor_iff)
 | 
|  |    183 | 
 | 
|  |    184 | lemma floor_mono: assumes "x \<le> y" shows "floor x \<le> floor y"
 | 
|  |    185 | proof -
 | 
|  |    186 |   have "of_int (floor x) \<le> x" by (rule of_int_floor_le)
 | 
|  |    187 |   also note `x \<le> y`
 | 
|  |    188 |   finally show ?thesis by (simp add: le_floor_iff)
 | 
|  |    189 | qed
 | 
|  |    190 | 
 | 
|  |    191 | lemma floor_less_cancel: "floor x < floor y \<Longrightarrow> x < y"
 | 
|  |    192 |   by (auto simp add: not_le [symmetric] floor_mono)
 | 
|  |    193 | 
 | 
|  |    194 | lemma floor_of_int [simp]: "floor (of_int z) = z"
 | 
|  |    195 |   by (rule floor_unique) simp_all
 | 
|  |    196 | 
 | 
|  |    197 | lemma floor_of_nat [simp]: "floor (of_nat n) = int n"
 | 
|  |    198 |   using floor_of_int [of "of_nat n"] by simp
 | 
|  |    199 | 
 | 
|  |    200 | text {* Floor with numerals *}
 | 
|  |    201 | 
 | 
|  |    202 | lemma floor_zero [simp]: "floor 0 = 0"
 | 
|  |    203 |   using floor_of_int [of 0] by simp
 | 
|  |    204 | 
 | 
|  |    205 | lemma floor_one [simp]: "floor 1 = 1"
 | 
|  |    206 |   using floor_of_int [of 1] by simp
 | 
|  |    207 | 
 | 
|  |    208 | lemma floor_number_of [simp]: "floor (number_of v) = number_of v"
 | 
|  |    209 |   using floor_of_int [of "number_of v"] by simp
 | 
|  |    210 | 
 | 
|  |    211 | lemma zero_le_floor [simp]: "0 \<le> floor x \<longleftrightarrow> 0 \<le> x"
 | 
|  |    212 |   by (simp add: le_floor_iff)
 | 
|  |    213 | 
 | 
|  |    214 | lemma one_le_floor [simp]: "1 \<le> floor x \<longleftrightarrow> 1 \<le> x"
 | 
|  |    215 |   by (simp add: le_floor_iff)
 | 
|  |    216 | 
 | 
|  |    217 | lemma number_of_le_floor [simp]: "number_of v \<le> floor x \<longleftrightarrow> number_of v \<le> x"
 | 
|  |    218 |   by (simp add: le_floor_iff)
 | 
|  |    219 | 
 | 
|  |    220 | lemma zero_less_floor [simp]: "0 < floor x \<longleftrightarrow> 1 \<le> x"
 | 
|  |    221 |   by (simp add: less_floor_iff)
 | 
|  |    222 | 
 | 
|  |    223 | lemma one_less_floor [simp]: "1 < floor x \<longleftrightarrow> 2 \<le> x"
 | 
|  |    224 |   by (simp add: less_floor_iff)
 | 
|  |    225 | 
 | 
|  |    226 | lemma number_of_less_floor [simp]:
 | 
|  |    227 |   "number_of v < floor x \<longleftrightarrow> number_of v + 1 \<le> x"
 | 
|  |    228 |   by (simp add: less_floor_iff)
 | 
|  |    229 | 
 | 
|  |    230 | lemma floor_le_zero [simp]: "floor x \<le> 0 \<longleftrightarrow> x < 1"
 | 
|  |    231 |   by (simp add: floor_le_iff)
 | 
|  |    232 | 
 | 
|  |    233 | lemma floor_le_one [simp]: "floor x \<le> 1 \<longleftrightarrow> x < 2"
 | 
|  |    234 |   by (simp add: floor_le_iff)
 | 
|  |    235 | 
 | 
|  |    236 | lemma floor_le_number_of [simp]:
 | 
|  |    237 |   "floor x \<le> number_of v \<longleftrightarrow> x < number_of v + 1"
 | 
|  |    238 |   by (simp add: floor_le_iff)
 | 
|  |    239 | 
 | 
|  |    240 | lemma floor_less_zero [simp]: "floor x < 0 \<longleftrightarrow> x < 0"
 | 
|  |    241 |   by (simp add: floor_less_iff)
 | 
|  |    242 | 
 | 
|  |    243 | lemma floor_less_one [simp]: "floor x < 1 \<longleftrightarrow> x < 1"
 | 
|  |    244 |   by (simp add: floor_less_iff)
 | 
|  |    245 | 
 | 
|  |    246 | lemma floor_less_number_of [simp]:
 | 
|  |    247 |   "floor x < number_of v \<longleftrightarrow> x < number_of v"
 | 
|  |    248 |   by (simp add: floor_less_iff)
 | 
|  |    249 | 
 | 
|  |    250 | text {* Addition and subtraction of integers *}
 | 
|  |    251 | 
 | 
|  |    252 | lemma floor_add_of_int [simp]: "floor (x + of_int z) = floor x + z"
 | 
|  |    253 |   using floor_correct [of x] by (simp add: floor_unique)
 | 
|  |    254 | 
 | 
|  |    255 | lemma floor_add_number_of [simp]:
 | 
|  |    256 |     "floor (x + number_of v) = floor x + number_of v"
 | 
|  |    257 |   using floor_add_of_int [of x "number_of v"] by simp
 | 
|  |    258 | 
 | 
|  |    259 | lemma floor_add_one [simp]: "floor (x + 1) = floor x + 1"
 | 
|  |    260 |   using floor_add_of_int [of x 1] by simp
 | 
|  |    261 | 
 | 
|  |    262 | lemma floor_diff_of_int [simp]: "floor (x - of_int z) = floor x - z"
 | 
|  |    263 |   using floor_add_of_int [of x "- z"] by (simp add: algebra_simps)
 | 
|  |    264 | 
 | 
|  |    265 | lemma floor_diff_number_of [simp]:
 | 
|  |    266 |   "floor (x - number_of v) = floor x - number_of v"
 | 
|  |    267 |   using floor_diff_of_int [of x "number_of v"] by simp
 | 
|  |    268 | 
 | 
|  |    269 | lemma floor_diff_one [simp]: "floor (x - 1) = floor x - 1"
 | 
|  |    270 |   using floor_diff_of_int [of x 1] by simp
 | 
|  |    271 | 
 | 
|  |    272 | 
 | 
|  |    273 | subsection {* Ceiling function *}
 | 
|  |    274 | 
 | 
|  |    275 | definition
 | 
|  |    276 |   ceiling :: "'a::archimedean_field \<Rightarrow> int" where
 | 
|  |    277 |   [code del]: "ceiling x = - floor (- x)"
 | 
|  |    278 | 
 | 
|  |    279 | notation (xsymbols)
 | 
|  |    280 |   ceiling  ("\<lceil>_\<rceil>")
 | 
|  |    281 | 
 | 
|  |    282 | notation (HTML output)
 | 
|  |    283 |   ceiling  ("\<lceil>_\<rceil>")
 | 
|  |    284 | 
 | 
|  |    285 | lemma ceiling_correct: "of_int (ceiling x) - 1 < x \<and> x \<le> of_int (ceiling x)"
 | 
|  |    286 |   unfolding ceiling_def using floor_correct [of "- x"] by simp
 | 
|  |    287 | 
 | 
|  |    288 | lemma ceiling_unique: "\<lbrakk>of_int z - 1 < x; x \<le> of_int z\<rbrakk> \<Longrightarrow> ceiling x = z"
 | 
|  |    289 |   unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp
 | 
|  |    290 | 
 | 
|  |    291 | lemma le_of_int_ceiling: "x \<le> of_int (ceiling x)"
 | 
|  |    292 |   using ceiling_correct ..
 | 
|  |    293 | 
 | 
|  |    294 | lemma ceiling_le_iff: "ceiling x \<le> z \<longleftrightarrow> x \<le> of_int z"
 | 
|  |    295 |   unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto
 | 
|  |    296 | 
 | 
|  |    297 | lemma less_ceiling_iff: "z < ceiling x \<longleftrightarrow> of_int z < x"
 | 
|  |    298 |   by (simp add: not_le [symmetric] ceiling_le_iff)
 | 
|  |    299 | 
 | 
|  |    300 | lemma ceiling_less_iff: "ceiling x < z \<longleftrightarrow> x \<le> of_int z - 1"
 | 
|  |    301 |   using ceiling_le_iff [of x "z - 1"] by simp
 | 
|  |    302 | 
 | 
|  |    303 | lemma le_ceiling_iff: "z \<le> ceiling x \<longleftrightarrow> of_int z - 1 < x"
 | 
|  |    304 |   by (simp add: not_less [symmetric] ceiling_less_iff)
 | 
|  |    305 | 
 | 
|  |    306 | lemma ceiling_mono: "x \<ge> y \<Longrightarrow> ceiling x \<ge> ceiling y"
 | 
|  |    307 |   unfolding ceiling_def by (simp add: floor_mono)
 | 
|  |    308 | 
 | 
|  |    309 | lemma ceiling_less_cancel: "ceiling x < ceiling y \<Longrightarrow> x < y"
 | 
|  |    310 |   by (auto simp add: not_le [symmetric] ceiling_mono)
 | 
|  |    311 | 
 | 
|  |    312 | lemma ceiling_of_int [simp]: "ceiling (of_int z) = z"
 | 
|  |    313 |   by (rule ceiling_unique) simp_all
 | 
|  |    314 | 
 | 
|  |    315 | lemma ceiling_of_nat [simp]: "ceiling (of_nat n) = int n"
 | 
|  |    316 |   using ceiling_of_int [of "of_nat n"] by simp
 | 
|  |    317 | 
 | 
|  |    318 | text {* Ceiling with numerals *}
 | 
|  |    319 | 
 | 
|  |    320 | lemma ceiling_zero [simp]: "ceiling 0 = 0"
 | 
|  |    321 |   using ceiling_of_int [of 0] by simp
 | 
|  |    322 | 
 | 
|  |    323 | lemma ceiling_one [simp]: "ceiling 1 = 1"
 | 
|  |    324 |   using ceiling_of_int [of 1] by simp
 | 
|  |    325 | 
 | 
|  |    326 | lemma ceiling_number_of [simp]: "ceiling (number_of v) = number_of v"
 | 
|  |    327 |   using ceiling_of_int [of "number_of v"] by simp
 | 
|  |    328 | 
 | 
|  |    329 | lemma ceiling_le_zero [simp]: "ceiling x \<le> 0 \<longleftrightarrow> x \<le> 0"
 | 
|  |    330 |   by (simp add: ceiling_le_iff)
 | 
|  |    331 | 
 | 
|  |    332 | lemma ceiling_le_one [simp]: "ceiling x \<le> 1 \<longleftrightarrow> x \<le> 1"
 | 
|  |    333 |   by (simp add: ceiling_le_iff)
 | 
|  |    334 | 
 | 
|  |    335 | lemma ceiling_le_number_of [simp]:
 | 
|  |    336 |   "ceiling x \<le> number_of v \<longleftrightarrow> x \<le> number_of v"
 | 
|  |    337 |   by (simp add: ceiling_le_iff)
 | 
|  |    338 | 
 | 
|  |    339 | lemma ceiling_less_zero [simp]: "ceiling x < 0 \<longleftrightarrow> x \<le> -1"
 | 
|  |    340 |   by (simp add: ceiling_less_iff)
 | 
|  |    341 | 
 | 
|  |    342 | lemma ceiling_less_one [simp]: "ceiling x < 1 \<longleftrightarrow> x \<le> 0"
 | 
|  |    343 |   by (simp add: ceiling_less_iff)
 | 
|  |    344 | 
 | 
|  |    345 | lemma ceiling_less_number_of [simp]:
 | 
|  |    346 |   "ceiling x < number_of v \<longleftrightarrow> x \<le> number_of v - 1"
 | 
|  |    347 |   by (simp add: ceiling_less_iff)
 | 
|  |    348 | 
 | 
|  |    349 | lemma zero_le_ceiling [simp]: "0 \<le> ceiling x \<longleftrightarrow> -1 < x"
 | 
|  |    350 |   by (simp add: le_ceiling_iff)
 | 
|  |    351 | 
 | 
|  |    352 | lemma one_le_ceiling [simp]: "1 \<le> ceiling x \<longleftrightarrow> 0 < x"
 | 
|  |    353 |   by (simp add: le_ceiling_iff)
 | 
|  |    354 | 
 | 
|  |    355 | lemma number_of_le_ceiling [simp]:
 | 
|  |    356 |   "number_of v \<le> ceiling x\<longleftrightarrow> number_of v - 1 < x"
 | 
|  |    357 |   by (simp add: le_ceiling_iff)
 | 
|  |    358 | 
 | 
|  |    359 | lemma zero_less_ceiling [simp]: "0 < ceiling x \<longleftrightarrow> 0 < x"
 | 
|  |    360 |   by (simp add: less_ceiling_iff)
 | 
|  |    361 | 
 | 
|  |    362 | lemma one_less_ceiling [simp]: "1 < ceiling x \<longleftrightarrow> 1 < x"
 | 
|  |    363 |   by (simp add: less_ceiling_iff)
 | 
|  |    364 | 
 | 
|  |    365 | lemma number_of_less_ceiling [simp]:
 | 
|  |    366 |   "number_of v < ceiling x \<longleftrightarrow> number_of v < x"
 | 
|  |    367 |   by (simp add: less_ceiling_iff)
 | 
|  |    368 | 
 | 
|  |    369 | text {* Addition and subtraction of integers *}
 | 
|  |    370 | 
 | 
|  |    371 | lemma ceiling_add_of_int [simp]: "ceiling (x + of_int z) = ceiling x + z"
 | 
|  |    372 |   using ceiling_correct [of x] by (simp add: ceiling_unique)
 | 
|  |    373 | 
 | 
|  |    374 | lemma ceiling_add_number_of [simp]:
 | 
|  |    375 |     "ceiling (x + number_of v) = ceiling x + number_of v"
 | 
|  |    376 |   using ceiling_add_of_int [of x "number_of v"] by simp
 | 
|  |    377 | 
 | 
|  |    378 | lemma ceiling_add_one [simp]: "ceiling (x + 1) = ceiling x + 1"
 | 
|  |    379 |   using ceiling_add_of_int [of x 1] by simp
 | 
|  |    380 | 
 | 
|  |    381 | lemma ceiling_diff_of_int [simp]: "ceiling (x - of_int z) = ceiling x - z"
 | 
|  |    382 |   using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps)
 | 
|  |    383 | 
 | 
|  |    384 | lemma ceiling_diff_number_of [simp]:
 | 
|  |    385 |   "ceiling (x - number_of v) = ceiling x - number_of v"
 | 
|  |    386 |   using ceiling_diff_of_int [of x "number_of v"] by simp
 | 
|  |    387 | 
 | 
|  |    388 | lemma ceiling_diff_one [simp]: "ceiling (x - 1) = ceiling x - 1"
 | 
|  |    389 |   using ceiling_diff_of_int [of x 1] by simp
 | 
|  |    390 | 
 | 
|  |    391 | 
 | 
|  |    392 | subsection {* Negation *}
 | 
|  |    393 | 
 | 
| 30102 |    394 | lemma floor_minus: "floor (- x) = - ceiling x"
 | 
| 30096 |    395 |   unfolding ceiling_def by simp
 | 
|  |    396 | 
 | 
| 30102 |    397 | lemma ceiling_minus: "ceiling (- x) = - floor x"
 | 
| 30096 |    398 |   unfolding ceiling_def by simp
 | 
|  |    399 | 
 | 
|  |    400 | end
 |