10214
|
1 |
(* Title: HOL/NatArith.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1998 University of Cambridge
|
|
5 |
|
|
6 |
Further proofs about elementary arithmetic, using the arithmetic proof
|
|
7 |
procedures.
|
|
8 |
*)
|
|
9 |
|
|
10 |
(*legacy ...*)
|
|
11 |
structure NatArith = struct val thy = the_context () end;
|
|
12 |
|
|
13 |
|
|
14 |
Goal "m <= m*(m::nat)";
|
|
15 |
by (induct_tac "m" 1);
|
|
16 |
by Auto_tac;
|
|
17 |
qed "le_square";
|
|
18 |
|
|
19 |
Goal "(m::nat) <= m*(m*m)";
|
|
20 |
by (induct_tac "m" 1);
|
|
21 |
by Auto_tac;
|
|
22 |
qed "le_cube";
|
|
23 |
|
|
24 |
|
|
25 |
(*** Subtraction laws -- mostly from Clemens Ballarin ***)
|
|
26 |
|
|
27 |
Goal "[| a < (b::nat); c <= a |] ==> a-c < b-c";
|
|
28 |
by (arith_tac 1);
|
|
29 |
qed "diff_less_mono";
|
|
30 |
|
|
31 |
Goal "(i < j-k) = (i+k < (j::nat))";
|
|
32 |
by (arith_tac 1);
|
|
33 |
qed "less_diff_conv";
|
|
34 |
|
|
35 |
Goal "(j-k <= (i::nat)) = (j <= i+k)";
|
|
36 |
by (arith_tac 1);
|
|
37 |
qed "le_diff_conv";
|
|
38 |
|
|
39 |
Goal "k <= j ==> (i <= j-k) = (i+k <= (j::nat))";
|
|
40 |
by (arith_tac 1);
|
|
41 |
qed "le_diff_conv2";
|
|
42 |
|
|
43 |
Goal "i <= (n::nat) ==> n - (n - i) = i";
|
|
44 |
by (arith_tac 1);
|
|
45 |
qed "diff_diff_cancel";
|
|
46 |
Addsimps [diff_diff_cancel];
|
|
47 |
|
|
48 |
Goal "k <= (n::nat) ==> m <= n + m - k";
|
|
49 |
by (arith_tac 1);
|
|
50 |
qed "le_add_diff";
|
|
51 |
|
|
52 |
(*Replaces the previous diff_less and le_diff_less, which had the stronger
|
|
53 |
second premise n<=m*)
|
|
54 |
Goal "!!m::nat. [| 0<n; 0<m |] ==> m - n < m";
|
|
55 |
by (arith_tac 1);
|
|
56 |
qed "diff_less";
|
|
57 |
|
|
58 |
|
|
59 |
(** Simplification of relational expressions involving subtraction **)
|
|
60 |
|
|
61 |
Goal "[| k <= m; k <= (n::nat) |] ==> ((m-k) - (n-k)) = (m-n)";
|
|
62 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
|
|
63 |
qed "diff_diff_eq";
|
|
64 |
|
|
65 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k = n-k) = (m=n)";
|
|
66 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
|
|
67 |
qed "eq_diff_iff";
|
|
68 |
|
|
69 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k < n-k) = (m<n)";
|
|
70 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
|
|
71 |
qed "less_diff_iff";
|
|
72 |
|
|
73 |
Goal "[| k <= m; k <= (n::nat) |] ==> (m-k <= n-k) = (m<=n)";
|
|
74 |
by (auto_tac (claset(), simpset() addsplits [nat_diff_split]));
|
|
75 |
qed "le_diff_iff";
|
|
76 |
|
|
77 |
|
|
78 |
(** (Anti)Monotonicity of subtraction -- by Stephan Merz **)
|
|
79 |
|
|
80 |
(* Monotonicity of subtraction in first argument *)
|
|
81 |
Goal "m <= (n::nat) ==> (m-l) <= (n-l)";
|
|
82 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
|
|
83 |
qed "diff_le_mono";
|
|
84 |
|
|
85 |
Goal "m <= (n::nat) ==> (l-n) <= (l-m)";
|
|
86 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
|
|
87 |
qed "diff_le_mono2";
|
|
88 |
|
|
89 |
Goal "[| m < (n::nat); m<l |] ==> (l-n) < (l-m)";
|
|
90 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split]) 1);
|
|
91 |
qed "diff_less_mono2";
|
|
92 |
|
|
93 |
Goal "!!m::nat. [| m-n = 0; n-m = 0 |] ==> m=n";
|
|
94 |
by (asm_full_simp_tac (simpset() addsplits [nat_diff_split]) 1);
|
|
95 |
qed "diffs0_imp_equal";
|
|
96 |
|
|
97 |
(** Lemmas for ex/Factorization **)
|
|
98 |
|
|
99 |
Goal "!!m::nat. [| 1<n; 1<m |] ==> 1<m*n";
|
|
100 |
by (case_tac "m" 1);
|
|
101 |
by Auto_tac;
|
|
102 |
qed "one_less_mult";
|
|
103 |
|
|
104 |
Goal "!!m::nat. [| 1<n; 1<m |] ==> n<m*n";
|
|
105 |
by (case_tac "m" 1);
|
|
106 |
by Auto_tac;
|
|
107 |
qed "n_less_m_mult_n";
|
|
108 |
|
|
109 |
Goal "!!m::nat. [| 1<n; 1<m |] ==> n<n*m";
|
|
110 |
by (case_tac "m" 1);
|
|
111 |
by Auto_tac;
|
|
112 |
qed "n_less_n_mult_m";
|
|
113 |
|
|
114 |
|
|
115 |
(** Rewriting to pull differences out **)
|
|
116 |
|
|
117 |
Goal "k<=j --> i - (j - k) = i + (k::nat) - j";
|
|
118 |
by (arith_tac 1);
|
|
119 |
qed "diff_diff_right";
|
|
120 |
|
|
121 |
Goal "k <= j ==> m - Suc (j - k) = m + k - Suc j";
|
|
122 |
by (arith_tac 1);
|
|
123 |
qed "diff_Suc_diff_eq1";
|
|
124 |
|
|
125 |
Goal "k <= j ==> Suc (j - k) - m = Suc j - (k + m)";
|
|
126 |
by (arith_tac 1);
|
|
127 |
qed "diff_Suc_diff_eq2";
|
|
128 |
|
|
129 |
(*The others are
|
|
130 |
i - j - k = i - (j + k),
|
|
131 |
k <= j ==> j - k + i = j + i - k,
|
|
132 |
k <= j ==> i + (j - k) = i + j - k *)
|
|
133 |
Addsimps [diff_diff_left, diff_diff_right, diff_add_assoc2 RS sym,
|
|
134 |
diff_add_assoc RS sym, diff_Suc_diff_eq1, diff_Suc_diff_eq2];
|
|
135 |
|