| author | haftmann | 
| Thu, 24 Feb 2022 11:25:09 +0000 | |
| changeset 75138 | cd77ffb01e15 | 
| parent 67613 | ce654b0e6d69 | 
| child 81575 | cb57350beaa9 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/FOCUS/Stream_adm.thy | 
| 17293 | 2 | Author: David von Oheimb, TU Muenchen | 
| 11350 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 oheimb parents: diff
changeset | 3 | *) | 
| 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 oheimb parents: diff
changeset | 4 | |
| 62175 | 5 | section \<open>Admissibility for streams\<close> | 
| 11350 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 oheimb parents: diff
changeset | 6 | |
| 17293 | 7 | theory Stream_adm | 
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
62175diff
changeset | 8 | imports "HOLCF-Library.Stream" "HOL-Library.Order_Continuity" | 
| 17293 | 9 | begin | 
| 11350 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 oheimb parents: diff
changeset | 10 | |
| 19763 | 11 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19763diff
changeset | 12 |   stream_monoP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
 | 
| 43924 | 13 | "stream_monoP F = (\<exists>Q i. \<forall>P s. enat i \<le> #s \<longrightarrow> | 
| 19763 | 14 | (s \<in> F P) = (stream_take i\<cdot>s \<in> Q \<and> iterate i\<cdot>rt\<cdot>s \<in> P))" | 
| 17293 | 15 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19763diff
changeset | 16 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19763diff
changeset | 17 |   stream_antiP  :: "(('a stream) set \<Rightarrow> ('a stream) set) \<Rightarrow> bool" where
 | 
| 19763 | 18 | "stream_antiP F = (\<forall>P x. \<exists>Q i. | 
| 43924 | 19 | (#x < enat i \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow> y \<in> F P \<longrightarrow> x \<in> F P)) \<and> | 
| 20 | (enat i <= #x \<longrightarrow> (\<forall>y. x \<sqsubseteq> y \<longrightarrow> | |
| 19763 | 21 | (y \<in> F P) = (stream_take i\<cdot>y \<in> Q \<and> iterate i\<cdot>rt\<cdot>y \<in> P))))" | 
| 17293 | 22 | |
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19763diff
changeset | 23 | definition | 
| 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19763diff
changeset | 24 | antitonP :: "'a set => bool" where | 
| 19763 | 25 | "antitonP P = (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> y\<in>P \<longrightarrow> x\<in>P)" | 
| 17293 | 26 | |
| 27 | ||
| 19759 | 28 | (* ----------------------------------------------------------------------- *) | 
| 29 | ||
| 30 | section "admissibility" | |
| 31 | ||
| 40430 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 32 | lemma infinite_chain_adm_lemma: | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 33 | "\<lbrakk>Porder.chain Y; \<forall>i. P (Y i); | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 34 | \<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i); \<not> finite_chain Y\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk> | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 35 | \<Longrightarrow> P (\<Squnion>i. Y i)" | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 36 | apply (case_tac "finite_chain Y") | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 37 | prefer 2 apply fast | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 38 | apply (unfold finite_chain_def) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 39 | apply safe | 
| 40771 | 40 | apply (erule lub_finch1 [THEN lub_eqI, THEN ssubst]) | 
| 40430 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 41 | apply assumption | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 42 | apply (erule spec) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 43 | done | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 44 | |
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 45 | lemma increasing_chain_adm_lemma: | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 46 | "\<lbrakk>Porder.chain Y; \<forall>i. P (Y i); \<And>Y. \<lbrakk>Porder.chain Y; \<forall>i. P (Y i); | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 47 | \<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk> | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 48 | \<Longrightarrow> P (\<Squnion>i. Y i)" | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 49 | apply (erule infinite_chain_adm_lemma) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 50 | apply assumption | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 51 | apply (erule thin_rl) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 52 | apply (unfold finite_chain_def) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 53 | apply (unfold max_in_chain_def) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 54 | apply (fast dest: le_imp_less_or_eq elim: chain_mono_less) | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 55 | done | 
| 
483a4876e428
move a few admissibility lemmas into FOCUS/Stream_adm.thy
 huffman parents: 
37110diff
changeset | 56 | |
| 19759 | 57 | lemma flatstream_adm_lemma: | 
| 26451 
f8a615f3bb31
avoid amiguity of Continuity.chain vs. Porder.chain;
 wenzelm parents: 
26102diff
changeset | 58 | assumes 1: "Porder.chain Y" | 
| 67613 | 59 | assumes 2: "\<forall>i. P (Y i)" | 
| 60 | assumes 3: "(\<And>Y. [| Porder.chain Y; \<forall>i. P (Y i); \<forall>k. \<exists>j. enat k < #((Y j)::'a::flat stream)|] | |
| 27413 | 61 | ==> P(LUB i. Y i))" | 
| 62 | shows "P(LUB i. Y i)" | |
| 46008 
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
 wenzelm parents: 
44019diff
changeset | 63 | apply (rule increasing_chain_adm_lemma [OF 1 2]) | 
| 19759 | 64 | apply (erule 3, assumption) | 
| 65 | apply (erule thin_rl) | |
| 66 | apply (rule allI) | |
| 67613 | 67 | apply (case_tac "\<forall>j. stream_finite (Y j)") | 
| 19759 | 68 | apply ( rule chain_incr) | 
| 69 | apply ( rule allI) | |
| 70 | apply ( drule spec) | |
| 71 | apply ( safe) | |
| 72 | apply ( rule exI) | |
| 73 | apply ( rule slen_strict_mono) | |
| 74 | apply ( erule spec) | |
| 75 | apply ( assumption) | |
| 76 | apply ( assumption) | |
| 43919 | 77 | apply (metis enat_ord_code(4) slen_infinite) | 
| 19759 | 78 | done | 
| 79 | ||
| 80 | (* should be without reference to stream length? *) | |
| 67613 | 81 | lemma flatstream_admI: "[|(\<And>Y. [| Porder.chain Y; \<forall>i. P (Y i); | 
| 82 | \<forall>k. \<exists>j. enat k < #((Y j)::'a::flat stream)|] ==> P(LUB i. Y i))|]==> adm P" | |
| 19759 | 83 | apply (unfold adm_def) | 
| 84 | apply (intro strip) | |
| 85 | apply (erule (1) flatstream_adm_lemma) | |
| 86 | apply (fast) | |
| 87 | done | |
| 88 | ||
| 89 | ||
| 43921 | 90 | (* context (theory "Extended_Nat");*) | 
| 43924 | 91 | lemma ile_lemma: "enat (i + j) <= x ==> enat i <= x" | 
| 27101 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26838diff
changeset | 92 | by (rule order_trans) auto | 
| 19759 | 93 | |
| 94 | lemma stream_monoP2I: | |
| 67613 | 95 | "\<And>X. stream_monoP F \<Longrightarrow> \<forall>i. \<exists>l. \<forall>x y. | 
| 96 | enat l \<le> #x \<longrightarrow> (x::'a::flat stream) << y --> x \<in> (F ^^ i) top \<longrightarrow> y \<in> (F ^^ i) top" | |
| 19759 | 97 | apply (unfold stream_monoP_def) | 
| 98 | apply (safe) | |
| 99 | apply (rule_tac x="i*ia" in exI) | |
| 100 | apply (induct_tac "ia") | |
| 101 | apply ( simp) | |
| 102 | apply (simp) | |
| 103 | apply (intro strip) | |
| 104 | apply (erule allE, erule all_dupE, drule mp, erule ile_lemma) | |
| 105 | apply (drule_tac P="%x. x" in subst, assumption) | |
| 106 | apply (erule allE, drule mp, rule ile_lemma) back | |
| 27101 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26838diff
changeset | 107 | apply ( erule order_trans) | 
| 19759 | 108 | apply ( erule slen_mono) | 
| 109 | apply (erule ssubst) | |
| 110 | apply (safe) | |
| 111 | apply ( erule (2) ile_lemma [THEN slen_take_lemma3, THEN subst]) | |
| 112 | apply (erule allE) | |
| 113 | apply (drule mp) | |
| 114 | apply ( erule slen_rt_mult) | |
| 115 | apply (erule allE) | |
| 116 | apply (drule mp) | |
| 117 | apply (erule monofun_rt_mult) | |
| 118 | apply (drule (1) mp) | |
| 119 | apply (assumption) | |
| 120 | done | |
| 121 | ||
| 67613 | 122 | lemma stream_monoP2_gfp_admI: "[| \<forall>i. \<exists>l. \<forall>x y. | 
| 123 | enat l \<le> #x \<longrightarrow> (x::'a::flat stream) << y \<longrightarrow> x \<in> (F ^^ i) top \<longrightarrow> y \<in> (F ^^ i) top; | |
| 124 | inf_continuous F |] ==> adm (\<lambda>x. x \<in> gfp F)" | |
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58880diff
changeset | 125 | apply (erule inf_continuous_gfp[of F, THEN ssubst]) | 
| 19759 | 126 | apply (simp (no_asm)) | 
| 127 | apply (rule adm_lemmas) | |
| 128 | apply (rule flatstream_admI) | |
| 129 | apply (erule allE) | |
| 130 | apply (erule exE) | |
| 131 | apply (erule allE, erule exE) | |
| 132 | apply (erule allE, erule allE, drule mp) (* stream_monoP *) | |
| 133 | apply ( drule ileI1) | |
| 27101 
864d29f11c9d
slightly tuning of some proofs involving case distinction and induction on natural numbers and similar
 haftmann parents: 
26838diff
changeset | 134 | apply ( drule order_trans) | 
| 44019 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43924diff
changeset | 135 | apply ( rule ile_eSuc) | 
| 
ee784502aed5
Extended_Nat.thy: renamed iSuc to eSuc, standardized theorem names
 huffman parents: 
43924diff
changeset | 136 | apply ( drule eSuc_ile_mono [THEN iffD1]) | 
| 19759 | 137 | apply ( assumption) | 
| 138 | apply (drule mp) | |
| 139 | apply ( erule is_ub_thelub) | |
| 140 | apply (fast) | |
| 141 | done | |
| 142 | ||
| 143 | lemmas fstream_gfp_admI = stream_monoP2I [THEN stream_monoP2_gfp_admI] | |
| 144 | ||
| 145 | lemma stream_antiP2I: | |
| 67613 | 146 | "\<And>X. [|stream_antiP (F::(('a::flat stream)set => ('a stream set)))|]
 | 
| 147 | ==> \<forall>i x y. x << y \<longrightarrow> y \<in> (F ^^ i) top \<longrightarrow> x \<in> (F ^^ i) top" | |
| 19759 | 148 | apply (unfold stream_antiP_def) | 
| 149 | apply (rule allI) | |
| 150 | apply (induct_tac "i") | |
| 151 | apply ( simp) | |
| 152 | apply (simp) | |
| 153 | apply (intro strip) | |
| 154 | apply (erule allE, erule all_dupE, erule exE, erule exE) | |
| 155 | apply (erule conjE) | |
| 43924 | 156 | apply (case_tac "#x < enat i") | 
| 19759 | 157 | apply ( fast) | 
| 26102 | 158 | apply (unfold linorder_not_less) | 
| 19759 | 159 | apply (drule (1) mp) | 
| 40431 | 160 | apply (erule all_dupE, drule mp, rule below_refl) | 
| 19759 | 161 | apply (erule ssubst) | 
| 162 | apply (erule allE, drule (1) mp) | |
| 163 | apply (drule_tac P="%x. x" in subst, assumption) | |
| 164 | apply (erule conjE, rule conjI) | |
| 165 | apply ( erule slen_take_lemma3 [THEN ssubst], assumption) | |
| 166 | apply ( assumption) | |
| 167 | apply (erule allE, erule allE, drule mp, erule monofun_rt_mult) | |
| 168 | apply (drule (1) mp) | |
| 169 | apply (assumption) | |
| 170 | done | |
| 171 | ||
| 172 | lemma stream_antiP2_non_gfp_admI: | |
| 67613 | 173 | "\<And>X. [|\<forall>i x y. x << y \<longrightarrow> y \<in> (F ^^ i) top \<longrightarrow> x \<in> (F ^^ i) top; inf_continuous F |] | 
| 174 | ==> adm (\<lambda>u. \<not> u \<in> gfp F)" | |
| 19759 | 175 | apply (unfold adm_def) | 
| 60172 
423273355b55
rename continuous and down_continuous in Order_Continuity to sup_/inf_continuous; relate them with topological continuity
 hoelzl parents: 
58880diff
changeset | 176 | apply (simp add: inf_continuous_gfp) | 
| 19759 | 177 | apply (fast dest!: is_ub_thelub) | 
| 178 | done | |
| 179 | ||
| 180 | lemmas fstream_non_gfp_admI = stream_antiP2I [THEN stream_antiP2_non_gfp_admI] | |
| 181 | ||
| 182 | ||
| 183 | ||
| 184 | (**new approach for adm********************************************************) | |
| 185 | ||
| 186 | section "antitonP" | |
| 187 | ||
| 67613 | 188 | lemma antitonPD: "[| antitonP P; y \<in> P; x<<y |] ==> x \<in> P" | 
| 19759 | 189 | apply (unfold antitonP_def) | 
| 190 | apply auto | |
| 191 | done | |
| 192 | ||
| 67613 | 193 | lemma antitonPI: "\<forall>x y. y \<in> P \<longrightarrow> x<<y --> x \<in> P \<Longrightarrow> antitonP P" | 
| 19759 | 194 | apply (unfold antitonP_def) | 
| 195 | apply (fast) | |
| 196 | done | |
| 197 | ||
| 67613 | 198 | lemma antitonP_adm_non_P: "antitonP P \<Longrightarrow> adm (\<lambda>u. u \<notin> P)" | 
| 19759 | 199 | apply (unfold adm_def) | 
| 200 | apply (auto dest: antitonPD elim: is_ub_thelub) | |
| 201 | done | |
| 202 | ||
| 203 | lemma def_gfp_adm_nonP: "P \<equiv> gfp F \<Longrightarrow> {y. \<exists>x::'a::pcpo. y \<sqsubseteq> x \<and> x \<in> P} \<subseteq> F {y. \<exists>x. y \<sqsubseteq> x \<and> x \<in> P} \<Longrightarrow> 
 | |
| 204 | adm (\<lambda>u. u\<notin>P)" | |
| 205 | apply (simp) | |
| 206 | apply (rule antitonP_adm_non_P) | |
| 207 | apply (rule antitonPI) | |
| 208 | apply (drule gfp_upperbound) | |
| 209 | apply (fast) | |
| 210 | done | |
| 211 | ||
| 212 | lemma adm_set: | |
| 67613 | 213 | "{\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<subseteq> P \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
 | 
| 19759 | 214 | apply (unfold adm_def) | 
| 215 | apply (fast) | |
| 216 | done | |
| 217 | ||
| 27413 | 218 | lemma def_gfp_admI: "P \<equiv> gfp F \<Longrightarrow> {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<subseteq> 
 | 
| 219 |   F {\<Squnion>i. Y i |Y. Porder.chain Y \<and> (\<forall>i. Y i \<in> P)} \<Longrightarrow> adm (\<lambda>x. x\<in>P)"
 | |
| 19759 | 220 | apply (simp) | 
| 221 | apply (rule adm_set) | |
| 222 | apply (erule gfp_upperbound) | |
| 223 | done | |
| 224 | ||
| 11350 
4c55b020d6ee
added FOCUS including the One-Element Buffer by Manfred Broy
 oheimb parents: diff
changeset | 225 | end |