author | lcp |
Tue, 16 Aug 1994 19:03:45 +0200 | |
changeset 534 | cd8bec47e175 |
parent 516 | 1957113f0d7d |
child 664 | ba39b4984f5a |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: ZF/zf.ML |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory |
|
435 | 4 |
Copyright 1994 University of Cambridge |
0 | 5 |
|
6 |
Basic introduction and elimination rules for Zermelo-Fraenkel Set Theory |
|
7 |
*) |
|
8 |
||
9 |
open ZF; |
|
10 |
||
11 |
signature ZF_LEMMAS = |
|
12 |
sig |
|
516 | 13 |
val ballE : thm |
14 |
val ballI : thm |
|
15 |
val ball_cong : thm |
|
16 |
val ball_simp : thm |
|
17 |
val ball_tac : int -> tactic |
|
18 |
val bexCI : thm |
|
19 |
val bexE : thm |
|
20 |
val bexI : thm |
|
21 |
val bex_cong : thm |
|
22 |
val bspec : thm |
|
23 |
val CollectD1 : thm |
|
24 |
val CollectD2 : thm |
|
25 |
val CollectE : thm |
|
26 |
val CollectI : thm |
|
435 | 27 |
val Collect_cong : thm |
516 | 28 |
val emptyE : thm |
435 | 29 |
val empty_subsetI : thm |
30 |
val equalityCE : thm |
|
31 |
val equalityD1 : thm |
|
32 |
val equalityD2 : thm |
|
516 | 33 |
val equalityE : thm |
34 |
val equalityI : thm |
|
435 | 35 |
val equality_iffI : thm |
516 | 36 |
val equals0D : thm |
37 |
val equals0I : thm |
|
435 | 38 |
val ex1_functional : thm |
516 | 39 |
val InterD : thm |
40 |
val InterE : thm |
|
41 |
val InterI : thm |
|
42 |
val Inter_iff : thm |
|
43 |
val INT_E : thm |
|
44 |
val INT_I : thm |
|
45 |
val INT_cong : thm |
|
46 |
val lemmas_cs : claset |
|
47 |
val PowD : thm |
|
48 |
val PowI : thm |
|
49 |
val RepFunE : thm |
|
50 |
val RepFunI : thm |
|
435 | 51 |
val RepFun_eqI : thm |
52 |
val RepFun_cong : thm |
|
485 | 53 |
val RepFun_iff : thm |
516 | 54 |
val ReplaceE : thm |
55 |
val ReplaceE2 : thm |
|
56 |
val ReplaceI : thm |
|
435 | 57 |
val Replace_iff : thm |
58 |
val Replace_cong : thm |
|
516 | 59 |
val rev_ballE : thm |
60 |
val rev_bspec : thm |
|
435 | 61 |
val rev_subsetD : thm |
62 |
val separation : thm |
|
63 |
val setup_induction : thm |
|
64 |
val set_mp_tac : int -> tactic |
|
516 | 65 |
val subsetCE : thm |
66 |
val subsetD : thm |
|
67 |
val subsetI : thm |
|
435 | 68 |
val subset_iff : thm |
69 |
val subset_refl : thm |
|
70 |
val subset_trans : thm |
|
516 | 71 |
val UnionE : thm |
72 |
val UnionI : thm |
|
73 |
val Union_in_Pow : thm |
|
74 |
val UN_E : thm |
|
75 |
val UN_I : thm |
|
76 |
val UN_cong : thm |
|
0 | 77 |
end; |
78 |
||
79 |
||
80 |
structure ZF_Lemmas : ZF_LEMMAS = |
|
81 |
struct |
|
82 |
||
83 |
(*** Bounded universal quantifier ***) |
|
84 |
||
85 |
val ballI = prove_goalw ZF.thy [Ball_def] |
|
86 |
"[| !!x. x:A ==> P(x) |] ==> ALL x:A. P(x)" |
|
87 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [allI,impI]) 1)) ]); |
|
88 |
||
89 |
val bspec = prove_goalw ZF.thy [Ball_def] |
|
90 |
"[| ALL x:A. P(x); x: A |] ==> P(x)" |
|
91 |
(fn major::prems=> |
|
92 |
[ (rtac (major RS spec RS mp) 1), |
|
93 |
(resolve_tac prems 1) ]); |
|
94 |
||
95 |
val ballE = prove_goalw ZF.thy [Ball_def] |
|
37 | 96 |
"[| ALL x:A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q" |
0 | 97 |
(fn major::prems=> |
98 |
[ (rtac (major RS allE) 1), |
|
99 |
(REPEAT (eresolve_tac (prems@[asm_rl,impCE]) 1)) ]); |
|
100 |
||
101 |
(*Used in the datatype package*) |
|
102 |
val rev_bspec = prove_goal ZF.thy |
|
103 |
"!!x A P. [| x: A; ALL x:A. P(x) |] ==> P(x)" |
|
104 |
(fn _ => |
|
105 |
[ REPEAT (ares_tac [bspec] 1) ]); |
|
106 |
||
107 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
108 |
val rev_ballE = prove_goal ZF.thy |
|
37 | 109 |
"[| ALL x:A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q" |
0 | 110 |
(fn major::prems=> |
111 |
[ (rtac (major RS ballE) 1), |
|
112 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
113 |
||
114 |
(*Takes assumptions ALL x:A.P(x) and a:A; creates assumption P(a)*) |
|
115 |
val ball_tac = dtac bspec THEN' assume_tac; |
|
116 |
||
117 |
(*Trival rewrite rule; (ALL x:A.P)<->P holds only if A is nonempty!*) |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
118 |
val ball_simp = prove_goal ZF.thy "(ALL x:A. True) <-> True" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
119 |
(fn _=> [ (REPEAT (ares_tac [TrueI,ballI,iffI] 1)) ]); |
0 | 120 |
|
121 |
(*Congruence rule for rewriting*) |
|
122 |
val ball_cong = prove_goalw ZF.thy [Ball_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
123 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) |] ==> Ball(A,P) <-> Ball(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
124 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems) 1) ]); |
0 | 125 |
|
126 |
(*** Bounded existential quantifier ***) |
|
127 |
||
128 |
val bexI = prove_goalw ZF.thy [Bex_def] |
|
129 |
"[| P(x); x: A |] ==> EX x:A. P(x)" |
|
130 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [exI,conjI]) 1)) ]); |
|
131 |
||
132 |
(*Not of the general form for such rules; ~EX has become ALL~ *) |
|
133 |
val bexCI = prove_goal ZF.thy |
|
134 |
"[| ALL x:A. ~P(x) ==> P(a); a: A |] ==> EX x:A.P(x)" |
|
135 |
(fn prems=> |
|
136 |
[ (rtac classical 1), |
|
137 |
(REPEAT (ares_tac (prems@[bexI,ballI,notI,notE]) 1)) ]); |
|
138 |
||
139 |
val bexE = prove_goalw ZF.thy [Bex_def] |
|
140 |
"[| EX x:A. P(x); !!x. [| x:A; P(x) |] ==> Q \ |
|
141 |
\ |] ==> Q" |
|
142 |
(fn major::prems=> |
|
143 |
[ (rtac (major RS exE) 1), |
|
144 |
(REPEAT (eresolve_tac (prems @ [asm_rl,conjE]) 1)) ]); |
|
145 |
||
146 |
(*We do not even have (EX x:A. True) <-> True unless A is nonempty!!*) |
|
147 |
||
148 |
val bex_cong = prove_goalw ZF.thy [Bex_def] |
|
149 |
"[| A=A'; !!x. x:A' ==> P(x) <-> P'(x) \ |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
150 |
\ |] ==> Bex(A,P) <-> Bex(A',P')" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
151 |
(fn prems=> [ (simp_tac (FOL_ss addsimps prems addcongs [conj_cong]) 1) ]); |
0 | 152 |
|
153 |
(*** Rules for subsets ***) |
|
154 |
||
155 |
val subsetI = prove_goalw ZF.thy [subset_def] |
|
156 |
"(!!x.x:A ==> x:B) ==> A <= B" |
|
157 |
(fn prems=> [ (REPEAT (ares_tac (prems @ [ballI]) 1)) ]); |
|
158 |
||
159 |
(*Rule in Modus Ponens style [was called subsetE] *) |
|
160 |
val subsetD = prove_goalw ZF.thy [subset_def] "[| A <= B; c:A |] ==> c:B" |
|
161 |
(fn major::prems=> |
|
162 |
[ (rtac (major RS bspec) 1), |
|
163 |
(resolve_tac prems 1) ]); |
|
164 |
||
165 |
(*Classical elimination rule*) |
|
166 |
val subsetCE = prove_goalw ZF.thy [subset_def] |
|
37 | 167 |
"[| A <= B; c~:A ==> P; c:B ==> P |] ==> P" |
0 | 168 |
(fn major::prems=> |
169 |
[ (rtac (major RS ballE) 1), |
|
170 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
171 |
||
172 |
(*Takes assumptions A<=B; c:A and creates the assumption c:B *) |
|
173 |
val set_mp_tac = dtac subsetD THEN' assume_tac; |
|
174 |
||
175 |
(*Sometimes useful with premises in this order*) |
|
176 |
val rev_subsetD = prove_goal ZF.thy "!!A B c. [| c:A; A<=B |] ==> c:B" |
|
177 |
(fn _=> [REPEAT (ares_tac [subsetD] 1)]); |
|
178 |
||
179 |
val subset_refl = prove_goal ZF.thy "A <= A" |
|
180 |
(fn _=> [ (rtac subsetI 1), atac 1 ]); |
|
181 |
||
182 |
val subset_trans = prove_goal ZF.thy "[| A<=B; B<=C |] ==> A<=C" |
|
183 |
(fn prems=> [ (REPEAT (ares_tac ([subsetI]@(prems RL [subsetD])) 1)) ]); |
|
184 |
||
435 | 185 |
(*Useful for proving A<=B by rewriting in some cases*) |
186 |
val subset_iff = prove_goalw ZF.thy [subset_def,Ball_def] |
|
187 |
"A<=B <-> (ALL x. x:A --> x:B)" |
|
188 |
(fn _=> [ (rtac iff_refl 1) ]); |
|
189 |
||
0 | 190 |
|
191 |
(*** Rules for equality ***) |
|
192 |
||
193 |
(*Anti-symmetry of the subset relation*) |
|
194 |
val equalityI = prove_goal ZF.thy "[| A <= B; B <= A |] ==> A = B" |
|
195 |
(fn prems=> [ (REPEAT (resolve_tac (prems@[conjI, extension RS iffD2]) 1)) ]); |
|
196 |
||
197 |
val equality_iffI = prove_goal ZF.thy "(!!x. x:A <-> x:B) ==> A = B" |
|
198 |
(fn [prem] => |
|
199 |
[ (rtac equalityI 1), |
|
200 |
(REPEAT (ares_tac [subsetI, prem RS iffD1, prem RS iffD2] 1)) ]); |
|
201 |
||
202 |
val equalityD1 = prove_goal ZF.thy "A = B ==> A<=B" |
|
203 |
(fn prems=> |
|
204 |
[ (rtac (extension RS iffD1 RS conjunct1) 1), |
|
205 |
(resolve_tac prems 1) ]); |
|
206 |
||
207 |
val equalityD2 = prove_goal ZF.thy "A = B ==> B<=A" |
|
208 |
(fn prems=> |
|
209 |
[ (rtac (extension RS iffD1 RS conjunct2) 1), |
|
210 |
(resolve_tac prems 1) ]); |
|
211 |
||
212 |
val equalityE = prove_goal ZF.thy |
|
213 |
"[| A = B; [| A<=B; B<=A |] ==> P |] ==> P" |
|
214 |
(fn prems=> |
|
215 |
[ (DEPTH_SOLVE (resolve_tac (prems@[equalityD1,equalityD2]) 1)) ]); |
|
216 |
||
217 |
val equalityCE = prove_goal ZF.thy |
|
37 | 218 |
"[| A = B; [| c:A; c:B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P" |
0 | 219 |
(fn major::prems=> |
220 |
[ (rtac (major RS equalityE) 1), |
|
221 |
(REPEAT (contr_tac 1 ORELSE eresolve_tac ([asm_rl,subsetCE]@prems) 1)) ]); |
|
222 |
||
223 |
(*Lemma for creating induction formulae -- for "pattern matching" on p |
|
224 |
To make the induction hypotheses usable, apply "spec" or "bspec" to |
|
225 |
put universal quantifiers over the free variables in p. |
|
226 |
Would it be better to do subgoal_tac "ALL z. p = f(z) --> R(z)" ??*) |
|
227 |
val setup_induction = prove_goal ZF.thy |
|
228 |
"[| p: A; !!z. z: A ==> p=z --> R |] ==> R" |
|
229 |
(fn prems=> |
|
230 |
[ (rtac mp 1), |
|
231 |
(REPEAT (resolve_tac (refl::prems) 1)) ]); |
|
232 |
||
233 |
||
234 |
(*** Rules for Replace -- the derived form of replacement ***) |
|
235 |
||
236 |
val ex1_functional = prove_goal ZF.thy |
|
237 |
"[| EX! z. P(a,z); P(a,b); P(a,c) |] ==> b = c" |
|
238 |
(fn prems=> |
|
239 |
[ (cut_facts_tac prems 1), |
|
240 |
(best_tac FOL_dup_cs 1) ]); |
|
241 |
||
242 |
val Replace_iff = prove_goalw ZF.thy [Replace_def] |
|
243 |
"b : {y. x:A, P(x,y)} <-> (EX x:A. P(x,b) & (ALL y. P(x,y) --> y=b))" |
|
244 |
(fn _=> |
|
245 |
[ (rtac (replacement RS iff_trans) 1), |
|
246 |
(REPEAT (ares_tac [refl,bex_cong,iffI,ballI,allI,conjI,impI,ex1I] 1 |
|
247 |
ORELSE eresolve_tac [conjE, spec RS mp, ex1_functional] 1)) ]); |
|
248 |
||
249 |
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *) |
|
250 |
val ReplaceI = prove_goal ZF.thy |
|
485 | 251 |
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==> \ |
0 | 252 |
\ b : {y. x:A, P(x,y)}" |
253 |
(fn prems=> |
|
254 |
[ (rtac (Replace_iff RS iffD2) 1), |
|
255 |
(REPEAT (ares_tac (prems@[bexI,conjI,allI,impI]) 1)) ]); |
|
256 |
||
257 |
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *) |
|
258 |
val ReplaceE = prove_goal ZF.thy |
|
259 |
"[| b : {y. x:A, P(x,y)}; \ |
|
260 |
\ !!x. [| x: A; P(x,b); ALL y. P(x,y)-->y=b |] ==> R \ |
|
261 |
\ |] ==> R" |
|
262 |
(fn prems=> |
|
263 |
[ (rtac (Replace_iff RS iffD1 RS bexE) 1), |
|
264 |
(etac conjE 2), |
|
265 |
(REPEAT (ares_tac prems 1)) ]); |
|
266 |
||
485 | 267 |
(*As above but without the (generally useless) 3rd assumption*) |
268 |
val ReplaceE2 = prove_goal ZF.thy |
|
269 |
"[| b : {y. x:A, P(x,y)}; \ |
|
270 |
\ !!x. [| x: A; P(x,b) |] ==> R \ |
|
271 |
\ |] ==> R" |
|
272 |
(fn major::prems=> |
|
273 |
[ (rtac (major RS ReplaceE) 1), |
|
274 |
(REPEAT (ares_tac prems 1)) ]); |
|
275 |
||
0 | 276 |
val Replace_cong = prove_goal ZF.thy |
277 |
"[| A=B; !!x y. x:B ==> P(x,y) <-> Q(x,y) |] ==> \ |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
278 |
\ Replace(A,P) = Replace(B,Q)" |
0 | 279 |
(fn prems=> |
280 |
let val substprems = prems RL [subst, ssubst] |
|
281 |
and iffprems = prems RL [iffD1,iffD2] |
|
282 |
in [ (rtac equalityI 1), |
|
283 |
(REPEAT (eresolve_tac (substprems@[asm_rl, ReplaceE, spec RS mp]) 1 |
|
284 |
ORELSE resolve_tac [subsetI, ReplaceI] 1 |
|
285 |
ORELSE (resolve_tac iffprems 1 THEN assume_tac 2))) ] |
|
286 |
end); |
|
287 |
||
288 |
(*** Rules for RepFun ***) |
|
289 |
||
290 |
val RepFunI = prove_goalw ZF.thy [RepFun_def] |
|
291 |
"!!a A. a : A ==> f(a) : {f(x). x:A}" |
|
292 |
(fn _ => [ (REPEAT (ares_tac [ReplaceI,refl] 1)) ]); |
|
293 |
||
120 | 294 |
(*Useful for coinduction proofs*) |
0 | 295 |
val RepFun_eqI = prove_goal ZF.thy |
296 |
"!!b a f. [| b=f(a); a : A |] ==> b : {f(x). x:A}" |
|
297 |
(fn _ => [ etac ssubst 1, etac RepFunI 1 ]); |
|
298 |
||
299 |
val RepFunE = prove_goalw ZF.thy [RepFun_def] |
|
300 |
"[| b : {f(x). x:A}; \ |
|
301 |
\ !!x.[| x:A; b=f(x) |] ==> P |] ==> \ |
|
302 |
\ P" |
|
303 |
(fn major::prems=> |
|
304 |
[ (rtac (major RS ReplaceE) 1), |
|
305 |
(REPEAT (ares_tac prems 1)) ]); |
|
306 |
||
307 |
val RepFun_cong = prove_goalw ZF.thy [RepFun_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
308 |
"[| A=B; !!x. x:B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
309 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); |
0 | 310 |
|
485 | 311 |
val RepFun_iff = prove_goalw ZF.thy [Bex_def] |
312 |
"b : {f(x). x:A} <-> (EX x:A. b=f(x))" |
|
313 |
(fn _ => [ (fast_tac (FOL_cs addIs [RepFunI] addSEs [RepFunE]) 1) ]); |
|
314 |
||
0 | 315 |
|
316 |
(*** Rules for Collect -- forming a subset by separation ***) |
|
317 |
||
318 |
(*Separation is derivable from Replacement*) |
|
319 |
val separation = prove_goalw ZF.thy [Collect_def] |
|
320 |
"a : {x:A. P(x)} <-> a:A & P(a)" |
|
321 |
(fn _=> [ (fast_tac (FOL_cs addIs [bexI,ReplaceI] |
|
322 |
addSEs [bexE,ReplaceE]) 1) ]); |
|
323 |
||
324 |
val CollectI = prove_goal ZF.thy |
|
325 |
"[| a:A; P(a) |] ==> a : {x:A. P(x)}" |
|
326 |
(fn prems=> |
|
327 |
[ (rtac (separation RS iffD2) 1), |
|
328 |
(REPEAT (resolve_tac (prems@[conjI]) 1)) ]); |
|
329 |
||
330 |
val CollectE = prove_goal ZF.thy |
|
331 |
"[| a : {x:A. P(x)}; [| a:A; P(a) |] ==> R |] ==> R" |
|
332 |
(fn prems=> |
|
333 |
[ (rtac (separation RS iffD1 RS conjE) 1), |
|
334 |
(REPEAT (ares_tac prems 1)) ]); |
|
335 |
||
336 |
val CollectD1 = prove_goal ZF.thy "a : {x:A. P(x)} ==> a:A" |
|
337 |
(fn [major]=> |
|
338 |
[ (rtac (major RS CollectE) 1), |
|
339 |
(assume_tac 1) ]); |
|
340 |
||
341 |
val CollectD2 = prove_goal ZF.thy "a : {x:A. P(x)} ==> P(a)" |
|
342 |
(fn [major]=> |
|
343 |
[ (rtac (major RS CollectE) 1), |
|
344 |
(assume_tac 1) ]); |
|
345 |
||
346 |
val Collect_cong = prove_goalw ZF.thy [Collect_def] |
|
6
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
347 |
"[| A=B; !!x. x:B ==> P(x) <-> Q(x) |] ==> Collect(A,P) = Collect(B,Q)" |
8ce8c4d13d4d
Installation of new simplifier for ZF. Deleted all congruence rules not
lcp
parents:
0
diff
changeset
|
348 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [Replace_cong] addsimps prems) 1) ]); |
0 | 349 |
|
350 |
(*** Rules for Unions ***) |
|
351 |
||
352 |
(*The order of the premises presupposes that C is rigid; A may be flexible*) |
|
353 |
val UnionI = prove_goal ZF.thy "[| B: C; A: B |] ==> A: Union(C)" |
|
354 |
(fn prems=> |
|
485 | 355 |
[ (resolve_tac [Union_iff RS iffD2] 1), |
0 | 356 |
(REPEAT (resolve_tac (prems @ [bexI]) 1)) ]); |
357 |
||
358 |
val UnionE = prove_goal ZF.thy |
|
359 |
"[| A : Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R" |
|
360 |
(fn prems=> |
|
485 | 361 |
[ (resolve_tac [Union_iff RS iffD1 RS bexE] 1), |
0 | 362 |
(REPEAT (ares_tac prems 1)) ]); |
363 |
||
364 |
(*** Rules for Inter ***) |
|
365 |
||
366 |
(*Not obviously useful towards proving InterI, InterD, InterE*) |
|
367 |
val Inter_iff = prove_goalw ZF.thy [Inter_def,Ball_def] |
|
368 |
"A : Inter(C) <-> (ALL x:C. A: x) & (EX x. x:C)" |
|
369 |
(fn _=> [ (rtac (separation RS iff_trans) 1), |
|
370 |
(fast_tac (FOL_cs addIs [UnionI] addSEs [UnionE]) 1) ]); |
|
371 |
||
372 |
(* Intersection is well-behaved only if the family is non-empty! *) |
|
373 |
val InterI = prove_goalw ZF.thy [Inter_def] |
|
374 |
"[| !!x. x: C ==> A: x; c:C |] ==> A : Inter(C)" |
|
375 |
(fn prems=> |
|
376 |
[ (DEPTH_SOLVE (ares_tac ([CollectI,UnionI,ballI] @ prems) 1)) ]); |
|
377 |
||
378 |
(*A "destruct" rule -- every B in C contains A as an element, but |
|
379 |
A:B can hold when B:C does not! This rule is analogous to "spec". *) |
|
380 |
val InterD = prove_goalw ZF.thy [Inter_def] |
|
381 |
"[| A : Inter(C); B : C |] ==> A : B" |
|
382 |
(fn [major,minor]=> |
|
383 |
[ (rtac (major RS CollectD2 RS bspec) 1), |
|
384 |
(rtac minor 1) ]); |
|
385 |
||
386 |
(*"Classical" elimination rule -- does not require exhibiting B:C *) |
|
387 |
val InterE = prove_goalw ZF.thy [Inter_def] |
|
37 | 388 |
"[| A : Inter(C); A:B ==> R; B~:C ==> R |] ==> R" |
0 | 389 |
(fn major::prems=> |
390 |
[ (rtac (major RS CollectD2 RS ballE) 1), |
|
391 |
(REPEAT (eresolve_tac prems 1)) ]); |
|
392 |
||
393 |
(*** Rules for Unions of families ***) |
|
394 |
(* UN x:A. B(x) abbreviates Union({B(x). x:A}) *) |
|
395 |
||
485 | 396 |
val UN_iff = prove_goalw ZF.thy [Bex_def] |
397 |
"b : (UN x:A. B(x)) <-> (EX x:A. b : B(x))" |
|
398 |
(fn _=> [ (fast_tac (FOL_cs addIs [UnionI, RepFunI] |
|
399 |
addSEs [UnionE, RepFunE]) 1) ]); |
|
400 |
||
0 | 401 |
(*The order of the premises presupposes that A is rigid; b may be flexible*) |
402 |
val UN_I = prove_goal ZF.thy "[| a: A; b: B(a) |] ==> b: (UN x:A. B(x))" |
|
403 |
(fn prems=> |
|
404 |
[ (REPEAT (resolve_tac (prems@[UnionI,RepFunI]) 1)) ]); |
|
405 |
||
406 |
val UN_E = prove_goal ZF.thy |
|
407 |
"[| b : (UN x:A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R" |
|
408 |
(fn major::prems=> |
|
409 |
[ (rtac (major RS UnionE) 1), |
|
410 |
(REPEAT (eresolve_tac (prems@[asm_rl, RepFunE, subst]) 1)) ]); |
|
411 |
||
435 | 412 |
val UN_cong = prove_goal ZF.thy |
413 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (UN x:A.C(x)) = (UN x:B.D(x))" |
|
414 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]); |
|
415 |
||
0 | 416 |
|
417 |
(*** Rules for Intersections of families ***) |
|
418 |
(* INT x:A. B(x) abbreviates Inter({B(x). x:A}) *) |
|
419 |
||
485 | 420 |
val INT_iff = prove_goal ZF.thy |
421 |
"b : (INT x:A. B(x)) <-> (ALL x:A. b : B(x)) & (EX x. x:A)" |
|
422 |
(fn _=> [ (simp_tac (FOL_ss addsimps [Inter_def, Ball_def, Bex_def, |
|
423 |
separation, Union_iff, RepFun_iff]) 1), |
|
424 |
(fast_tac FOL_cs 1) ]); |
|
425 |
||
0 | 426 |
val INT_I = prove_goal ZF.thy |
427 |
"[| !!x. x: A ==> b: B(x); a: A |] ==> b: (INT x:A. B(x))" |
|
428 |
(fn prems=> |
|
429 |
[ (REPEAT (ares_tac (prems@[InterI,RepFunI]) 1 |
|
430 |
ORELSE eresolve_tac [RepFunE,ssubst] 1)) ]); |
|
431 |
||
432 |
val INT_E = prove_goal ZF.thy |
|
433 |
"[| b : (INT x:A. B(x)); a: A |] ==> b : B(a)" |
|
434 |
(fn [major,minor]=> |
|
435 |
[ (rtac (major RS InterD) 1), |
|
436 |
(rtac (minor RS RepFunI) 1) ]); |
|
437 |
||
435 | 438 |
val INT_cong = prove_goal ZF.thy |
439 |
"[| A=B; !!x. x:B ==> C(x)=D(x) |] ==> (INT x:A.C(x)) = (INT x:B.D(x))" |
|
440 |
(fn prems=> [ (simp_tac (FOL_ss addcongs [RepFun_cong] addsimps prems) 1) ]); |
|
441 |
||
0 | 442 |
|
443 |
(*** Rules for Powersets ***) |
|
444 |
||
445 |
val PowI = prove_goal ZF.thy "A <= B ==> A : Pow(B)" |
|
485 | 446 |
(fn [prem]=> [ (rtac (prem RS (Pow_iff RS iffD2)) 1) ]); |
0 | 447 |
|
448 |
val PowD = prove_goal ZF.thy "A : Pow(B) ==> A<=B" |
|
485 | 449 |
(fn [major]=> [ (rtac (major RS (Pow_iff RS iffD1)) 1) ]); |
0 | 450 |
|
451 |
||
452 |
(*** Rules for the empty set ***) |
|
453 |
||
454 |
(*The set {x:0.False} is empty; by foundation it equals 0 |
|
455 |
See Suppes, page 21.*) |
|
456 |
val emptyE = prove_goal ZF.thy "a:0 ==> P" |
|
457 |
(fn [major]=> |
|
458 |
[ (rtac (foundation RS disjE) 1), |
|
459 |
(etac (equalityD2 RS subsetD RS CollectD2 RS FalseE) 1), |
|
460 |
(rtac major 1), |
|
461 |
(etac bexE 1), |
|
462 |
(etac (CollectD2 RS FalseE) 1) ]); |
|
463 |
||
464 |
val empty_subsetI = prove_goal ZF.thy "0 <= A" |
|
465 |
(fn _ => [ (REPEAT (ares_tac [equalityI,subsetI,emptyE] 1)) ]); |
|
466 |
||
467 |
val equals0I = prove_goal ZF.thy "[| !!y. y:A ==> False |] ==> A=0" |
|
468 |
(fn prems=> |
|
469 |
[ (REPEAT (ares_tac (prems@[empty_subsetI,subsetI,equalityI]) 1 |
|
470 |
ORELSE eresolve_tac (prems RL [FalseE]) 1)) ]); |
|
471 |
||
472 |
val equals0D = prove_goal ZF.thy "[| A=0; a:A |] ==> P" |
|
473 |
(fn [major,minor]=> |
|
474 |
[ (rtac (minor RS (major RS equalityD1 RS subsetD RS emptyE)) 1) ]); |
|
475 |
||
476 |
val lemmas_cs = FOL_cs |
|
477 |
addSIs [ballI, InterI, CollectI, PowI, subsetI] |
|
478 |
addIs [bexI, UnionI, ReplaceI, RepFunI] |
|
485 | 479 |
addSEs [bexE, make_elim PowD, UnionE, ReplaceE2, RepFunE, |
0 | 480 |
CollectE, emptyE] |
481 |
addEs [rev_ballE, InterD, make_elim InterD, subsetD, subsetCE]; |
|
482 |
||
516 | 483 |
(*Lemma for the inductive definition in Zorn.thy*) |
484 |
val Union_in_Pow = prove_goal ZF.thy |
|
485 |
"!!Y. Y : Pow(Pow(A)) ==> Union(Y) : Pow(A)" |
|
486 |
(fn _ => [fast_tac lemmas_cs 1]); |
|
487 |
||
0 | 488 |
end; |
489 |
||
490 |
open ZF_Lemmas; |