| 
15634
 | 
     1  | 
(*  ID:         $Id$
  | 
| 
12197
 | 
     2  | 
    Author:     Sidi O Ehmety, Cambridge University Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   2001  University of Cambridge
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
   <xs,ys>:gen_prefix(r)
  | 
| 
 | 
     6  | 
     if ys = xs' @ zs where length(xs) = length(xs')
  | 
| 
 | 
     7  | 
     and corresponding elements of xs, xs' are pairwise related by r
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Based on Lex/Prefix
  | 
| 
 | 
    10  | 
*)
  | 
| 
 | 
    11  | 
  | 
| 
15634
 | 
    12  | 
header{*Charpentier's Generalized Prefix Relation*}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
theory GenPrefix
  | 
| 
26060
 | 
    15  | 
imports Main
  | 
| 
15634
 | 
    16  | 
begin
  | 
| 
12197
 | 
    17  | 
  | 
| 
24893
 | 
    18  | 
definition (*really belongs in ZF/Trancl*)
  | 
| 
 | 
    19  | 
  part_order :: "[i, i] => o"  where
  | 
| 
14055
 | 
    20  | 
  "part_order(A, r) == refl(A,r) & trans[A](r) & antisym(r)"
  | 
| 
 | 
    21  | 
  | 
| 
12197
 | 
    22  | 
consts
  | 
| 
 | 
    23  | 
  gen_prefix :: "[i, i] => i"
  | 
| 
24892
 | 
    24  | 
  | 
| 
12197
 | 
    25  | 
inductive
  | 
| 
 | 
    26  | 
  (* Parameter A is the domain of zs's elements *)
  | 
| 
24892
 | 
    27  | 
  | 
| 
12197
 | 
    28  | 
  domains "gen_prefix(A, r)" <= "list(A)*list(A)"
  | 
| 
24892
 | 
    29  | 
  | 
| 
15634
 | 
    30  | 
  intros
  | 
| 
 | 
    31  | 
    Nil:     "<[],[]>:gen_prefix(A, r)"
  | 
| 
12197
 | 
    32  | 
  | 
| 
15634
 | 
    33  | 
    prepend: "[| <xs,ys>:gen_prefix(A, r);  <x,y>:r; x:A; y:A |]
  | 
| 
12197
 | 
    34  | 
	      ==> <Cons(x,xs), Cons(y,ys)>: gen_prefix(A, r)"
  | 
| 
 | 
    35  | 
  | 
| 
15634
 | 
    36  | 
    append:  "[| <xs,ys>:gen_prefix(A, r); zs:list(A) |]
  | 
| 
 | 
    37  | 
	      ==> <xs, ys@zs>:gen_prefix(A, r)"
  | 
| 
 | 
    38  | 
    type_intros app_type list.Nil list.Cons
  | 
| 
12197
 | 
    39  | 
  | 
| 
24893
 | 
    40  | 
definition
  | 
| 
 | 
    41  | 
  prefix :: "i=>i"  where
  | 
| 
12197
 | 
    42  | 
  "prefix(A) == gen_prefix(A, id(A))"
  | 
| 
 | 
    43  | 
  | 
| 
24893
 | 
    44  | 
definition
  | 
| 
 | 
    45  | 
  strict_prefix :: "i=>i"  where
  | 
| 
12197
 | 
    46  | 
  "strict_prefix(A) == prefix(A) - id(list(A))"
  | 
| 
 | 
    47  | 
  | 
| 
24892
 | 
    48  | 
  | 
| 
 | 
    49  | 
(* less or equal and greater or equal over prefixes *)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
abbreviation
  | 
| 
 | 
    52  | 
  pfixLe :: "[i, i] => o"  (infixl "pfixLe" 50)  where
  | 
| 
 | 
    53  | 
  "xs pfixLe ys == <xs, ys>:gen_prefix(nat, Le)"
  | 
| 
12197
 | 
    54  | 
  | 
| 
24892
 | 
    55  | 
abbreviation
  | 
| 
 | 
    56  | 
  pfixGe :: "[i, i] => o"  (infixl "pfixGe" 50)  where
  | 
| 
 | 
    57  | 
  "xs pfixGe ys == <xs, ys>:gen_prefix(nat, Ge)"
  | 
| 
12197
 | 
    58  | 
  | 
| 
24892
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma reflD:
  | 
| 
15634
 | 
    61  | 
 "[| refl(A, r); x \<in> A |] ==> <x,x>:r"
  | 
| 
 | 
    62  | 
apply (unfold refl_def, auto)
  | 
| 
 | 
    63  | 
done
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
(*** preliminary lemmas ***)
  | 
| 
 | 
    66  | 
  | 
| 
 | 
    67  | 
lemma Nil_gen_prefix: "xs \<in> list(A) ==> <[], xs> \<in> gen_prefix(A, r)"
  | 
| 
 | 
    68  | 
by (drule gen_prefix.append [OF gen_prefix.Nil], simp)
  | 
| 
 | 
    69  | 
declare Nil_gen_prefix [simp]
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma gen_prefix_length_le: "<xs,ys> \<in> gen_prefix(A, r) ==> length(xs) \<le> length(ys)"
  | 
| 
 | 
    73  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
    74  | 
apply (subgoal_tac [3] "ys \<in> list (A) ")
  | 
| 
 | 
    75  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
  | 
| 
 | 
    76  | 
            intro: le_trans simp add: length_app)
  | 
| 
 | 
    77  | 
done
  | 
| 
 | 
    78  | 
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma Cons_gen_prefix_aux:
  | 
| 
24892
 | 
    81  | 
  "[| <xs', ys'> \<in> gen_prefix(A, r) |]
  | 
| 
 | 
    82  | 
   ==> (\<forall>x xs. x \<in> A --> xs'= Cons(x,xs) -->
  | 
| 
 | 
    83  | 
       (\<exists>y ys. y \<in> A & ys' = Cons(y,ys) &
  | 
| 
15634
 | 
    84  | 
       <x,y>:r & <xs, ys> \<in> gen_prefix(A, r)))"
  | 
| 
 | 
    85  | 
apply (erule gen_prefix.induct)
  | 
| 
24892
 | 
    86  | 
prefer 3 apply (force intro: gen_prefix.append, auto)
  | 
| 
15634
 | 
    87  | 
done
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
lemma Cons_gen_prefixE:
  | 
| 
24892
 | 
    90  | 
  "[| <Cons(x,xs), zs> \<in> gen_prefix(A, r);
  | 
| 
 | 
    91  | 
    !!y ys. [|zs = Cons(y, ys); y \<in> A; x \<in> A; <x,y>:r;
  | 
| 
15634
 | 
    92  | 
      <xs,ys> \<in> gen_prefix(A, r) |] ==> P |] ==> P"
  | 
| 
24892
 | 
    93  | 
apply (frule gen_prefix.dom_subset [THEN subsetD], auto)
  | 
| 
 | 
    94  | 
apply (blast dest: Cons_gen_prefix_aux)
  | 
| 
15634
 | 
    95  | 
done
  | 
| 
 | 
    96  | 
declare Cons_gen_prefixE [elim!]
  | 
| 
 | 
    97  | 
  | 
| 
24892
 | 
    98  | 
lemma Cons_gen_prefix_Cons:
  | 
| 
 | 
    99  | 
"(<Cons(x,xs),Cons(y,ys)> \<in> gen_prefix(A, r))
  | 
| 
15634
 | 
   100  | 
  <-> (x \<in> A & y \<in> A & <x,y>:r & <xs,ys> \<in> gen_prefix(A, r))"
  | 
| 
 | 
   101  | 
apply (auto intro: gen_prefix.prepend)
  | 
| 
 | 
   102  | 
done
  | 
| 
 | 
   103  | 
declare Cons_gen_prefix_Cons [iff]
  | 
| 
 | 
   104  | 
  | 
| 
 | 
   105  | 
(** Monotonicity of gen_prefix **)
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma gen_prefix_mono2: "r<=s ==> gen_prefix(A, r) <= gen_prefix(A, s)"
  | 
| 
 | 
   108  | 
apply clarify
  | 
| 
 | 
   109  | 
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
  | 
| 
 | 
   110  | 
apply (erule rev_mp)
  | 
| 
 | 
   111  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   112  | 
apply (auto intro: gen_prefix.append)
  | 
| 
 | 
   113  | 
done
  | 
| 
 | 
   114  | 
  | 
| 
 | 
   115  | 
lemma gen_prefix_mono1: "A<=B ==>gen_prefix(A, r) <= gen_prefix(B, r)"
  | 
| 
 | 
   116  | 
apply clarify
  | 
| 
 | 
   117  | 
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
  | 
| 
 | 
   118  | 
apply (erule rev_mp)
  | 
| 
 | 
   119  | 
apply (erule_tac P = "y \<in> list (A) " in rev_mp)
  | 
| 
 | 
   120  | 
apply (erule_tac P = "xa \<in> list (A) " in rev_mp)
  | 
| 
 | 
   121  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   122  | 
apply (simp (no_asm_simp))
  | 
| 
 | 
   123  | 
apply clarify
  | 
| 
 | 
   124  | 
apply (erule ConsE)+
  | 
| 
 | 
   125  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
  | 
| 
 | 
   126  | 
            intro: gen_prefix.append list_mono [THEN subsetD])
  | 
| 
 | 
   127  | 
done
  | 
| 
 | 
   128  | 
  | 
| 
 | 
   129  | 
lemma gen_prefix_mono: "[| A <= B; r <= s |] ==> gen_prefix(A, r) <= gen_prefix(B, s)"
  | 
| 
 | 
   130  | 
apply (rule subset_trans)
  | 
| 
 | 
   131  | 
apply (rule gen_prefix_mono1)
  | 
| 
 | 
   132  | 
apply (rule_tac [2] gen_prefix_mono2, auto)
  | 
| 
 | 
   133  | 
done
  | 
| 
 | 
   134  | 
  | 
| 
 | 
   135  | 
(*** gen_prefix order ***)
  | 
| 
 | 
   136  | 
  | 
| 
 | 
   137  | 
(* reflexivity *)
  | 
| 
 | 
   138  | 
lemma refl_gen_prefix: "refl(A, r) ==> refl(list(A), gen_prefix(A, r))"
  | 
| 
 | 
   139  | 
apply (unfold refl_def, auto)
  | 
| 
 | 
   140  | 
apply (induct_tac "x", auto)
  | 
| 
 | 
   141  | 
done
  | 
| 
 | 
   142  | 
declare refl_gen_prefix [THEN reflD, simp]
  | 
| 
 | 
   143  | 
  | 
| 
 | 
   144  | 
(* Transitivity *)
  | 
| 
 | 
   145  | 
(* A lemma for proving gen_prefix_trans_comp *)
  | 
| 
 | 
   146  | 
  | 
| 
24892
 | 
   147  | 
lemma append_gen_prefix [rule_format (no_asm)]: "xs \<in> list(A) ==>
  | 
| 
15634
 | 
   148  | 
   \<forall>zs. <xs @ ys, zs> \<in> gen_prefix(A, r) --> <xs, zs>: gen_prefix(A, r)"
  | 
| 
 | 
   149  | 
apply (erule list.induct)
  | 
| 
 | 
   150  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   151  | 
done
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
(* Lemma proving transitivity and more*)
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
lemma gen_prefix_trans_comp [rule_format (no_asm)]:
  | 
| 
24892
 | 
   156  | 
     "<x, y>: gen_prefix(A, r) ==>
  | 
| 
15634
 | 
   157  | 
   (\<forall>z \<in> list(A). <y,z> \<in> gen_prefix(A, s)--><x, z> \<in> gen_prefix(A, s O r))"
  | 
| 
 | 
   158  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   159  | 
apply (auto elim: ConsE simp add: Nil_gen_prefix)
  | 
| 
 | 
   160  | 
apply (subgoal_tac "ys \<in> list (A) ")
  | 
| 
 | 
   161  | 
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   162  | 
apply (drule_tac xs = ys and r = s in append_gen_prefix, auto)
  | 
| 
 | 
   163  | 
done
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
lemma trans_comp_subset: "trans(r) ==> r O r <= r"
  | 
| 
 | 
   166  | 
by (auto dest: transD)
  | 
| 
 | 
   167  | 
  | 
| 
 | 
   168  | 
lemma trans_gen_prefix: "trans(r) ==> trans(gen_prefix(A,r))"
  | 
| 
 | 
   169  | 
apply (simp (no_asm) add: trans_def)
  | 
| 
 | 
   170  | 
apply clarify
  | 
| 
 | 
   171  | 
apply (rule trans_comp_subset [THEN gen_prefix_mono2, THEN subsetD], assumption)
  | 
| 
 | 
   172  | 
apply (rule gen_prefix_trans_comp)
  | 
| 
 | 
   173  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   174  | 
done
  | 
| 
 | 
   175  | 
  | 
| 
24892
 | 
   176  | 
lemma trans_on_gen_prefix:
  | 
| 
15634
 | 
   177  | 
 "trans(r) ==> trans[list(A)](gen_prefix(A, r))"
  | 
| 
 | 
   178  | 
apply (drule_tac A = A in trans_gen_prefix)
  | 
| 
 | 
   179  | 
apply (unfold trans_def trans_on_def, blast)
  | 
| 
 | 
   180  | 
done
  | 
| 
 | 
   181  | 
  | 
| 
 | 
   182  | 
lemma prefix_gen_prefix_trans:
  | 
| 
24892
 | 
   183  | 
    "[| <x,y> \<in> prefix(A); <y, z> \<in> gen_prefix(A, r); r<=A*A |]
  | 
| 
15634
 | 
   184  | 
      ==>  <x, z> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   185  | 
apply (unfold prefix_def)
  | 
| 
 | 
   186  | 
apply (rule_tac P = "%r. <x,z> \<in> gen_prefix (A, r) " in right_comp_id [THEN subst])
  | 
| 
 | 
   187  | 
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
  | 
| 
 | 
   188  | 
done
  | 
| 
 | 
   189  | 
  | 
| 
 | 
   190  | 
  | 
| 
24892
 | 
   191  | 
lemma gen_prefix_prefix_trans:
  | 
| 
 | 
   192  | 
"[| <x,y> \<in> gen_prefix(A,r); <y, z> \<in> prefix(A); r<=A*A |]
  | 
| 
15634
 | 
   193  | 
  ==>  <x, z> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   194  | 
apply (unfold prefix_def)
  | 
| 
 | 
   195  | 
apply (rule_tac P = "%r. <x,z> \<in> gen_prefix (A, r) " in left_comp_id [THEN subst])
  | 
| 
 | 
   196  | 
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
  | 
| 
 | 
   197  | 
done
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
(** Antisymmetry **)
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
lemma nat_le_lemma [rule_format]: "n \<in> nat ==> \<forall>b \<in> nat. n #+ b \<le> n --> b = 0"
  | 
| 
 | 
   202  | 
by (induct_tac "n", auto)
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
lemma antisym_gen_prefix: "antisym(r) ==> antisym(gen_prefix(A, r))"
  | 
| 
 | 
   205  | 
apply (simp (no_asm) add: antisym_def)
  | 
| 
 | 
   206  | 
apply (rule impI [THEN allI, THEN allI])
  | 
| 
24892
 | 
   207  | 
apply (erule gen_prefix.induct, blast)
  | 
| 
15634
 | 
   208  | 
apply (simp add: antisym_def, blast)
  | 
| 
 | 
   209  | 
txt{*append case is hardest*}
 | 
| 
 | 
   210  | 
apply clarify
  | 
| 
 | 
   211  | 
apply (subgoal_tac "length (zs) = 0")
  | 
| 
 | 
   212  | 
apply (subgoal_tac "ys \<in> list (A) ")
  | 
| 
 | 
   213  | 
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   214  | 
apply (drule_tac psi = "<ys @ zs, xs> \<in> gen_prefix (A,r) " in asm_rl)
  | 
| 
 | 
   215  | 
apply simp
  | 
| 
 | 
   216  | 
apply (subgoal_tac "length (ys @ zs) = length (ys) #+ length (zs) &ys \<in> list (A) &xs \<in> list (A) ")
  | 
| 
 | 
   217  | 
prefer 2 apply (blast intro: length_app dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   218  | 
apply (drule gen_prefix_length_le)+
  | 
| 
 | 
   219  | 
apply clarify
  | 
| 
 | 
   220  | 
apply simp
  | 
| 
 | 
   221  | 
apply (drule_tac j = "length (xs) " in le_trans)
  | 
| 
 | 
   222  | 
apply blast
  | 
| 
 | 
   223  | 
apply (auto intro: nat_le_lemma)
  | 
| 
 | 
   224  | 
done
  | 
| 
 | 
   225  | 
  | 
| 
 | 
   226  | 
(*** recursion equations ***)
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
lemma gen_prefix_Nil: "xs \<in> list(A) ==> <xs, []> \<in> gen_prefix(A,r) <-> (xs = [])"
  | 
| 
 | 
   229  | 
by (induct_tac "xs", auto)
  | 
| 
 | 
   230  | 
declare gen_prefix_Nil [simp]
  | 
| 
 | 
   231  | 
  | 
| 
24892
 | 
   232  | 
lemma same_gen_prefix_gen_prefix:
  | 
| 
 | 
   233  | 
 "[| refl(A, r);  xs \<in> list(A) |] ==>
  | 
| 
15634
 | 
   234  | 
    <xs@ys, xs@zs>: gen_prefix(A, r) <-> <ys,zs> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   235  | 
apply (unfold refl_def)
  | 
| 
 | 
   236  | 
apply (induct_tac "xs")
  | 
| 
 | 
   237  | 
apply (simp_all (no_asm_simp))
  | 
| 
 | 
   238  | 
done
  | 
| 
 | 
   239  | 
declare same_gen_prefix_gen_prefix [simp]
  | 
| 
 | 
   240  | 
  | 
| 
24892
 | 
   241  | 
lemma gen_prefix_Cons: "[| xs \<in> list(A); ys \<in> list(A); y \<in> A |] ==>
  | 
| 
 | 
   242  | 
    <xs, Cons(y,ys)> \<in> gen_prefix(A,r)  <->
  | 
| 
15634
 | 
   243  | 
      (xs=[] | (\<exists>z zs. xs=Cons(z,zs) & z \<in> A & <z,y>:r & <zs,ys> \<in> gen_prefix(A,r)))"
  | 
| 
 | 
   244  | 
apply (induct_tac "xs", auto)
  | 
| 
 | 
   245  | 
done
  | 
| 
 | 
   246  | 
  | 
| 
24892
 | 
   247  | 
lemma gen_prefix_take_append: "[| refl(A,r);  <xs,ys> \<in> gen_prefix(A, r); zs \<in> list(A) |]
  | 
| 
15634
 | 
   248  | 
      ==>  <xs@zs, take(length(xs), ys) @ zs> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   249  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   250  | 
apply (simp (no_asm_simp))
  | 
| 
 | 
   251  | 
apply (frule_tac [!] gen_prefix.dom_subset [THEN subsetD], auto)
  | 
| 
 | 
   252  | 
apply (frule gen_prefix_length_le)
  | 
| 
 | 
   253  | 
apply (subgoal_tac "take (length (xs), ys) \<in> list (A) ")
  | 
| 
 | 
   254  | 
apply (simp_all (no_asm_simp) add: diff_is_0_iff [THEN iffD2] take_type)
  | 
| 
 | 
   255  | 
done
  | 
| 
 | 
   256  | 
  | 
| 
24892
 | 
   257  | 
lemma gen_prefix_append_both: "[| refl(A, r);  <xs,ys> \<in> gen_prefix(A,r);
  | 
| 
 | 
   258  | 
         length(xs) = length(ys); zs \<in> list(A) |]
  | 
| 
15634
 | 
   259  | 
      ==>  <xs@zs, ys @ zs> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   260  | 
apply (drule_tac zs = zs in gen_prefix_take_append, assumption+)
  | 
| 
 | 
   261  | 
apply (subgoal_tac "take (length (xs), ys) =ys")
  | 
| 
 | 
   262  | 
apply (auto intro!: take_all dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   263  | 
done
  | 
| 
 | 
   264  | 
  | 
| 
 | 
   265  | 
(*NOT suitable for rewriting since [y] has the form y#ys*)
  | 
| 
 | 
   266  | 
lemma append_cons_conv: "xs \<in> list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys"
  | 
| 
 | 
   267  | 
by (auto simp add: app_assoc)
  | 
| 
 | 
   268  | 
  | 
| 
 | 
   269  | 
lemma append_one_gen_prefix_lemma [rule_format]:
  | 
| 
24892
 | 
   270  | 
     "[| <xs,ys> \<in> gen_prefix(A, r);  refl(A, r) |]
  | 
| 
 | 
   271  | 
      ==> length(xs) < length(ys) -->
  | 
| 
15634
 | 
   272  | 
          <xs @ [nth(length(xs), ys)], ys> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   273  | 
apply (erule gen_prefix.induct, blast)
  | 
| 
 | 
   274  | 
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
  | 
| 
 | 
   275  | 
apply (simp_all add: length_type)
  | 
| 
 | 
   276  | 
(* Append case is hardest *)
  | 
| 
 | 
   277  | 
apply (frule gen_prefix_length_le [THEN le_iff [THEN iffD1]])
  | 
| 
 | 
   278  | 
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
  | 
| 
 | 
   279  | 
apply (subgoal_tac "length (xs) :nat&length (ys) :nat &length (zs) :nat")
  | 
| 
 | 
   280  | 
prefer 2 apply (blast intro: length_type, clarify)
  | 
| 
 | 
   281  | 
apply (simp_all add: nth_append length_type length_app)
  | 
| 
 | 
   282  | 
apply (rule conjI)
  | 
| 
 | 
   283  | 
apply (blast intro: gen_prefix.append)
  | 
| 
 | 
   284  | 
apply (erule_tac V = "length (xs) < length (ys) -->?u" in thin_rl)
  | 
| 
 | 
   285  | 
apply (erule_tac a = zs in list.cases, auto)
  | 
| 
 | 
   286  | 
apply (rule_tac P1 = "%x. <?u (x), ?v>:?w" in nat_diff_split [THEN iffD2])
  | 
| 
 | 
   287  | 
apply auto
  | 
| 
 | 
   288  | 
apply (simplesubst append_cons_conv)
  | 
| 
 | 
   289  | 
apply (rule_tac [2] gen_prefix.append)
  | 
| 
 | 
   290  | 
apply (auto elim: ConsE simp add: gen_prefix_append_both)
  | 
| 
24892
 | 
   291  | 
done
  | 
| 
15634
 | 
   292  | 
  | 
| 
24892
 | 
   293  | 
lemma append_one_gen_prefix: "[| <xs,ys>: gen_prefix(A, r);  length(xs) < length(ys);  refl(A, r) |]
  | 
| 
15634
 | 
   294  | 
      ==> <xs @ [nth(length(xs), ys)], ys> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   295  | 
apply (blast intro: append_one_gen_prefix_lemma)
  | 
| 
 | 
   296  | 
done
  | 
| 
 | 
   297  | 
  | 
| 
 | 
   298  | 
  | 
| 
 | 
   299  | 
(** Proving the equivalence with Charpentier's definition **)
  | 
| 
 | 
   300  | 
  | 
| 
24892
 | 
   301  | 
lemma gen_prefix_imp_nth_lemma [rule_format]: "xs \<in> list(A) ==>
  | 
| 
 | 
   302  | 
  \<forall>ys \<in> list(A). \<forall>i \<in> nat. i < length(xs)
  | 
| 
15634
 | 
   303  | 
          --> <xs, ys>: gen_prefix(A, r) --> <nth(i, xs), nth(i, ys)>:r"
  | 
| 
24892
 | 
   304  | 
apply (induct_tac "xs", simp, clarify)
  | 
| 
 | 
   305  | 
apply simp
  | 
| 
 | 
   306  | 
apply (erule natE, auto)
  | 
| 
15634
 | 
   307  | 
done
  | 
| 
 | 
   308  | 
  | 
| 
24892
 | 
   309  | 
lemma gen_prefix_imp_nth: "[| <xs,ys> \<in> gen_prefix(A,r); i < length(xs)|]
  | 
| 
15634
 | 
   310  | 
      ==> <nth(i, xs), nth(i, ys)>:r"
  | 
| 
 | 
   311  | 
apply (cut_tac A = A in gen_prefix.dom_subset)
  | 
| 
 | 
   312  | 
apply (rule gen_prefix_imp_nth_lemma)
  | 
| 
 | 
   313  | 
apply (auto simp add: lt_nat_in_nat)
  | 
| 
 | 
   314  | 
done
  | 
| 
 | 
   315  | 
  | 
| 
24892
 | 
   316  | 
lemma nth_imp_gen_prefix [rule_format]: "xs \<in> list(A) ==>
  | 
| 
 | 
   317  | 
  \<forall>ys \<in> list(A). length(xs) \<le> length(ys)
  | 
| 
 | 
   318  | 
      --> (\<forall>i. i < length(xs) --> <nth(i, xs), nth(i,ys)>:r)
  | 
| 
15634
 | 
   319  | 
      --> <xs, ys> \<in> gen_prefix(A, r)"
  | 
| 
 | 
   320  | 
apply (induct_tac "xs")
  | 
| 
 | 
   321  | 
apply (simp_all (no_asm_simp))
  | 
| 
 | 
   322  | 
apply clarify
  | 
| 
 | 
   323  | 
apply (erule_tac a = ys in list.cases, simp)
  | 
| 
 | 
   324  | 
apply (force intro!: nat_0_le simp add: lt_nat_in_nat)
  | 
| 
 | 
   325  | 
done
  | 
| 
 | 
   326  | 
  | 
| 
24892
 | 
   327  | 
lemma gen_prefix_iff_nth: "(<xs,ys> \<in> gen_prefix(A,r)) <->
  | 
| 
 | 
   328  | 
      (xs \<in> list(A) & ys \<in> list(A) & length(xs) \<le> length(ys) &
  | 
| 
15634
 | 
   329  | 
      (\<forall>i. i < length(xs) --> <nth(i,xs), nth(i, ys)>: r))"
  | 
| 
 | 
   330  | 
apply (rule iffI)
  | 
| 
 | 
   331  | 
apply (frule gen_prefix.dom_subset [THEN subsetD])
  | 
| 
24892
 | 
   332  | 
apply (frule gen_prefix_length_le, auto)
  | 
| 
15634
 | 
   333  | 
apply (rule_tac [2] nth_imp_gen_prefix)
  | 
| 
 | 
   334  | 
apply (drule gen_prefix_imp_nth)
  | 
| 
 | 
   335  | 
apply (auto simp add: lt_nat_in_nat)
  | 
| 
 | 
   336  | 
done
  | 
| 
 | 
   337  | 
  | 
| 
 | 
   338  | 
(** prefix is a partial order: **)
  | 
| 
 | 
   339  | 
  | 
| 
 | 
   340  | 
lemma refl_prefix: "refl(list(A), prefix(A))"
  | 
| 
 | 
   341  | 
apply (unfold prefix_def)
  | 
| 
 | 
   342  | 
apply (rule refl_gen_prefix)
  | 
| 
 | 
   343  | 
apply (auto simp add: refl_def)
  | 
| 
 | 
   344  | 
done
  | 
| 
 | 
   345  | 
declare refl_prefix [THEN reflD, simp]
  | 
| 
 | 
   346  | 
  | 
| 
 | 
   347  | 
lemma trans_prefix: "trans(prefix(A))"
  | 
| 
 | 
   348  | 
apply (unfold prefix_def)
  | 
| 
 | 
   349  | 
apply (rule trans_gen_prefix)
  | 
| 
 | 
   350  | 
apply (auto simp add: trans_def)
  | 
| 
 | 
   351  | 
done
  | 
| 
 | 
   352  | 
  | 
| 
 | 
   353  | 
lemmas prefix_trans = trans_prefix [THEN transD, standard]
  | 
| 
 | 
   354  | 
  | 
| 
 | 
   355  | 
lemma trans_on_prefix: "trans[list(A)](prefix(A))"
  | 
| 
 | 
   356  | 
apply (unfold prefix_def)
  | 
| 
 | 
   357  | 
apply (rule trans_on_gen_prefix)
  | 
| 
 | 
   358  | 
apply (auto simp add: trans_def)
  | 
| 
 | 
   359  | 
done
  | 
| 
 | 
   360  | 
  | 
| 
 | 
   361  | 
lemmas prefix_trans_on = trans_on_prefix [THEN trans_onD, standard]
  | 
| 
 | 
   362  | 
  | 
| 
 | 
   363  | 
(* Monotonicity of "set" operator WRT prefix *)
  | 
| 
 | 
   364  | 
  | 
| 
24892
 | 
   365  | 
lemma set_of_list_prefix_mono:
  | 
| 
15634
 | 
   366  | 
"<xs,ys> \<in> prefix(A) ==> set_of_list(xs) <= set_of_list(ys)"
  | 
| 
 | 
   367  | 
  | 
| 
 | 
   368  | 
apply (unfold prefix_def)
  | 
| 
 | 
   369  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   370  | 
apply (subgoal_tac [3] "xs \<in> list (A) &ys \<in> list (A) ")
  | 
| 
 | 
   371  | 
prefer 4 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   372  | 
apply (auto simp add: set_of_list_append)
  | 
| 
 | 
   373  | 
done
  | 
| 
 | 
   374  | 
  | 
| 
 | 
   375  | 
(** recursion equations **)
  | 
| 
 | 
   376  | 
  | 
| 
 | 
   377  | 
lemma Nil_prefix: "xs \<in> list(A) ==> <[],xs> \<in> prefix(A)"
  | 
| 
 | 
   378  | 
  | 
| 
 | 
   379  | 
apply (unfold prefix_def)
  | 
| 
 | 
   380  | 
apply (simp (no_asm_simp) add: Nil_gen_prefix)
  | 
| 
 | 
   381  | 
done
  | 
| 
 | 
   382  | 
declare Nil_prefix [simp]
  | 
| 
 | 
   383  | 
  | 
| 
 | 
   384  | 
  | 
| 
 | 
   385  | 
lemma prefix_Nil: "<xs, []> \<in> prefix(A) <-> (xs = [])"
  | 
| 
 | 
   386  | 
  | 
| 
 | 
   387  | 
apply (unfold prefix_def, auto)
  | 
| 
 | 
   388  | 
apply (frule gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   389  | 
apply (drule_tac psi = "<xs, []> \<in> gen_prefix (A, id (A))" in asm_rl)
  | 
| 
 | 
   390  | 
apply (simp add: gen_prefix_Nil)
  | 
| 
 | 
   391  | 
done
  | 
| 
 | 
   392  | 
declare prefix_Nil [iff]
  | 
| 
 | 
   393  | 
  | 
| 
24892
 | 
   394  | 
lemma Cons_prefix_Cons:
  | 
| 
15634
 | 
   395  | 
"<Cons(x,xs), Cons(y,ys)> \<in> prefix(A) <-> (x=y & <xs,ys> \<in> prefix(A) & y \<in> A)"
  | 
| 
 | 
   396  | 
apply (unfold prefix_def, auto)
  | 
| 
 | 
   397  | 
done
  | 
| 
 | 
   398  | 
declare Cons_prefix_Cons [iff]
  | 
| 
 | 
   399  | 
  | 
| 
24892
 | 
   400  | 
lemma same_prefix_prefix:
  | 
| 
15634
 | 
   401  | 
"xs \<in> list(A)==> <xs@ys,xs@zs> \<in> prefix(A) <-> (<ys,zs> \<in> prefix(A))"
  | 
| 
 | 
   402  | 
apply (unfold prefix_def)
  | 
| 
 | 
   403  | 
apply (subgoal_tac "refl (A,id (A))")
  | 
| 
 | 
   404  | 
apply (simp (no_asm_simp))
  | 
| 
 | 
   405  | 
apply (auto simp add: refl_def)
  | 
| 
 | 
   406  | 
done
  | 
| 
 | 
   407  | 
declare same_prefix_prefix [simp]
  | 
| 
 | 
   408  | 
  | 
| 
 | 
   409  | 
lemma same_prefix_prefix_Nil: "xs \<in> list(A) ==> <xs@ys,xs> \<in> prefix(A) <-> (<ys,[]> \<in> prefix(A))"
  | 
| 
 | 
   410  | 
apply (rule_tac P = "%x. <?u, x>:?v <-> ?w (x) " in app_right_Nil [THEN subst])
  | 
| 
 | 
   411  | 
apply (rule_tac [2] same_prefix_prefix, auto)
  | 
| 
 | 
   412  | 
done
  | 
| 
 | 
   413  | 
declare same_prefix_prefix_Nil [simp]
  | 
| 
 | 
   414  | 
  | 
| 
24892
 | 
   415  | 
lemma prefix_appendI:
  | 
| 
15634
 | 
   416  | 
"[| <xs,ys> \<in> prefix(A); zs \<in> list(A) |] ==> <xs,ys@zs> \<in> prefix(A)"
  | 
| 
 | 
   417  | 
apply (unfold prefix_def)
  | 
| 
 | 
   418  | 
apply (erule gen_prefix.append, assumption)
  | 
| 
 | 
   419  | 
done
  | 
| 
 | 
   420  | 
declare prefix_appendI [simp]
  | 
| 
 | 
   421  | 
  | 
| 
24892
 | 
   422  | 
lemma prefix_Cons:
  | 
| 
 | 
   423  | 
"[| xs \<in> list(A); ys \<in> list(A); y \<in> A |] ==>
  | 
| 
 | 
   424  | 
  <xs,Cons(y,ys)> \<in> prefix(A) <->
  | 
| 
15634
 | 
   425  | 
  (xs=[] | (\<exists>zs. xs=Cons(y,zs) & <zs,ys> \<in> prefix(A)))"
  | 
| 
 | 
   426  | 
apply (unfold prefix_def)
  | 
| 
 | 
   427  | 
apply (auto simp add: gen_prefix_Cons)
  | 
| 
 | 
   428  | 
done
  | 
| 
 | 
   429  | 
  | 
| 
24892
 | 
   430  | 
lemma append_one_prefix:
  | 
| 
 | 
   431  | 
  "[| <xs,ys> \<in> prefix(A); length(xs) < length(ys) |]
  | 
| 
15634
 | 
   432  | 
  ==> <xs @ [nth(length(xs),ys)], ys> \<in> prefix(A)"
  | 
| 
 | 
   433  | 
apply (unfold prefix_def)
  | 
| 
 | 
   434  | 
apply (subgoal_tac "refl (A, id (A))")
  | 
| 
 | 
   435  | 
apply (simp (no_asm_simp) add: append_one_gen_prefix)
  | 
| 
 | 
   436  | 
apply (auto simp add: refl_def)
  | 
| 
 | 
   437  | 
done
  | 
| 
 | 
   438  | 
  | 
| 
24892
 | 
   439  | 
lemma prefix_length_le:
  | 
| 
15634
 | 
   440  | 
"<xs,ys> \<in> prefix(A) ==> length(xs) \<le> length(ys)"
  | 
| 
 | 
   441  | 
apply (unfold prefix_def)
  | 
| 
 | 
   442  | 
apply (blast dest: gen_prefix_length_le)
  | 
| 
 | 
   443  | 
done
  | 
| 
 | 
   444  | 
  | 
| 
 | 
   445  | 
lemma prefix_type: "prefix(A)<=list(A)*list(A)"
  | 
| 
 | 
   446  | 
apply (unfold prefix_def)
  | 
| 
 | 
   447  | 
apply (blast intro!: gen_prefix.dom_subset)
  | 
| 
 | 
   448  | 
done
  | 
| 
 | 
   449  | 
  | 
| 
24892
 | 
   450  | 
lemma strict_prefix_type:
  | 
| 
15634
 | 
   451  | 
"strict_prefix(A) <= list(A)*list(A)"
  | 
| 
 | 
   452  | 
apply (unfold strict_prefix_def)
  | 
| 
 | 
   453  | 
apply (blast intro!: prefix_type [THEN subsetD])
  | 
| 
 | 
   454  | 
done
  | 
| 
 | 
   455  | 
  | 
| 
24892
 | 
   456  | 
lemma strict_prefix_length_lt_aux:
  | 
| 
15634
 | 
   457  | 
     "<xs,ys> \<in> prefix(A) ==> xs\<noteq>ys --> length(xs) < length(ys)"
  | 
| 
 | 
   458  | 
apply (unfold prefix_def)
  | 
| 
 | 
   459  | 
apply (erule gen_prefix.induct, clarify)
  | 
| 
 | 
   460  | 
apply (subgoal_tac [!] "ys \<in> list(A) & xs \<in> list(A)")
  | 
| 
 | 
   461  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
  | 
| 
 | 
   462  | 
            simp add: length_type)
  | 
| 
 | 
   463  | 
apply (subgoal_tac "length (zs) =0")
  | 
| 
 | 
   464  | 
apply (drule_tac [2] not_lt_imp_le)
  | 
| 
 | 
   465  | 
apply (rule_tac [5] j = "length (ys) " in lt_trans2)
  | 
| 
 | 
   466  | 
apply auto
  | 
| 
 | 
   467  | 
done
  | 
| 
 | 
   468  | 
  | 
| 
24892
 | 
   469  | 
lemma strict_prefix_length_lt:
  | 
| 
15634
 | 
   470  | 
     "<xs,ys>:strict_prefix(A) ==> length(xs) < length(ys)"
  | 
| 
 | 
   471  | 
apply (unfold strict_prefix_def)
  | 
| 
 | 
   472  | 
apply (rule strict_prefix_length_lt_aux [THEN mp])
  | 
| 
 | 
   473  | 
apply (auto dest: prefix_type [THEN subsetD])
  | 
| 
 | 
   474  | 
done
  | 
| 
 | 
   475  | 
  | 
| 
 | 
   476  | 
(*Equivalence to the definition used in Lex/Prefix.thy*)
  | 
| 
24892
 | 
   477  | 
lemma prefix_iff:
  | 
| 
15634
 | 
   478  | 
    "<xs,zs> \<in> prefix(A) <-> (\<exists>ys \<in> list(A). zs = xs@ys) & xs \<in> list(A)"
  | 
| 
 | 
   479  | 
apply (unfold prefix_def)
  | 
| 
 | 
   480  | 
apply (auto simp add: gen_prefix_iff_nth lt_nat_in_nat nth_append nth_type app_type length_app)
  | 
| 
 | 
   481  | 
apply (subgoal_tac "drop (length (xs), zs) \<in> list (A) ")
  | 
| 
 | 
   482  | 
apply (rule_tac x = "drop (length (xs), zs) " in bexI)
  | 
| 
 | 
   483  | 
apply safe
  | 
| 
 | 
   484  | 
 prefer 2 apply (simp add: length_type drop_type)
  | 
| 
 | 
   485  | 
apply (rule nth_equalityI)
  | 
| 
 | 
   486  | 
apply (simp_all (no_asm_simp) add: nth_append app_type drop_type length_app length_drop)
  | 
| 
 | 
   487  | 
apply (rule nat_diff_split [THEN iffD2], simp_all, clarify)
  | 
| 
 | 
   488  | 
apply (drule_tac i = "length (zs) " in leI)
  | 
| 
 | 
   489  | 
apply (force simp add: le_subset_iff, safe)
  | 
| 
 | 
   490  | 
apply (subgoal_tac "length (xs) #+ (i #- length (xs)) = i")
  | 
| 
 | 
   491  | 
apply (subst nth_drop)
  | 
| 
 | 
   492  | 
apply (simp_all (no_asm_simp) add: leI split add: nat_diff_split)
  | 
| 
 | 
   493  | 
done
  | 
| 
 | 
   494  | 
  | 
| 
24892
 | 
   495  | 
lemma prefix_snoc:
  | 
| 
 | 
   496  | 
"[|xs \<in> list(A); ys \<in> list(A); y \<in> A |] ==>
  | 
| 
15634
 | 
   497  | 
   <xs, ys@[y]> \<in> prefix(A) <-> (xs = ys@[y] | <xs,ys> \<in> prefix(A))"
  | 
| 
 | 
   498  | 
apply (simp (no_asm) add: prefix_iff)
  | 
| 
 | 
   499  | 
apply (rule iffI, clarify)
  | 
| 
 | 
   500  | 
apply (erule_tac xs = ysa in rev_list_elim, simp)
  | 
| 
 | 
   501  | 
apply (simp add: app_type app_assoc [symmetric])
  | 
| 
 | 
   502  | 
apply (auto simp add: app_assoc app_type)
  | 
| 
 | 
   503  | 
done
  | 
| 
 | 
   504  | 
declare prefix_snoc [simp]
  | 
| 
 | 
   505  | 
  | 
| 
24892
 | 
   506  | 
lemma prefix_append_iff [rule_format]: "zs \<in> list(A) ==> \<forall>xs \<in> list(A). \<forall>ys \<in> list(A).
  | 
| 
 | 
   507  | 
   (<xs, ys@zs> \<in> prefix(A)) <->
  | 
| 
15634
 | 
   508  | 
  (<xs,ys> \<in> prefix(A) | (\<exists>us. xs = ys@us & <us,zs> \<in> prefix(A)))"
  | 
| 
24892
 | 
   509  | 
apply (erule list_append_induct, force, clarify)
  | 
| 
 | 
   510  | 
apply (rule iffI)
  | 
| 
15634
 | 
   511  | 
apply (simp add: add: app_assoc [symmetric])
  | 
| 
24892
 | 
   512  | 
apply (erule disjE)
  | 
| 
 | 
   513  | 
apply (rule disjI2)
  | 
| 
 | 
   514  | 
apply (rule_tac x = "y @ [x]" in exI)
  | 
| 
15634
 | 
   515  | 
apply (simp add: add: app_assoc [symmetric], force+)
  | 
| 
 | 
   516  | 
done
  | 
| 
 | 
   517  | 
  | 
| 
 | 
   518  | 
  | 
| 
 | 
   519  | 
(*Although the prefix ordering is not linear, the prefixes of a list
  | 
| 
 | 
   520  | 
  are linearly ordered.*)
  | 
| 
24892
 | 
   521  | 
lemma common_prefix_linear_lemma [rule_format]: "[| zs \<in> list(A); xs \<in> list(A); ys \<in> list(A) |]
  | 
| 
 | 
   522  | 
   ==> <xs, zs> \<in> prefix(A) --> <ys,zs> \<in> prefix(A)
  | 
| 
15634
 | 
   523  | 
  --><xs,ys> \<in> prefix(A) | <ys,xs> \<in> prefix(A)"
  | 
| 
 | 
   524  | 
apply (erule list_append_induct, auto)
  | 
| 
 | 
   525  | 
done
  | 
| 
 | 
   526  | 
  | 
| 
24892
 | 
   527  | 
lemma common_prefix_linear: "[|<xs, zs> \<in> prefix(A); <ys,zs> \<in> prefix(A) |]
  | 
| 
15634
 | 
   528  | 
      ==> <xs,ys> \<in> prefix(A) | <ys,xs> \<in> prefix(A)"
  | 
| 
 | 
   529  | 
apply (cut_tac prefix_type)
  | 
| 
 | 
   530  | 
apply (blast del: disjCI intro: common_prefix_linear_lemma)
  | 
| 
 | 
   531  | 
done
  | 
| 
 | 
   532  | 
  | 
| 
 | 
   533  | 
  | 
| 
 | 
   534  | 
(*** pfixLe, pfixGe \<in> properties inherited from the translations ***)
  | 
| 
 | 
   535  | 
  | 
| 
 | 
   536  | 
  | 
| 
 | 
   537  | 
  | 
| 
 | 
   538  | 
(** pfixLe **)
  | 
| 
 | 
   539  | 
  | 
| 
 | 
   540  | 
lemma refl_Le: "refl(nat,Le)"
  | 
| 
 | 
   541  | 
  | 
| 
 | 
   542  | 
apply (unfold refl_def, auto)
  | 
| 
 | 
   543  | 
done
  | 
| 
 | 
   544  | 
declare refl_Le [simp]
  | 
| 
 | 
   545  | 
  | 
| 
 | 
   546  | 
lemma antisym_Le: "antisym(Le)"
  | 
| 
 | 
   547  | 
apply (unfold antisym_def)
  | 
| 
 | 
   548  | 
apply (auto intro: le_anti_sym)
  | 
| 
 | 
   549  | 
done
  | 
| 
 | 
   550  | 
declare antisym_Le [simp]
  | 
| 
 | 
   551  | 
  | 
| 
 | 
   552  | 
lemma trans_on_Le: "trans[nat](Le)"
  | 
| 
 | 
   553  | 
apply (unfold trans_on_def, auto)
  | 
| 
 | 
   554  | 
apply (blast intro: le_trans)
  | 
| 
 | 
   555  | 
done
  | 
| 
 | 
   556  | 
declare trans_on_Le [simp]
  | 
| 
 | 
   557  | 
  | 
| 
 | 
   558  | 
lemma trans_Le: "trans(Le)"
  | 
| 
 | 
   559  | 
apply (unfold trans_def, auto)
  | 
| 
 | 
   560  | 
apply (blast intro: le_trans)
  | 
| 
 | 
   561  | 
done
  | 
| 
 | 
   562  | 
declare trans_Le [simp]
  | 
| 
 | 
   563  | 
  | 
| 
 | 
   564  | 
lemma part_order_Le: "part_order(nat,Le)"
  | 
| 
 | 
   565  | 
by (unfold part_order_def, auto)
  | 
| 
 | 
   566  | 
declare part_order_Le [simp]
  | 
| 
 | 
   567  | 
  | 
| 
 | 
   568  | 
lemma pfixLe_refl: "x \<in> list(nat) ==> x pfixLe x"
  | 
| 
 | 
   569  | 
by (blast intro: refl_gen_prefix [THEN reflD] refl_Le)
  | 
| 
 | 
   570  | 
declare pfixLe_refl [simp]
  | 
| 
 | 
   571  | 
  | 
| 
 | 
   572  | 
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
  | 
| 
 | 
   573  | 
by (blast intro: trans_gen_prefix [THEN transD] trans_Le)
  | 
| 
 | 
   574  | 
  | 
| 
 | 
   575  | 
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
  | 
| 
 | 
   576  | 
by (blast intro: antisym_gen_prefix [THEN antisymE] antisym_Le)
  | 
| 
 | 
   577  | 
  | 
| 
 | 
   578  | 
  | 
| 
24892
 | 
   579  | 
lemma prefix_imp_pfixLe:
  | 
| 
15634
 | 
   580  | 
"<xs,ys>:prefix(nat)==> xs pfixLe ys"
  | 
| 
 | 
   581  | 
  | 
| 
 | 
   582  | 
apply (unfold prefix_def)
  | 
| 
 | 
   583  | 
apply (rule gen_prefix_mono [THEN subsetD], auto)
  | 
| 
 | 
   584  | 
done
  | 
| 
 | 
   585  | 
  | 
| 
 | 
   586  | 
lemma refl_Ge: "refl(nat, Ge)"
  | 
| 
 | 
   587  | 
by (unfold refl_def Ge_def, auto)
  | 
| 
 | 
   588  | 
declare refl_Ge [iff]
  | 
| 
 | 
   589  | 
  | 
| 
 | 
   590  | 
lemma antisym_Ge: "antisym(Ge)"
  | 
| 
 | 
   591  | 
apply (unfold antisym_def Ge_def)
  | 
| 
 | 
   592  | 
apply (auto intro: le_anti_sym)
  | 
| 
 | 
   593  | 
done
  | 
| 
 | 
   594  | 
declare antisym_Ge [iff]
  | 
| 
 | 
   595  | 
  | 
| 
 | 
   596  | 
lemma trans_Ge: "trans(Ge)"
  | 
| 
 | 
   597  | 
apply (unfold trans_def Ge_def)
  | 
| 
 | 
   598  | 
apply (auto intro: le_trans)
  | 
| 
 | 
   599  | 
done
  | 
| 
 | 
   600  | 
declare trans_Ge [iff]
  | 
| 
 | 
   601  | 
  | 
| 
 | 
   602  | 
lemma pfixGe_refl: "x \<in> list(nat) ==> x pfixGe x"
  | 
| 
 | 
   603  | 
by (blast intro: refl_gen_prefix [THEN reflD])
  | 
| 
 | 
   604  | 
declare pfixGe_refl [simp]
  | 
| 
 | 
   605  | 
  | 
| 
 | 
   606  | 
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
  | 
| 
 | 
   607  | 
by (blast intro: trans_gen_prefix [THEN transD])
  | 
| 
 | 
   608  | 
  | 
| 
 | 
   609  | 
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
  | 
| 
 | 
   610  | 
by (blast intro: antisym_gen_prefix [THEN antisymE])
  | 
| 
 | 
   611  | 
  | 
| 
24892
 | 
   612  | 
lemma prefix_imp_pfixGe:
  | 
| 
15634
 | 
   613  | 
  "<xs,ys>:prefix(nat) ==> xs pfixGe ys"
  | 
| 
 | 
   614  | 
apply (unfold prefix_def Ge_def)
  | 
| 
 | 
   615  | 
apply (rule gen_prefix_mono [THEN subsetD], auto)
  | 
| 
 | 
   616  | 
done
  | 
| 
 | 
   617  | 
(* Added by Sidi \<in> prefix and take *)
  | 
| 
 | 
   618  | 
  | 
| 
24892
 | 
   619  | 
lemma prefix_imp_take:
  | 
| 
15634
 | 
   620  | 
"<xs, ys> \<in> prefix(A) ==> xs = take(length(xs), ys)"
  | 
| 
 | 
   621  | 
  | 
| 
 | 
   622  | 
apply (unfold prefix_def)
  | 
| 
 | 
   623  | 
apply (erule gen_prefix.induct)
  | 
| 
 | 
   624  | 
apply (subgoal_tac [3] "length (xs) :nat")
  | 
| 
 | 
   625  | 
apply (auto dest: gen_prefix.dom_subset [THEN subsetD] simp add: length_type)
  | 
| 
 | 
   626  | 
apply (frule gen_prefix.dom_subset [THEN subsetD])
  | 
| 
 | 
   627  | 
apply (frule gen_prefix_length_le)
  | 
| 
 | 
   628  | 
apply (auto simp add: take_append)
  | 
| 
 | 
   629  | 
apply (subgoal_tac "length (xs) #- length (ys) =0")
  | 
| 
 | 
   630  | 
apply (simp_all (no_asm_simp) add: diff_is_0_iff)
  | 
| 
 | 
   631  | 
done
  | 
| 
 | 
   632  | 
  | 
| 
 | 
   633  | 
lemma prefix_length_equal: "[|<xs,ys> \<in> prefix(A); length(xs)=length(ys)|] ==> xs = ys"
  | 
| 
 | 
   634  | 
apply (cut_tac A = A in prefix_type)
  | 
| 
 | 
   635  | 
apply (drule subsetD, auto)
  | 
| 
 | 
   636  | 
apply (drule prefix_imp_take)
  | 
| 
 | 
   637  | 
apply (erule trans, simp)
  | 
| 
 | 
   638  | 
done
  | 
| 
 | 
   639  | 
  | 
| 
 | 
   640  | 
lemma prefix_length_le_equal: "[|<xs,ys> \<in> prefix(A); length(ys) \<le> length(xs)|] ==> xs = ys"
  | 
| 
 | 
   641  | 
by (blast intro: prefix_length_equal le_anti_sym prefix_length_le)
  | 
| 
 | 
   642  | 
  | 
| 
 | 
   643  | 
lemma take_prefix [rule_format]: "xs \<in> list(A) ==> \<forall>n \<in> nat. <take(n, xs), xs> \<in> prefix(A)"
  | 
| 
 | 
   644  | 
apply (unfold prefix_def)
  | 
| 
 | 
   645  | 
apply (erule list.induct, simp, clarify)
  | 
| 
 | 
   646  | 
apply (erule natE, auto)
  | 
| 
 | 
   647  | 
done
  | 
| 
 | 
   648  | 
  | 
| 
 | 
   649  | 
lemma prefix_take_iff: "<xs,ys> \<in> prefix(A) <-> (xs=take(length(xs), ys) & xs \<in> list(A) & ys \<in> list(A))"
  | 
| 
 | 
   650  | 
apply (rule iffI)
  | 
| 
 | 
   651  | 
apply (frule prefix_type [THEN subsetD])
  | 
| 
 | 
   652  | 
apply (blast intro: prefix_imp_take, clarify)
  | 
| 
 | 
   653  | 
apply (erule ssubst)
  | 
| 
 | 
   654  | 
apply (blast intro: take_prefix length_type)
  | 
| 
 | 
   655  | 
done
  | 
| 
 | 
   656  | 
  | 
| 
 | 
   657  | 
lemma prefix_imp_nth: "[| <xs,ys> \<in> prefix(A); i < length(xs)|] ==> nth(i,xs) = nth(i,ys)"
  | 
| 
 | 
   658  | 
by (auto dest!: gen_prefix_imp_nth simp add: prefix_def)
  | 
| 
 | 
   659  | 
  | 
| 
24892
 | 
   660  | 
lemma nth_imp_prefix:
  | 
| 
 | 
   661  | 
     "[|xs \<in> list(A); ys \<in> list(A); length(xs) \<le> length(ys);
  | 
| 
 | 
   662  | 
        !!i. i < length(xs) ==> nth(i, xs) = nth(i,ys)|]
  | 
| 
15634
 | 
   663  | 
      ==> <xs,ys> \<in> prefix(A)"
  | 
| 
 | 
   664  | 
apply (auto simp add: prefix_def nth_imp_gen_prefix)
  | 
| 
 | 
   665  | 
apply (auto intro!: nth_imp_gen_prefix simp add: prefix_def)
  | 
| 
 | 
   666  | 
apply (blast intro: nth_type lt_trans2)
  | 
| 
 | 
   667  | 
done
  | 
| 
 | 
   668  | 
  | 
| 
 | 
   669  | 
  | 
| 
24892
 | 
   670  | 
lemma length_le_prefix_imp_prefix: "[|length(xs) \<le> length(ys);
  | 
| 
15634
 | 
   671  | 
        <xs,zs> \<in> prefix(A); <ys,zs> \<in> prefix(A)|] ==> <xs,ys> \<in> prefix(A)"
  | 
| 
 | 
   672  | 
apply (cut_tac A = A in prefix_type)
  | 
| 
 | 
   673  | 
apply (rule nth_imp_prefix, blast, blast)
  | 
| 
 | 
   674  | 
 apply assumption
  | 
| 
 | 
   675  | 
apply (rule_tac b = "nth (i,zs)" in trans)
  | 
| 
 | 
   676  | 
 apply (blast intro: prefix_imp_nth)
  | 
| 
 | 
   677  | 
apply (blast intro: sym prefix_imp_nth prefix_length_le lt_trans2)
  | 
| 
 | 
   678  | 
done
  | 
| 
 | 
   679  | 
  | 
| 
12197
 | 
   680  | 
end
  |