| author | wenzelm | 
| Sun, 27 May 2018 22:37:08 +0200 | |
| changeset 68300 | cd8ab1a7a286 | 
| parent 66656 | 8f4d252ce2fe | 
| child 68406 | 6beb45f6cf67 | 
| permissions | -rw-r--r-- | 
| 63487 | 1 | (* Title: HOL/Library/Stirling.thy | 
| 2 | Author: Amine Chaieb | |
| 3 | Author: Florian Haftmann | |
| 4 | Author: Lukas Bulwahn | |
| 5 | Author: Manuel Eberl | |
| 6 | *) | |
| 63071 | 7 | |
| 63145 | 8 | section \<open>Stirling numbers of first and second kind\<close> | 
| 63071 | 9 | |
| 10 | theory Stirling | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 11 | imports Main | 
| 63071 | 12 | begin | 
| 13 | ||
| 63145 | 14 | subsection \<open>Stirling numbers of the second kind\<close> | 
| 63071 | 15 | |
| 16 | fun Stirling :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 63487 | 17 | where | 
| 18 | "Stirling 0 0 = 1" | |
| 19 | | "Stirling 0 (Suc k) = 0" | |
| 20 | | "Stirling (Suc n) 0 = 0" | |
| 21 | | "Stirling (Suc n) (Suc k) = Suc k * Stirling n (Suc k) + Stirling n k" | |
| 63071 | 22 | |
| 63487 | 23 | lemma Stirling_1 [simp]: "Stirling (Suc n) (Suc 0) = 1" | 
| 63071 | 24 | by (induct n) simp_all | 
| 25 | ||
| 63487 | 26 | lemma Stirling_less [simp]: "n < k \<Longrightarrow> Stirling n k = 0" | 
| 63071 | 27 | by (induct n k rule: Stirling.induct) simp_all | 
| 28 | ||
| 63487 | 29 | lemma Stirling_same [simp]: "Stirling n n = 1" | 
| 63071 | 30 | by (induct n) simp_all | 
| 31 | ||
| 63487 | 32 | lemma Stirling_2_2: "Stirling (Suc (Suc n)) (Suc (Suc 0)) = 2 ^ Suc n - 1" | 
| 63071 | 33 | proof (induct n) | 
| 63487 | 34 | case 0 | 
| 35 | then show ?case by simp | |
| 63071 | 36 | next | 
| 37 | case (Suc n) | |
| 38 | have "Stirling (Suc (Suc (Suc n))) (Suc (Suc 0)) = | |
| 63487 | 39 | 2 * Stirling (Suc (Suc n)) (Suc (Suc 0)) + Stirling (Suc (Suc n)) (Suc 0)" | 
| 40 | by simp | |
| 63071 | 41 | also have "\<dots> = 2 * (2 ^ Suc n - 1) + 1" | 
| 42 | by (simp only: Suc Stirling_1) | |
| 43 | also have "\<dots> = 2 ^ Suc (Suc n) - 1" | |
| 44 | proof - | |
| 63487 | 45 | have "(2::nat) ^ Suc n - 1 > 0" | 
| 46 | by (induct n) simp_all | |
| 47 | then have "2 * ((2::nat) ^ Suc n - 1) > 0" | |
| 48 | by simp | |
| 49 | then have "2 \<le> 2 * ((2::nat) ^ Suc n)" | |
| 50 | by simp | |
| 63071 | 51 | with add_diff_assoc2 [of 2 "2 * 2 ^ Suc n" 1] | 
| 63487 | 52 | have "2 * 2 ^ Suc n - 2 + (1::nat) = 2 * 2 ^ Suc n + 1 - 2" . | 
| 53 | then show ?thesis | |
| 54 | by (simp add: nat_distrib) | |
| 63071 | 55 | qed | 
| 56 | finally show ?case by simp | |
| 57 | qed | |
| 58 | ||
| 63487 | 59 | lemma Stirling_2: "Stirling (Suc n) (Suc (Suc 0)) = 2 ^ n - 1" | 
| 63071 | 60 | using Stirling_2_2 by (cases n) simp_all | 
| 61 | ||
| 63487 | 62 | |
| 63145 | 63 | subsection \<open>Stirling numbers of the first kind\<close> | 
| 63071 | 64 | |
| 65 | fun stirling :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 63487 | 66 | where | 
| 67 | "stirling 0 0 = 1" | |
| 68 | | "stirling 0 (Suc k) = 0" | |
| 69 | | "stirling (Suc n) 0 = 0" | |
| 70 | | "stirling (Suc n) (Suc k) = n * stirling n (Suc k) + stirling n k" | |
| 63071 | 71 | |
| 72 | lemma stirling_0 [simp]: "n > 0 \<Longrightarrow> stirling n 0 = 0" | |
| 73 | by (cases n) simp_all | |
| 74 | ||
| 63487 | 75 | lemma stirling_less [simp]: "n < k \<Longrightarrow> stirling n k = 0" | 
| 63071 | 76 | by (induct n k rule: stirling.induct) simp_all | 
| 77 | ||
| 63487 | 78 | lemma stirling_same [simp]: "stirling n n = 1" | 
| 63071 | 79 | by (induct n) simp_all | 
| 80 | ||
| 63487 | 81 | lemma stirling_Suc_n_1: "stirling (Suc n) (Suc 0) = fact n" | 
| 63071 | 82 | by (induct n) auto | 
| 83 | ||
| 63487 | 84 | lemma stirling_Suc_n_n: "stirling (Suc n) n = Suc n choose 2" | 
| 85 | by (induct n) (auto simp add: numerals(2)) | |
| 63071 | 86 | |
| 87 | lemma stirling_Suc_n_2: | |
| 88 | assumes "n \<ge> Suc 0" | |
| 89 | shows "stirling (Suc n) 2 = (\<Sum>k=1..n. fact n div k)" | |
| 63487 | 90 | using assms | 
| 63071 | 91 | proof (induct n) | 
| 63487 | 92 | case 0 | 
| 93 | then show ?case by simp | |
| 63071 | 94 | next | 
| 95 | case (Suc n) | |
| 96 | show ?case | |
| 97 | proof (cases n) | |
| 63487 | 98 | case 0 | 
| 99 | then show ?thesis | |
| 100 | by (simp add: numerals(2)) | |
| 63071 | 101 | next | 
| 102 | case Suc | |
| 63487 | 103 | then have geq1: "Suc 0 \<le> n" | 
| 104 | by simp | |
| 63071 | 105 | have "stirling (Suc (Suc n)) 2 = Suc n * stirling (Suc n) 2 + stirling (Suc n) (Suc 0)" | 
| 106 | by (simp only: stirling.simps(4)[of "Suc n"] numerals(2)) | |
| 63487 | 107 | also have "\<dots> = Suc n * (\<Sum>k=1..n. fact n div k) + fact n" | 
| 63071 | 108 | using Suc.hyps[OF geq1] | 
| 109 | by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult) | |
| 63487 | 110 | also have "\<dots> = Suc n * (\<Sum>k=1..n. fact n div k) + Suc n * fact n div Suc n" | 
| 64240 | 111 | by (metis nat.distinct(1) nonzero_mult_div_cancel_left) | 
| 63487 | 112 | also have "\<dots> = (\<Sum>k=1..n. fact (Suc n) div k) + fact (Suc n) div Suc n" | 
| 64267 | 113 | by (simp add: sum_distrib_left div_mult_swap dvd_fact) | 
| 63487 | 114 | also have "\<dots> = (\<Sum>k=1..Suc n. fact (Suc n) div k)" | 
| 115 | by simp | |
| 63071 | 116 | finally show ?thesis . | 
| 117 | qed | |
| 118 | qed | |
| 119 | ||
| 120 | lemma of_nat_stirling_Suc_n_2: | |
| 121 | assumes "n \<ge> Suc 0" | |
| 122 | shows "(of_nat (stirling (Suc n) 2)::'a::field_char_0) = fact n * (\<Sum>k=1..n. (1 / of_nat k))" | |
| 63487 | 123 | using assms | 
| 63071 | 124 | proof (induct n) | 
| 63487 | 125 | case 0 | 
| 126 | then show ?case by simp | |
| 63071 | 127 | next | 
| 128 | case (Suc n) | |
| 129 | show ?case | |
| 130 | proof (cases n) | |
| 63487 | 131 | case 0 | 
| 132 | then show ?thesis | |
| 133 | by (auto simp add: numerals(2)) | |
| 63071 | 134 | next | 
| 135 | case Suc | |
| 63487 | 136 | then have geq1: "Suc 0 \<le> n" | 
| 137 | by simp | |
| 63071 | 138 | have "(of_nat (stirling (Suc (Suc n)) 2)::'a) = | 
| 63487 | 139 | of_nat (Suc n * stirling (Suc n) 2 + stirling (Suc n) (Suc 0))" | 
| 63071 | 140 | by (simp only: stirling.simps(4)[of "Suc n"] numerals(2)) | 
| 63487 | 141 | also have "\<dots> = of_nat (Suc n) * (fact n * (\<Sum>k = 1..n. 1 / of_nat k)) + fact n" | 
| 63071 | 142 | using Suc.hyps[OF geq1] | 
| 143 | by (simp only: stirling_Suc_n_1 of_nat_fact of_nat_add of_nat_mult) | |
| 63487 | 144 | also have "\<dots> = fact (Suc n) * (\<Sum>k = 1..n. 1 / of_nat k) + fact (Suc n) * (1 / of_nat (Suc n))" | 
| 63071 | 145 | using of_nat_neq_0 by auto | 
| 63487 | 146 | also have "\<dots> = fact (Suc n) * (\<Sum>k = 1..Suc n. 1 / of_nat k)" | 
| 63071 | 147 | by (simp add: distrib_left) | 
| 148 | finally show ?thesis . | |
| 149 | qed | |
| 150 | qed | |
| 151 | ||
| 64267 | 152 | lemma sum_stirling: "(\<Sum>k\<le>n. stirling n k) = fact n" | 
| 63071 | 153 | proof (induct n) | 
| 154 | case 0 | |
| 63487 | 155 | then show ?case by simp | 
| 63071 | 156 | next | 
| 157 | case (Suc n) | |
| 158 | have "(\<Sum>k\<le>Suc n. stirling (Suc n) k) = stirling (Suc n) 0 + (\<Sum>k\<le>n. stirling (Suc n) (Suc k))" | |
| 64267 | 159 | by (simp only: sum_atMost_Suc_shift) | 
| 63487 | 160 | also have "\<dots> = (\<Sum>k\<le>n. stirling (Suc n) (Suc k))" | 
| 161 | by simp | |
| 162 | also have "\<dots> = (\<Sum>k\<le>n. n * stirling n (Suc k) + stirling n k)" | |
| 163 | by simp | |
| 63071 | 164 | also have "\<dots> = n * (\<Sum>k\<le>n. stirling n (Suc k)) + (\<Sum>k\<le>n. stirling n k)" | 
| 64267 | 165 | by (simp add: sum.distrib sum_distrib_left) | 
| 63071 | 166 | also have "\<dots> = n * fact n + fact n" | 
| 167 | proof - | |
| 168 | have "n * (\<Sum>k\<le>n. stirling n (Suc k)) = n * ((\<Sum>k\<le>Suc n. stirling n k) - stirling n 0)" | |
| 64267 | 169 | by (metis add_diff_cancel_left' sum_atMost_Suc_shift) | 
| 63487 | 170 | also have "\<dots> = n * (\<Sum>k\<le>n. stirling n k)" | 
| 171 | by (cases n) simp_all | |
| 172 | also have "\<dots> = n * fact n" | |
| 173 | using Suc.hyps by simp | |
| 63071 | 174 | finally have "n * (\<Sum>k\<le>n. stirling n (Suc k)) = n * fact n" . | 
| 63487 | 175 | moreover have "(\<Sum>k\<le>n. stirling n k) = fact n" | 
| 176 | using Suc.hyps . | |
| 63071 | 177 | ultimately show ?thesis by simp | 
| 178 | qed | |
| 179 | also have "\<dots> = fact (Suc n)" by simp | |
| 180 | finally show ?case . | |
| 181 | qed | |
| 182 | ||
| 183 | lemma stirling_pochhammer: | |
| 63487 | 184 | "(\<Sum>k\<le>n. of_nat (stirling n k) * x ^ k) = (pochhammer x n :: 'a::comm_semiring_1)" | 
| 185 | proof (induct n) | |
| 186 | case 0 | |
| 187 | then show ?case by simp | |
| 188 | next | |
| 63071 | 189 | case (Suc n) | 
| 190 | have "of_nat (n * stirling n 0) = (0 :: 'a)" by (cases n) simp_all | |
| 63487 | 191 | then have "(\<Sum>k\<le>Suc n. of_nat (stirling (Suc n) k) * x ^ k) = | 
| 192 | (of_nat (n * stirling n 0) * x ^ 0 + | |
| 193 | (\<Sum>i\<le>n. of_nat (n * stirling n (Suc i)) * (x ^ Suc i))) + | |
| 194 | (\<Sum>i\<le>n. of_nat (stirling n i) * (x ^ Suc i))" | |
| 64267 | 195 | by (subst sum_atMost_Suc_shift) (simp add: sum.distrib ring_distribs) | 
| 63071 | 196 | also have "\<dots> = pochhammer x (Suc n)" | 
| 64267 | 197 | by (subst sum_atMost_Suc_shift [symmetric]) | 
| 198 | (simp add: algebra_simps sum.distrib sum_distrib_left pochhammer_Suc Suc [symmetric]) | |
| 63071 | 199 | finally show ?case . | 
| 63487 | 200 | qed | 
| 63071 | 201 | |
| 202 | ||
| 203 | text \<open>A row of the Stirling number triangle\<close> | |
| 204 | ||
| 63487 | 205 | definition stirling_row :: "nat \<Rightarrow> nat list" | 
| 206 | where "stirling_row n = [stirling n k. k \<leftarrow> [0..<Suc n]]" | |
| 63071 | 207 | |
| 208 | lemma nth_stirling_row: "k \<le> n \<Longrightarrow> stirling_row n ! k = stirling n k" | |
| 209 | by (simp add: stirling_row_def del: upt_Suc) | |
| 210 | ||
| 211 | lemma length_stirling_row [simp]: "length (stirling_row n) = Suc n" | |
| 212 | by (simp add: stirling_row_def) | |
| 213 | ||
| 214 | lemma stirling_row_nonempty [simp]: "stirling_row n \<noteq> []" | |
| 215 | using length_stirling_row[of n] by (auto simp del: length_stirling_row) | |
| 216 | ||
| 217 | (* TODO Move *) | |
| 218 | lemma list_ext: | |
| 219 | assumes "length xs = length ys" | |
| 220 | assumes "\<And>i. i < length xs \<Longrightarrow> xs ! i = ys ! i" | |
| 63487 | 221 | shows "xs = ys" | 
| 222 | using assms | |
| 63071 | 223 | proof (induction rule: list_induct2) | 
| 63487 | 224 | case Nil | 
| 225 | then show ?case by simp | |
| 226 | next | |
| 63071 | 227 | case (Cons x xs y ys) | 
| 63487 | 228 | from Cons.prems[of 0] have "x = y" | 
| 229 | by simp | |
| 230 | moreover from Cons.prems[of "Suc i" for i] have "xs = ys" | |
| 231 | by (intro Cons.IH) simp | |
| 63071 | 232 | ultimately show ?case by simp | 
| 63487 | 233 | qed | 
| 63071 | 234 | |
| 235 | ||
| 236 | subsubsection \<open>Efficient code\<close> | |
| 237 | ||
| 238 | text \<open> | |
| 63487 | 239 | Naively using the defining equations of the Stirling numbers of the first | 
| 240 | kind to compute them leads to exponential run time due to repeated | |
| 241 | computations. We can use memoisation to compute them row by row without | |
| 242 | repeating computations, at the cost of computing a few unneeded values. | |
| 63071 | 243 | |
| 244 | As a bonus, this is very efficient for applications where an entire row of | |
| 63487 | 245 | Stirling numbers is needed. | 
| 63071 | 246 | \<close> | 
| 247 | ||
| 63487 | 248 | definition zip_with_prev :: "('a \<Rightarrow> 'a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'a list \<Rightarrow> 'b list"
 | 
| 66656 | 249 | where "zip_with_prev f x xs = map2 f (x # xs) xs" | 
| 63071 | 250 | |
| 251 | lemma zip_with_prev_altdef: | |
| 252 | "zip_with_prev f x xs = | |
| 63487 | 253 | (if xs = [] then [] else f x (hd xs) # [f (xs!i) (xs!(i+1)). i \<leftarrow> [0..<length xs - 1]])" | 
| 63071 | 254 | proof (cases xs) | 
| 63487 | 255 | case Nil | 
| 256 | then show ?thesis | |
| 257 | by (simp add: zip_with_prev_def) | |
| 258 | next | |
| 63071 | 259 | case (Cons y ys) | 
| 63487 | 260 | then have "zip_with_prev f x xs = f x (hd xs) # zip_with_prev f y ys" | 
| 63071 | 261 | by (simp add: zip_with_prev_def) | 
| 262 | also have "zip_with_prev f y ys = map (\<lambda>i. f (xs ! i) (xs ! (i + 1))) [0..<length xs - 1]" | |
| 263 | unfolding Cons | |
| 63487 | 264 | by (induct ys arbitrary: y) | 
| 265 | (simp_all add: zip_with_prev_def upt_conv_Cons map_Suc_upt [symmetric] del: upt_Suc) | |
| 266 | finally show ?thesis | |
| 267 | using Cons by simp | |
| 268 | qed | |
| 63071 | 269 | |
| 270 | ||
| 63487 | 271 | primrec stirling_row_aux | 
| 272 | where | |
| 273 | "stirling_row_aux n y [] = [1]" | |
| 274 | | "stirling_row_aux n y (x#xs) = (y + n * x) # stirling_row_aux n x xs" | |
| 63071 | 275 | |
| 276 | lemma stirling_row_aux_correct: | |
| 277 | "stirling_row_aux n y xs = zip_with_prev (\<lambda>a b. a + n * b) y xs @ [1]" | |
| 63487 | 278 | by (induct xs arbitrary: y) (simp_all add: zip_with_prev_def) | 
| 63071 | 279 | |
| 280 | lemma stirling_row_code [code]: | |
| 281 | "stirling_row 0 = [1]" | |
| 282 | "stirling_row (Suc n) = stirling_row_aux n 0 (stirling_row n)" | |
| 63487 | 283 | proof goal_cases | 
| 284 | case 1 | |
| 285 | show ?case by (simp add: stirling_row_def) | |
| 286 | next | |
| 287 | case 2 | |
| 63071 | 288 | have "stirling_row (Suc n) = | 
| 63487 | 289 | 0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. i \<leftarrow> [0..<n]] @ [1]" | 
| 63071 | 290 | proof (rule list_ext, goal_cases length nth) | 
| 291 | case (nth i) | |
| 63487 | 292 | from nth have "i \<le> Suc n" | 
| 293 | by simp | |
| 294 | then consider "i = 0 \<or> i = Suc n" | "i > 0" "i \<le> n" | |
| 295 | by linarith | |
| 296 | then show ?case | |
| 63071 | 297 | proof cases | 
| 63487 | 298 | case 1 | 
| 299 | then show ?thesis | |
| 300 | by (auto simp: nth_stirling_row nth_append) | |
| 301 | next | |
| 302 | case 2 | |
| 303 | then show ?thesis | |
| 304 | by (cases i) (simp_all add: nth_append nth_stirling_row) | |
| 305 | qed | |
| 306 | next | |
| 307 | case length | |
| 308 | then show ?case by simp | |
| 309 | qed | |
| 63071 | 310 | also have "0 # [stirling_row n ! i + stirling_row n ! (i+1) * n. i \<leftarrow> [0..<n]] @ [1] = | 
| 63487 | 311 | zip_with_prev (\<lambda>a b. a + n * b) 0 (stirling_row n) @ [1]" | 
| 63071 | 312 | by (cases n) (auto simp add: zip_with_prev_altdef stirling_row_def hd_map simp del: upt_Suc) | 
| 313 | also have "\<dots> = stirling_row_aux n 0 (stirling_row n)" | |
| 314 | by (simp add: stirling_row_aux_correct) | |
| 63487 | 315 | finally show ?case . | 
| 316 | qed | |
| 63071 | 317 | |
| 318 | lemma stirling_code [code]: | |
| 63487 | 319 | "stirling n k = | 
| 320 | (if k = 0 then (if n = 0 then 1 else 0) | |
| 321 | else if k > n then 0 | |
| 322 | else if k = n then 1 | |
| 323 | else stirling_row n ! k)" | |
| 63071 | 324 | by (simp add: nth_stirling_row) | 
| 325 | ||
| 326 | end |