0
|
1 |
(* Title: ZF/equalities
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Set Theory examples: Union, Intersection, Inclusion, etc.
|
|
7 |
(Thanks also to Philippe de Groote.)
|
|
8 |
*)
|
|
9 |
|
|
10 |
(** Finite Sets **)
|
|
11 |
|
520
|
12 |
(* cons_def refers to Upair; reversing the equality LOOPS in rewriting!*)
|
|
13 |
goal ZF.thy "{a} Un B = cons(a,B)";
|
|
14 |
by (fast_tac eq_cs 1);
|
|
15 |
val cons_eq = result();
|
|
16 |
|
0
|
17 |
goal ZF.thy "cons(a, cons(b, C)) = cons(b, cons(a, C))";
|
|
18 |
by (fast_tac eq_cs 1);
|
|
19 |
val cons_commute = result();
|
|
20 |
|
|
21 |
goal ZF.thy "!!B. a: B ==> cons(a,B) = B";
|
|
22 |
by (fast_tac eq_cs 1);
|
|
23 |
val cons_absorb = result();
|
|
24 |
|
|
25 |
goal ZF.thy "!!B. a: B ==> cons(a, B-{a}) = B";
|
|
26 |
by (fast_tac eq_cs 1);
|
|
27 |
val cons_Diff = result();
|
|
28 |
|
|
29 |
goal ZF.thy "!!C. [| a: C; ALL y:C. y=b |] ==> C = {b}";
|
|
30 |
by (fast_tac eq_cs 1);
|
|
31 |
val equal_singleton_lemma = result();
|
|
32 |
val equal_singleton = ballI RSN (2,equal_singleton_lemma);
|
|
33 |
|
|
34 |
|
|
35 |
(** Binary Intersection **)
|
|
36 |
|
|
37 |
goal ZF.thy "0 Int A = 0";
|
|
38 |
by (fast_tac eq_cs 1);
|
|
39 |
val Int_0 = result();
|
|
40 |
|
|
41 |
(*NOT an equality, but it seems to belong here...*)
|
|
42 |
goal ZF.thy "cons(a,B) Int C <= cons(a, B Int C)";
|
|
43 |
by (fast_tac eq_cs 1);
|
|
44 |
val Int_cons = result();
|
|
45 |
|
|
46 |
goal ZF.thy "A Int A = A";
|
|
47 |
by (fast_tac eq_cs 1);
|
|
48 |
val Int_absorb = result();
|
|
49 |
|
|
50 |
goal ZF.thy "A Int B = B Int A";
|
|
51 |
by (fast_tac eq_cs 1);
|
|
52 |
val Int_commute = result();
|
|
53 |
|
|
54 |
goal ZF.thy "(A Int B) Int C = A Int (B Int C)";
|
|
55 |
by (fast_tac eq_cs 1);
|
|
56 |
val Int_assoc = result();
|
|
57 |
|
|
58 |
goal ZF.thy "(A Un B) Int C = (A Int C) Un (B Int C)";
|
|
59 |
by (fast_tac eq_cs 1);
|
|
60 |
val Int_Un_distrib = result();
|
|
61 |
|
|
62 |
goal ZF.thy "A<=B <-> A Int B = A";
|
|
63 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
64 |
val subset_Int_iff = result();
|
|
65 |
|
435
|
66 |
goal ZF.thy "A<=B <-> B Int A = A";
|
|
67 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
68 |
val subset_Int_iff2 = result();
|
|
69 |
|
0
|
70 |
(** Binary Union **)
|
|
71 |
|
|
72 |
goal ZF.thy "0 Un A = A";
|
|
73 |
by (fast_tac eq_cs 1);
|
|
74 |
val Un_0 = result();
|
|
75 |
|
|
76 |
goal ZF.thy "cons(a,B) Un C = cons(a, B Un C)";
|
|
77 |
by (fast_tac eq_cs 1);
|
|
78 |
val Un_cons = result();
|
|
79 |
|
|
80 |
goal ZF.thy "A Un A = A";
|
|
81 |
by (fast_tac eq_cs 1);
|
|
82 |
val Un_absorb = result();
|
|
83 |
|
|
84 |
goal ZF.thy "A Un B = B Un A";
|
|
85 |
by (fast_tac eq_cs 1);
|
|
86 |
val Un_commute = result();
|
|
87 |
|
|
88 |
goal ZF.thy "(A Un B) Un C = A Un (B Un C)";
|
|
89 |
by (fast_tac eq_cs 1);
|
|
90 |
val Un_assoc = result();
|
|
91 |
|
|
92 |
goal ZF.thy "(A Int B) Un C = (A Un C) Int (B Un C)";
|
|
93 |
by (fast_tac eq_cs 1);
|
|
94 |
val Un_Int_distrib = result();
|
|
95 |
|
|
96 |
goal ZF.thy "A<=B <-> A Un B = B";
|
|
97 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
98 |
val subset_Un_iff = result();
|
|
99 |
|
435
|
100 |
goal ZF.thy "A<=B <-> B Un A = B";
|
|
101 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
102 |
val subset_Un_iff2 = result();
|
|
103 |
|
0
|
104 |
(** Simple properties of Diff -- set difference **)
|
|
105 |
|
|
106 |
goal ZF.thy "A-A = 0";
|
|
107 |
by (fast_tac eq_cs 1);
|
|
108 |
val Diff_cancel = result();
|
|
109 |
|
|
110 |
goal ZF.thy "0-A = 0";
|
|
111 |
by (fast_tac eq_cs 1);
|
|
112 |
val empty_Diff = result();
|
|
113 |
|
|
114 |
goal ZF.thy "A-0 = A";
|
|
115 |
by (fast_tac eq_cs 1);
|
|
116 |
val Diff_0 = result();
|
|
117 |
|
|
118 |
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
|
|
119 |
goal ZF.thy "A - cons(a,B) = A - B - {a}";
|
|
120 |
by (fast_tac eq_cs 1);
|
|
121 |
val Diff_cons = result();
|
|
122 |
|
|
123 |
(*NOT SUITABLE FOR REWRITING since {a} == cons(a,0)*)
|
|
124 |
goal ZF.thy "A - cons(a,B) = A - {a} - B";
|
|
125 |
by (fast_tac eq_cs 1);
|
|
126 |
val Diff_cons2 = result();
|
|
127 |
|
|
128 |
goal ZF.thy "A Int (B-A) = 0";
|
|
129 |
by (fast_tac eq_cs 1);
|
|
130 |
val Diff_disjoint = result();
|
|
131 |
|
|
132 |
goal ZF.thy "!!A B. A<=B ==> A Un (B-A) = B";
|
|
133 |
by (fast_tac eq_cs 1);
|
|
134 |
val Diff_partition = result();
|
|
135 |
|
268
|
136 |
goal ZF.thy "!!A B. [| A<=B; B<=C |] ==> B-(C-A) = A";
|
0
|
137 |
by (fast_tac eq_cs 1);
|
|
138 |
val double_complement = result();
|
|
139 |
|
268
|
140 |
goal ZF.thy "(A Un B) - (B-A) = A";
|
|
141 |
by (fast_tac eq_cs 1);
|
|
142 |
val double_complement_Un = result();
|
|
143 |
|
0
|
144 |
goal ZF.thy
|
|
145 |
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)";
|
|
146 |
by (fast_tac eq_cs 1);
|
|
147 |
val Un_Int_crazy = result();
|
|
148 |
|
|
149 |
goal ZF.thy "A - (B Un C) = (A-B) Int (A-C)";
|
|
150 |
by (fast_tac eq_cs 1);
|
|
151 |
val Diff_Un = result();
|
|
152 |
|
|
153 |
goal ZF.thy "A - (B Int C) = (A-B) Un (A-C)";
|
|
154 |
by (fast_tac eq_cs 1);
|
|
155 |
val Diff_Int = result();
|
|
156 |
|
|
157 |
(*Halmos, Naive Set Theory, page 16.*)
|
|
158 |
goal ZF.thy "(A Int B) Un C = A Int (B Un C) <-> C<=A";
|
|
159 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
160 |
val Un_Int_assoc_iff = result();
|
|
161 |
|
|
162 |
|
|
163 |
(** Big Union and Intersection **)
|
|
164 |
|
|
165 |
goal ZF.thy "Union(0) = 0";
|
|
166 |
by (fast_tac eq_cs 1);
|
|
167 |
val Union_0 = result();
|
|
168 |
|
|
169 |
goal ZF.thy "Union(cons(a,B)) = a Un Union(B)";
|
|
170 |
by (fast_tac eq_cs 1);
|
|
171 |
val Union_cons = result();
|
|
172 |
|
|
173 |
goal ZF.thy "Union(A Un B) = Union(A) Un Union(B)";
|
|
174 |
by (fast_tac eq_cs 1);
|
|
175 |
val Union_Un_distrib = result();
|
|
176 |
|
435
|
177 |
goal ZF.thy "Union(A Int B) <= Union(A) Int Union(B)";
|
|
178 |
by (fast_tac ZF_cs 1);
|
|
179 |
val Union_Int_subset = result();
|
|
180 |
|
0
|
181 |
goal ZF.thy "Union(C) Int A = 0 <-> (ALL B:C. B Int A = 0)";
|
|
182 |
by (fast_tac (eq_cs addSEs [equalityE]) 1);
|
|
183 |
val Union_disjoint = result();
|
|
184 |
|
|
185 |
(* A good challenge: Inter is ill-behaved on the empty set *)
|
|
186 |
goal ZF.thy "!!A B. [| a:A; b:B |] ==> Inter(A Un B) = Inter(A) Int Inter(B)";
|
|
187 |
by (fast_tac eq_cs 1);
|
|
188 |
val Inter_Un_distrib = result();
|
|
189 |
|
|
190 |
goal ZF.thy "Union({b}) = b";
|
|
191 |
by (fast_tac eq_cs 1);
|
|
192 |
val Union_singleton = result();
|
|
193 |
|
|
194 |
goal ZF.thy "Inter({b}) = b";
|
|
195 |
by (fast_tac eq_cs 1);
|
|
196 |
val Inter_singleton = result();
|
|
197 |
|
|
198 |
(** Unions and Intersections of Families **)
|
|
199 |
|
|
200 |
goal ZF.thy "Union(A) = (UN x:A. x)";
|
|
201 |
by (fast_tac eq_cs 1);
|
|
202 |
val Union_eq_UN = result();
|
|
203 |
|
|
204 |
goalw ZF.thy [Inter_def] "Inter(A) = (INT x:A. x)";
|
|
205 |
by (fast_tac eq_cs 1);
|
|
206 |
val Inter_eq_INT = result();
|
|
207 |
|
517
|
208 |
goal ZF.thy "(UN i:0. A(i)) = 0";
|
|
209 |
by (fast_tac eq_cs 1);
|
|
210 |
val UN_0 = result();
|
|
211 |
|
0
|
212 |
(*Halmos, Naive Set Theory, page 35.*)
|
|
213 |
goal ZF.thy "B Int (UN i:I. A(i)) = (UN i:I. B Int A(i))";
|
|
214 |
by (fast_tac eq_cs 1);
|
|
215 |
val Int_UN_distrib = result();
|
|
216 |
|
|
217 |
goal ZF.thy "!!A B. i:I ==> B Un (INT i:I. A(i)) = (INT i:I. B Un A(i))";
|
|
218 |
by (fast_tac eq_cs 1);
|
|
219 |
val Un_INT_distrib = result();
|
|
220 |
|
|
221 |
goal ZF.thy
|
|
222 |
"(UN i:I. A(i)) Int (UN j:J. B(j)) = (UN i:I. UN j:J. A(i) Int B(j))";
|
|
223 |
by (fast_tac eq_cs 1);
|
|
224 |
val Int_UN_distrib2 = result();
|
|
225 |
|
|
226 |
goal ZF.thy
|
|
227 |
"!!I J. [| i:I; j:J |] ==> \
|
|
228 |
\ (INT i:I. A(i)) Un (INT j:J. B(j)) = (INT i:I. INT j:J. A(i) Un B(j))";
|
|
229 |
by (fast_tac eq_cs 1);
|
|
230 |
val Un_INT_distrib2 = result();
|
|
231 |
|
435
|
232 |
goal ZF.thy "!!A. a: A ==> (UN y:A. c) = c";
|
|
233 |
by (fast_tac eq_cs 1);
|
|
234 |
val UN_constant = result();
|
0
|
235 |
|
435
|
236 |
goal ZF.thy "!!A. a: A ==> (INT y:A. c) = c";
|
|
237 |
by (fast_tac eq_cs 1);
|
|
238 |
val INT_constant = result();
|
0
|
239 |
|
|
240 |
(** Devlin, Fundamentals of Contemporary Set Theory, page 12, exercise 5:
|
|
241 |
Union of a family of unions **)
|
|
242 |
|
192
|
243 |
goal ZF.thy "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i)) Un (UN i:I. B(i))";
|
0
|
244 |
by (fast_tac eq_cs 1);
|
|
245 |
val UN_Un_distrib = result();
|
|
246 |
|
|
247 |
goal ZF.thy
|
|
248 |
"!!A B. i:I ==> \
|
192
|
249 |
\ (INT i:I. A(i) Int B(i)) = (INT i:I. A(i)) Int (INT i:I. B(i))";
|
0
|
250 |
by (fast_tac eq_cs 1);
|
|
251 |
val INT_Int_distrib = result();
|
|
252 |
|
|
253 |
(** Devlin, page 12, exercise 5: Complements **)
|
|
254 |
|
|
255 |
goal ZF.thy "!!A B. i:I ==> B - (UN i:I. A(i)) = (INT i:I. B - A(i))";
|
|
256 |
by (fast_tac eq_cs 1);
|
|
257 |
val Diff_UN = result();
|
|
258 |
|
|
259 |
goal ZF.thy "!!A B. i:I ==> B - (INT i:I. A(i)) = (UN i:I. B - A(i))";
|
|
260 |
by (fast_tac eq_cs 1);
|
|
261 |
val Diff_INT = result();
|
|
262 |
|
|
263 |
(** Unions and Intersections with General Sum **)
|
|
264 |
|
520
|
265 |
goal ZF.thy "Sigma(cons(a,B), C) = ({a}*C(a)) Un Sigma(B,C)";
|
|
266 |
by (fast_tac eq_cs 1);
|
|
267 |
val Sigma_cons = result();
|
|
268 |
|
182
|
269 |
goal ZF.thy "(SUM x:(UN y:A. C(y)). B(x)) = (UN y:A. SUM x:C(y). B(x))";
|
|
270 |
by (fast_tac eq_cs 1);
|
|
271 |
val SUM_UN_distrib1 = result();
|
|
272 |
|
192
|
273 |
goal ZF.thy "(SUM i:I. UN j:J. C(i,j)) = (UN j:J. SUM i:I. C(i,j))";
|
182
|
274 |
by (fast_tac eq_cs 1);
|
|
275 |
val SUM_UN_distrib2 = result();
|
|
276 |
|
192
|
277 |
goal ZF.thy "(SUM i:I Un J. C(i)) = (SUM i:I. C(i)) Un (SUM j:J. C(j))";
|
0
|
278 |
by (fast_tac eq_cs 1);
|
|
279 |
val SUM_Un_distrib1 = result();
|
|
280 |
|
192
|
281 |
goal ZF.thy "(SUM i:I. A(i) Un B(i)) = (SUM i:I. A(i)) Un (SUM i:I. B(i))";
|
0
|
282 |
by (fast_tac eq_cs 1);
|
|
283 |
val SUM_Un_distrib2 = result();
|
|
284 |
|
192
|
285 |
goal ZF.thy "(SUM i:I Int J. C(i)) = (SUM i:I. C(i)) Int (SUM j:J. C(j))";
|
0
|
286 |
by (fast_tac eq_cs 1);
|
|
287 |
val SUM_Int_distrib1 = result();
|
|
288 |
|
|
289 |
goal ZF.thy
|
192
|
290 |
"(SUM i:I. A(i) Int B(i)) = (SUM i:I. A(i)) Int (SUM i:I. B(i))";
|
0
|
291 |
by (fast_tac eq_cs 1);
|
|
292 |
val SUM_Int_distrib2 = result();
|
|
293 |
|
192
|
294 |
(*Cf Aczel, Non-Well-Founded Sets, page 115*)
|
|
295 |
goal ZF.thy "(SUM i:I. A(i)) = (UN i:I. {i} * A(i))";
|
|
296 |
by (fast_tac eq_cs 1);
|
|
297 |
val SUM_eq_UN = result();
|
|
298 |
|
0
|
299 |
(** Domain, Range and Field **)
|
|
300 |
|
|
301 |
goal ZF.thy "domain(A Un B) = domain(A) Un domain(B)";
|
|
302 |
by (fast_tac eq_cs 1);
|
|
303 |
val domain_Un_eq = result();
|
|
304 |
|
|
305 |
goal ZF.thy "domain(A Int B) <= domain(A) Int domain(B)";
|
|
306 |
by (fast_tac eq_cs 1);
|
|
307 |
val domain_Int_subset = result();
|
|
308 |
|
|
309 |
goal ZF.thy "domain(A) - domain(B) <= domain(A - B)";
|
|
310 |
by (fast_tac eq_cs 1);
|
|
311 |
val domain_diff_subset = result();
|
|
312 |
|
|
313 |
goal ZF.thy "range(A Un B) = range(A) Un range(B)";
|
|
314 |
by (fast_tac eq_cs 1);
|
|
315 |
val range_Un_eq = result();
|
|
316 |
|
|
317 |
goal ZF.thy "range(A Int B) <= range(A) Int range(B)";
|
435
|
318 |
by (fast_tac ZF_cs 1);
|
0
|
319 |
val range_Int_subset = result();
|
|
320 |
|
|
321 |
goal ZF.thy "range(A) - range(B) <= range(A - B)";
|
|
322 |
by (fast_tac eq_cs 1);
|
|
323 |
val range_diff_subset = result();
|
|
324 |
|
|
325 |
goal ZF.thy "field(A Un B) = field(A) Un field(B)";
|
|
326 |
by (fast_tac eq_cs 1);
|
|
327 |
val field_Un_eq = result();
|
|
328 |
|
|
329 |
goal ZF.thy "field(A Int B) <= field(A) Int field(B)";
|
|
330 |
by (fast_tac eq_cs 1);
|
|
331 |
val field_Int_subset = result();
|
|
332 |
|
|
333 |
goal ZF.thy "field(A) - field(B) <= field(A - B)";
|
|
334 |
by (fast_tac eq_cs 1);
|
|
335 |
val field_diff_subset = result();
|
|
336 |
|
|
337 |
|
435
|
338 |
(** Image **)
|
|
339 |
|
|
340 |
goal ZF.thy "r``0 = 0";
|
|
341 |
by (fast_tac eq_cs 1);
|
|
342 |
val image_empty = result();
|
|
343 |
|
|
344 |
goal ZF.thy "r``(A Un B) = (r``A) Un (r``B)";
|
|
345 |
by (fast_tac eq_cs 1);
|
|
346 |
val image_Un = result();
|
|
347 |
|
|
348 |
goal ZF.thy "r``(A Int B) <= (r``A) Int (r``B)";
|
|
349 |
by (fast_tac ZF_cs 1);
|
|
350 |
val image_Int_subset = result();
|
|
351 |
|
|
352 |
goal ZF.thy "(r Int A*A)``B <= (r``B) Int A";
|
|
353 |
by (fast_tac ZF_cs 1);
|
|
354 |
val image_Int_square_subset = result();
|
|
355 |
|
|
356 |
goal ZF.thy "!!r. B<=A ==> (r Int A*A)``B = (r``B) Int A";
|
|
357 |
by (fast_tac eq_cs 1);
|
|
358 |
val image_Int_square = result();
|
|
359 |
|
|
360 |
|
|
361 |
(** Inverse Image **)
|
|
362 |
|
|
363 |
goal ZF.thy "r-``0 = 0";
|
|
364 |
by (fast_tac eq_cs 1);
|
|
365 |
val vimage_empty = result();
|
|
366 |
|
|
367 |
goal ZF.thy "r-``(A Un B) = (r-``A) Un (r-``B)";
|
|
368 |
by (fast_tac eq_cs 1);
|
|
369 |
val vimage_Un = result();
|
|
370 |
|
|
371 |
goal ZF.thy "r-``(A Int B) <= (r-``A) Int (r-``B)";
|
|
372 |
by (fast_tac ZF_cs 1);
|
|
373 |
val vimage_Int_subset = result();
|
|
374 |
|
|
375 |
goal ZF.thy "(r Int A*A)-``B <= (r-``B) Int A";
|
|
376 |
by (fast_tac ZF_cs 1);
|
|
377 |
val vimage_Int_square_subset = result();
|
|
378 |
|
|
379 |
goal ZF.thy "!!r. B<=A ==> (r Int A*A)-``B = (r-``B) Int A";
|
|
380 |
by (fast_tac eq_cs 1);
|
|
381 |
val vimage_Int_square = result();
|
|
382 |
|
|
383 |
|
0
|
384 |
(** Converse **)
|
|
385 |
|
|
386 |
goal ZF.thy "converse(A Un B) = converse(A) Un converse(B)";
|
|
387 |
by (fast_tac eq_cs 1);
|
|
388 |
val converse_Un = result();
|
|
389 |
|
|
390 |
goal ZF.thy "converse(A Int B) = converse(A) Int converse(B)";
|
|
391 |
by (fast_tac eq_cs 1);
|
|
392 |
val converse_Int = result();
|
|
393 |
|
|
394 |
goal ZF.thy "converse(A) - converse(B) = converse(A - B)";
|
|
395 |
by (fast_tac eq_cs 1);
|
|
396 |
val converse_diff = result();
|
|
397 |
|
198
|
398 |
(** Pow **)
|
|
399 |
|
|
400 |
goal ZF.thy "Pow(A) Un Pow(B) <= Pow(A Un B)";
|
|
401 |
by (fast_tac upair_cs 1);
|
|
402 |
val Un_Pow_subset = result();
|
|
403 |
|
|
404 |
goal ZF.thy "(UN x:A. Pow(B(x))) <= Pow(UN x:A. B(x))";
|
|
405 |
by (fast_tac upair_cs 1);
|
|
406 |
val UN_Pow_subset = result();
|
|
407 |
|
|
408 |
goal ZF.thy "A <= Pow(Union(A))";
|
|
409 |
by (fast_tac upair_cs 1);
|
|
410 |
val subset_Pow_Union = result();
|
|
411 |
|
|
412 |
goal ZF.thy "Union(Pow(A)) = A";
|
|
413 |
by (fast_tac eq_cs 1);
|
|
414 |
val Union_Pow_eq = result();
|
|
415 |
|
|
416 |
goal ZF.thy "Pow(A) Int Pow(B) = Pow(A Int B)";
|
|
417 |
by (fast_tac eq_cs 1);
|
|
418 |
val Int_Pow_eq = result();
|
|
419 |
|
|
420 |
goal ZF.thy "!!x A. x:A ==> (INT x:A. Pow(B(x))) = Pow(INT x:A. B(x))";
|
|
421 |
by (fast_tac eq_cs 1);
|
|
422 |
val INT_Pow_subset = result();
|
435
|
423 |
|