author | wenzelm |
Thu, 17 May 2018 14:50:48 +0200 | |
changeset 68203 | cda4f24331d5 |
parent 61396 | ce1b2234cab6 |
child 69587 | 53982d5ec0bb |
permissions | -rw-r--r-- |
41777 | 1 |
(* Title: ZF/OrdQuant.thy |
2469 | 2 |
Authors: Krzysztof Grabczewski and L C Paulson |
3 |
*) |
|
4 |
||
60770 | 5 |
section \<open>Special quantifiers\<close> |
13253 | 6 |
|
16417 | 7 |
theory OrdQuant imports Ordinal begin |
2469 | 8 |
|
60770 | 9 |
subsection \<open>Quantifiers and union operator for ordinals\<close> |
13253 | 10 |
|
24893 | 11 |
definition |
2469 | 12 |
(* Ordinal Quantifiers *) |
24893 | 13 |
oall :: "[i, i => o] => o" where |
46820 | 14 |
"oall(A, P) == \<forall>x. x<A \<longrightarrow> P(x)" |
13298 | 15 |
|
24893 | 16 |
definition |
17 |
oex :: "[i, i => o] => o" where |
|
46820 | 18 |
"oex(A, P) == \<exists>x. x<A & P(x)" |
2469 | 19 |
|
24893 | 20 |
definition |
2469 | 21 |
(* Ordinal Union *) |
24893 | 22 |
OUnion :: "[i, i => i] => i" where |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
23 |
"OUnion(i,B) == {z: \<Union>x\<in>i. B(x). Ord(i)}" |
13298 | 24 |
|
2469 | 25 |
syntax |
35112
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32010
diff
changeset
|
26 |
"_oall" :: "[idt, i, o] => o" ("(3\<forall>_<_./ _)" 10) |
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32010
diff
changeset
|
27 |
"_oex" :: "[idt, i, o] => o" ("(3\<exists>_<_./ _)" 10) |
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32010
diff
changeset
|
28 |
"_OUNION" :: "[idt, i, i] => i" ("(3\<Union>_<_./ _)" 10) |
61396 | 29 |
translations |
30 |
"\<forall>x<a. P" \<rightleftharpoons> "CONST oall(a, \<lambda>x. P)" |
|
31 |
"\<exists>x<a. P" \<rightleftharpoons> "CONST oex(a, \<lambda>x. P)" |
|
32 |
"\<Union>x<a. B" \<rightleftharpoons> "CONST OUnion(a, \<lambda>x. B)" |
|
12620 | 33 |
|
34 |
||
60770 | 35 |
subsubsection \<open>simplification of the new quantifiers\<close> |
12825 | 36 |
|
37 |
||
13169 | 38 |
(*MOST IMPORTANT that this is added to the simpset BEFORE Ord_atomize |
13298 | 39 |
is proved. Ord_atomize would convert this rule to |
12825 | 40 |
x < 0 ==> P(x) == True, which causes dire effects!*) |
46820 | 41 |
lemma [simp]: "(\<forall>x<0. P(x))" |
13298 | 42 |
by (simp add: oall_def) |
12825 | 43 |
|
46820 | 44 |
lemma [simp]: "~(\<exists>x<0. P(x))" |
13298 | 45 |
by (simp add: oex_def) |
12825 | 46 |
|
46820 | 47 |
lemma [simp]: "(\<forall>x<succ(i). P(x)) <-> (Ord(i) \<longrightarrow> P(i) & (\<forall>x<i. P(x)))" |
13298 | 48 |
apply (simp add: oall_def le_iff) |
49 |
apply (blast intro: lt_Ord2) |
|
12825 | 50 |
done |
51 |
||
46820 | 52 |
lemma [simp]: "(\<exists>x<succ(i). P(x)) <-> (Ord(i) & (P(i) | (\<exists>x<i. P(x))))" |
13298 | 53 |
apply (simp add: oex_def le_iff) |
54 |
apply (blast intro: lt_Ord2) |
|
12825 | 55 |
done |
56 |
||
60770 | 57 |
subsubsection \<open>Union over ordinals\<close> |
13118 | 58 |
|
12620 | 59 |
lemma Ord_OUN [intro,simp]: |
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
60 |
"[| !!x. x<A ==> Ord(B(x)) |] ==> Ord(\<Union>x<A. B(x))" |
13298 | 61 |
by (simp add: OUnion_def ltI Ord_UN) |
12620 | 62 |
|
63 |
lemma OUN_upper_lt: |
|
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
64 |
"[| a<A; i < b(a); Ord(\<Union>x<A. b(x)) |] ==> i < (\<Union>x<A. b(x))" |
12620 | 65 |
by (unfold OUnion_def lt_def, blast ) |
66 |
||
67 |
lemma OUN_upper_le: |
|
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13149
diff
changeset
|
68 |
"[| a<A; i\<le>b(a); Ord(\<Union>x<A. b(x)) |] ==> i \<le> (\<Union>x<A. b(x))" |
12820 | 69 |
apply (unfold OUnion_def, auto) |
12620 | 70 |
apply (rule UN_upper_le ) |
13298 | 71 |
apply (auto simp add: lt_def) |
12620 | 72 |
done |
2469 | 73 |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
74 |
lemma Limit_OUN_eq: "Limit(i) ==> (\<Union>x<i. x) = i" |
12620 | 75 |
by (simp add: OUnion_def Limit_Union_eq Limit_is_Ord) |
76 |
||
46820 | 77 |
(* No < version of this theorem: consider that @{term"(\<Union>i\<in>nat.i)=nat"}! *) |
12620 | 78 |
lemma OUN_least: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
79 |
"(!!x. x<A ==> B(x) \<subseteq> C) ==> (\<Union>x<A. B(x)) \<subseteq> C" |
12620 | 80 |
by (simp add: OUnion_def UN_least ltI) |
81 |
||
82 |
lemma OUN_least_le: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
83 |
"[| Ord(i); !!x. x<A ==> b(x) \<le> i |] ==> (\<Union>x<A. b(x)) \<le> i" |
12620 | 84 |
by (simp add: OUnion_def UN_least_le ltI Ord_0_le) |
85 |
||
86 |
lemma le_implies_OUN_le_OUN: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
87 |
"[| !!x. x<A ==> c(x) \<le> d(x) |] ==> (\<Union>x<A. c(x)) \<le> (\<Union>x<A. d(x))" |
12620 | 88 |
by (blast intro: OUN_least_le OUN_upper_le le_Ord2 Ord_OUN) |
89 |
||
90 |
lemma OUN_UN_eq: |
|
46953 | 91 |
"(!!x. x \<in> A ==> Ord(B(x))) |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
92 |
==> (\<Union>z < (\<Union>x\<in>A. B(x)). C(z)) = (\<Union>x\<in>A. \<Union>z < B(x). C(z))" |
13298 | 93 |
by (simp add: OUnion_def) |
12620 | 94 |
|
95 |
lemma OUN_Union_eq: |
|
46953 | 96 |
"(!!x. x \<in> X ==> Ord(x)) |
46820 | 97 |
==> (\<Union>z < \<Union>(X). C(z)) = (\<Union>x\<in>X. \<Union>z < x. C(z))" |
13298 | 98 |
by (simp add: OUnion_def) |
12620 | 99 |
|
46820 | 100 |
(*So that rule_format will get rid of this quantifier...*) |
12763 | 101 |
lemma atomize_oall [symmetric, rulify]: |
46820 | 102 |
"(!!x. x<A ==> P(x)) == Trueprop (\<forall>x<A. P(x))" |
12763 | 103 |
by (simp add: oall_def atomize_all atomize_imp) |
104 |
||
60770 | 105 |
subsubsection \<open>universal quantifier for ordinals\<close> |
13169 | 106 |
|
107 |
lemma oallI [intro!]: |
|
46820 | 108 |
"[| !!x. x<A ==> P(x) |] ==> \<forall>x<A. P(x)" |
13298 | 109 |
by (simp add: oall_def) |
13169 | 110 |
|
46820 | 111 |
lemma ospec: "[| \<forall>x<A. P(x); x<A |] ==> P(x)" |
13298 | 112 |
by (simp add: oall_def) |
13169 | 113 |
|
114 |
lemma oallE: |
|
46820 | 115 |
"[| \<forall>x<A. P(x); P(x) ==> Q; ~x<A ==> Q |] ==> Q" |
13298 | 116 |
by (simp add: oall_def, blast) |
13169 | 117 |
|
118 |
lemma rev_oallE [elim]: |
|
46820 | 119 |
"[| \<forall>x<A. P(x); ~x<A ==> Q; P(x) ==> Q |] ==> Q" |
13298 | 120 |
by (simp add: oall_def, blast) |
13169 | 121 |
|
122 |
||
46820 | 123 |
(*Trival rewrite rule. @{term"(\<forall>x<a.P)<->P"} holds only if a is not 0!*) |
124 |
lemma oall_simp [simp]: "(\<forall>x<a. True) <-> True" |
|
13170 | 125 |
by blast |
13169 | 126 |
|
127 |
(*Congruence rule for rewriting*) |
|
128 |
lemma oall_cong [cong]: |
|
13298 | 129 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] |
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
130 |
==> oall(a, %x. P(x)) <-> oall(a', %x. P'(x))" |
13169 | 131 |
by (simp add: oall_def) |
132 |
||
133 |
||
60770 | 134 |
subsubsection \<open>existential quantifier for ordinals\<close> |
13169 | 135 |
|
136 |
lemma oexI [intro]: |
|
46820 | 137 |
"[| P(x); x<A |] ==> \<exists>x<A. P(x)" |
13298 | 138 |
apply (simp add: oex_def, blast) |
13169 | 139 |
done |
140 |
||
46820 | 141 |
(*Not of the general form for such rules... *) |
13169 | 142 |
lemma oexCI: |
46820 | 143 |
"[| \<forall>x<A. ~P(x) ==> P(a); a<A |] ==> \<exists>x<A. P(x)" |
13298 | 144 |
apply (simp add: oex_def, blast) |
13169 | 145 |
done |
146 |
||
147 |
lemma oexE [elim!]: |
|
46820 | 148 |
"[| \<exists>x<A. P(x); !!x. [| x<A; P(x) |] ==> Q |] ==> Q" |
13298 | 149 |
apply (simp add: oex_def, blast) |
13169 | 150 |
done |
151 |
||
152 |
lemma oex_cong [cong]: |
|
13298 | 153 |
"[| a=a'; !!x. x<a' ==> P(x) <-> P'(x) |] |
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
154 |
==> oex(a, %x. P(x)) <-> oex(a', %x. P'(x))" |
13169 | 155 |
apply (simp add: oex_def cong add: conj_cong) |
156 |
done |
|
157 |
||
158 |
||
60770 | 159 |
subsubsection \<open>Rules for Ordinal-Indexed Unions\<close> |
13169 | 160 |
|
46953 | 161 |
lemma OUN_I [intro]: "[| a<i; b \<in> B(a) |] ==> b: (\<Union>z<i. B(z))" |
13170 | 162 |
by (unfold OUnion_def lt_def, blast) |
13169 | 163 |
|
164 |
lemma OUN_E [elim!]: |
|
46953 | 165 |
"[| b \<in> (\<Union>z<i. B(z)); !!a.[| b \<in> B(a); a<i |] ==> R |] ==> R" |
13170 | 166 |
apply (unfold OUnion_def lt_def, blast) |
13169 | 167 |
done |
168 |
||
46820 | 169 |
lemma OUN_iff: "b \<in> (\<Union>x<i. B(x)) <-> (\<exists>x<i. b \<in> B(x))" |
13170 | 170 |
by (unfold OUnion_def oex_def lt_def, blast) |
13169 | 171 |
|
172 |
lemma OUN_cong [cong]: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13462
diff
changeset
|
173 |
"[| i=j; !!x. x<j ==> C(x)=D(x) |] ==> (\<Union>x<i. C(x)) = (\<Union>x<j. D(x))" |
13169 | 174 |
by (simp add: OUnion_def lt_def OUN_iff) |
175 |
||
13298 | 176 |
lemma lt_induct: |
46820 | 177 |
"[| i<k; !!x.[| x<k; \<forall>y<x. P(y) |] ==> P(x) |] ==> P(i)" |
13169 | 178 |
apply (simp add: lt_def oall_def) |
13298 | 179 |
apply (erule conjE) |
180 |
apply (erule Ord_induct, assumption, blast) |
|
13169 | 181 |
done |
182 |
||
13253 | 183 |
|
60770 | 184 |
subsection \<open>Quantification over a class\<close> |
13253 | 185 |
|
24893 | 186 |
definition |
187 |
"rall" :: "[i=>o, i=>o] => o" where |
|
46820 | 188 |
"rall(M, P) == \<forall>x. M(x) \<longrightarrow> P(x)" |
13253 | 189 |
|
24893 | 190 |
definition |
191 |
"rex" :: "[i=>o, i=>o] => o" where |
|
46820 | 192 |
"rex(M, P) == \<exists>x. M(x) & P(x)" |
13253 | 193 |
|
194 |
syntax |
|
35112
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32010
diff
changeset
|
195 |
"_rall" :: "[pttrn, i=>o, o] => o" ("(3\<forall>_[_]./ _)" 10) |
ff6f60e6ab85
numeral syntax: clarify parse trees vs. actual terms;
wenzelm
parents:
32010
diff
changeset
|
196 |
"_rex" :: "[pttrn, i=>o, o] => o" ("(3\<exists>_[_]./ _)" 10) |
13253 | 197 |
translations |
61396 | 198 |
"\<forall>x[M]. P" \<rightleftharpoons> "CONST rall(M, \<lambda>x. P)" |
199 |
"\<exists>x[M]. P" \<rightleftharpoons> "CONST rex(M, \<lambda>x. P)" |
|
13253 | 200 |
|
13298 | 201 |
|
60770 | 202 |
subsubsection\<open>Relativized universal quantifier\<close> |
13253 | 203 |
|
46820 | 204 |
lemma rallI [intro!]: "[| !!x. M(x) ==> P(x) |] ==> \<forall>x[M]. P(x)" |
13253 | 205 |
by (simp add: rall_def) |
206 |
||
46820 | 207 |
lemma rspec: "[| \<forall>x[M]. P(x); M(x) |] ==> P(x)" |
13253 | 208 |
by (simp add: rall_def) |
209 |
||
210 |
(*Instantiates x first: better for automatic theorem proving?*) |
|
13298 | 211 |
lemma rev_rallE [elim]: |
46820 | 212 |
"[| \<forall>x[M]. P(x); ~ M(x) ==> Q; P(x) ==> Q |] ==> Q" |
13298 | 213 |
by (simp add: rall_def, blast) |
13253 | 214 |
|
46820 | 215 |
lemma rallE: "[| \<forall>x[M]. P(x); P(x) ==> Q; ~ M(x) ==> Q |] ==> Q" |
13253 | 216 |
by blast |
217 |
||
61396 | 218 |
(*Trival rewrite rule; (\<forall>x[M].P)<->P holds only if A is nonempty!*) |
219 |
lemma rall_triv [simp]: "(\<forall>x[M]. P) \<longleftrightarrow> ((\<exists>x. M(x)) \<longrightarrow> P)" |
|
13253 | 220 |
by (simp add: rall_def) |
221 |
||
222 |
(*Congruence rule for rewriting*) |
|
223 |
lemma rall_cong [cong]: |
|
46820 | 224 |
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (\<forall>x[M]. P(x)) <-> (\<forall>x[M]. P'(x))" |
13253 | 225 |
by (simp add: rall_def) |
226 |
||
13298 | 227 |
|
60770 | 228 |
subsubsection\<open>Relativized existential quantifier\<close> |
13253 | 229 |
|
46820 | 230 |
lemma rexI [intro]: "[| P(x); M(x) |] ==> \<exists>x[M]. P(x)" |
13253 | 231 |
by (simp add: rex_def, blast) |
232 |
||
233 |
(*The best argument order when there is only one M(x)*) |
|
46820 | 234 |
lemma rev_rexI: "[| M(x); P(x) |] ==> \<exists>x[M]. P(x)" |
13253 | 235 |
by blast |
236 |
||
46820 | 237 |
(*Not of the general form for such rules... *) |
238 |
lemma rexCI: "[| \<forall>x[M]. ~P(x) ==> P(a); M(a) |] ==> \<exists>x[M]. P(x)" |
|
13253 | 239 |
by blast |
240 |
||
46820 | 241 |
lemma rexE [elim!]: "[| \<exists>x[M]. P(x); !!x. [| M(x); P(x) |] ==> Q |] ==> Q" |
13253 | 242 |
by (simp add: rex_def, blast) |
243 |
||
61396 | 244 |
(*We do not even have (\<exists>x[M]. True) <-> True unless A is nonempty!!*) |
245 |
lemma rex_triv [simp]: "(\<exists>x[M]. P) \<longleftrightarrow> ((\<exists>x. M(x)) \<and> P)" |
|
13253 | 246 |
by (simp add: rex_def) |
247 |
||
248 |
lemma rex_cong [cong]: |
|
46820 | 249 |
"(!!x. M(x) ==> P(x) <-> P'(x)) ==> (\<exists>x[M]. P(x)) <-> (\<exists>x[M]. P'(x))" |
13253 | 250 |
by (simp add: rex_def cong: conj_cong) |
251 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
252 |
lemma rall_is_ball [simp]: "(\<forall>x[%z. z\<in>A]. P(x)) <-> (\<forall>x\<in>A. P(x))" |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
253 |
by blast |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
254 |
|
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
255 |
lemma rex_is_bex [simp]: "(\<exists>x[%z. z\<in>A]. P(x)) <-> (\<exists>x\<in>A. P(x))" |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
256 |
by blast |
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
257 |
|
58860 | 258 |
lemma atomize_rall: "(!!x. M(x) ==> P(x)) == Trueprop (\<forall>x[M]. P(x))" |
13253 | 259 |
by (simp add: rall_def atomize_all atomize_imp) |
260 |
||
261 |
declare atomize_rall [symmetric, rulify] |
|
262 |
||
263 |
lemma rall_simps1: |
|
46820 | 264 |
"(\<forall>x[M]. P(x) & Q) <-> (\<forall>x[M]. P(x)) & ((\<forall>x[M]. False) | Q)" |
265 |
"(\<forall>x[M]. P(x) | Q) <-> ((\<forall>x[M]. P(x)) | Q)" |
|
266 |
"(\<forall>x[M]. P(x) \<longrightarrow> Q) <-> ((\<exists>x[M]. P(x)) \<longrightarrow> Q)" |
|
267 |
"(~(\<forall>x[M]. P(x))) <-> (\<exists>x[M]. ~P(x))" |
|
13253 | 268 |
by blast+ |
269 |
||
270 |
lemma rall_simps2: |
|
46820 | 271 |
"(\<forall>x[M]. P & Q(x)) <-> ((\<forall>x[M]. False) | P) & (\<forall>x[M]. Q(x))" |
272 |
"(\<forall>x[M]. P | Q(x)) <-> (P | (\<forall>x[M]. Q(x)))" |
|
273 |
"(\<forall>x[M]. P \<longrightarrow> Q(x)) <-> (P \<longrightarrow> (\<forall>x[M]. Q(x)))" |
|
13253 | 274 |
by blast+ |
275 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
276 |
lemmas rall_simps [simp] = rall_simps1 rall_simps2 |
13253 | 277 |
|
278 |
lemma rall_conj_distrib: |
|
46820 | 279 |
"(\<forall>x[M]. P(x) & Q(x)) <-> ((\<forall>x[M]. P(x)) & (\<forall>x[M]. Q(x)))" |
13253 | 280 |
by blast |
281 |
||
282 |
lemma rex_simps1: |
|
46820 | 283 |
"(\<exists>x[M]. P(x) & Q) <-> ((\<exists>x[M]. P(x)) & Q)" |
284 |
"(\<exists>x[M]. P(x) | Q) <-> (\<exists>x[M]. P(x)) | ((\<exists>x[M]. True) & Q)" |
|
285 |
"(\<exists>x[M]. P(x) \<longrightarrow> Q) <-> ((\<forall>x[M]. P(x)) \<longrightarrow> ((\<exists>x[M]. True) & Q))" |
|
286 |
"(~(\<exists>x[M]. P(x))) <-> (\<forall>x[M]. ~P(x))" |
|
13253 | 287 |
by blast+ |
288 |
||
289 |
lemma rex_simps2: |
|
46820 | 290 |
"(\<exists>x[M]. P & Q(x)) <-> (P & (\<exists>x[M]. Q(x)))" |
291 |
"(\<exists>x[M]. P | Q(x)) <-> ((\<exists>x[M]. True) & P) | (\<exists>x[M]. Q(x))" |
|
292 |
"(\<exists>x[M]. P \<longrightarrow> Q(x)) <-> (((\<forall>x[M]. False) | P) \<longrightarrow> (\<exists>x[M]. Q(x)))" |
|
13253 | 293 |
by blast+ |
294 |
||
13289
53e201efdaa2
miniscoping for class-bounded quantifiers (rall and rex)
paulson
parents:
13253
diff
changeset
|
295 |
lemmas rex_simps [simp] = rex_simps1 rex_simps2 |
13253 | 296 |
|
297 |
lemma rex_disj_distrib: |
|
46820 | 298 |
"(\<exists>x[M]. P(x) | Q(x)) <-> ((\<exists>x[M]. P(x)) | (\<exists>x[M]. Q(x)))" |
13253 | 299 |
by blast |
300 |
||
301 |
||
60770 | 302 |
subsubsection\<open>One-point rule for bounded quantifiers\<close> |
13253 | 303 |
|
46820 | 304 |
lemma rex_triv_one_point1 [simp]: "(\<exists>x[M]. x=a) <-> ( M(a))" |
13253 | 305 |
by blast |
306 |
||
46820 | 307 |
lemma rex_triv_one_point2 [simp]: "(\<exists>x[M]. a=x) <-> ( M(a))" |
13253 | 308 |
by blast |
309 |
||
46820 | 310 |
lemma rex_one_point1 [simp]: "(\<exists>x[M]. x=a & P(x)) <-> ( M(a) & P(a))" |
13253 | 311 |
by blast |
312 |
||
46820 | 313 |
lemma rex_one_point2 [simp]: "(\<exists>x[M]. a=x & P(x)) <-> ( M(a) & P(a))" |
13253 | 314 |
by blast |
315 |
||
46820 | 316 |
lemma rall_one_point1 [simp]: "(\<forall>x[M]. x=a \<longrightarrow> P(x)) <-> ( M(a) \<longrightarrow> P(a))" |
13253 | 317 |
by blast |
318 |
||
46820 | 319 |
lemma rall_one_point2 [simp]: "(\<forall>x[M]. a=x \<longrightarrow> P(x)) <-> ( M(a) \<longrightarrow> P(a))" |
13253 | 320 |
by blast |
321 |
||
322 |
||
60770 | 323 |
subsubsection\<open>Sets as Classes\<close> |
13298 | 324 |
|
24893 | 325 |
definition |
326 |
setclass :: "[i,i] => o" ("##_" [40] 40) where |
|
46820 | 327 |
"setclass(A) == %x. x \<in> A" |
13298 | 328 |
|
46820 | 329 |
lemma setclass_iff [simp]: "setclass(A,x) <-> x \<in> A" |
13362 | 330 |
by (simp add: setclass_def) |
13298 | 331 |
|
13807
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
paulson
parents:
13615
diff
changeset
|
332 |
lemma rall_setclass_is_ball [simp]: "(\<forall>x[##A]. P(x)) <-> (\<forall>x\<in>A. P(x))" |
13298 | 333 |
by auto |
334 |
||
13807
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
paulson
parents:
13615
diff
changeset
|
335 |
lemma rex_setclass_is_bex [simp]: "(\<exists>x[##A]. P(x)) <-> (\<exists>x\<in>A. P(x))" |
13298 | 336 |
by auto |
337 |
||
338 |
||
13169 | 339 |
ML |
60770 | 340 |
\<open> |
13169 | 341 |
val Ord_atomize = |
56250 | 342 |
atomize ([(@{const_name oall}, @{thms ospec}), (@{const_name rall}, @{thms rspec})] @ |
343 |
ZF_conn_pairs, ZF_mem_pairs); |
|
60770 | 344 |
\<close> |
345 |
declaration \<open>fn _ => |
|
59647
c6f413b660cf
clarified Drule.gen_all: observe context more carefully;
wenzelm
parents:
59498
diff
changeset
|
346 |
Simplifier.map_ss (Simplifier.set_mksimps (fn ctxt => |
60822 | 347 |
map mk_eq o Ord_atomize o Variable.gen_all ctxt)) |
60770 | 348 |
\<close> |
13169 | 349 |
|
60770 | 350 |
text \<open>Setting up the one-point-rule simproc\<close> |
13253 | 351 |
|
60770 | 352 |
simproc_setup defined_rex ("\<exists>x[M]. P(x) & Q(x)") = \<open> |
54998 | 353 |
fn _ => Quantifier1.rearrange_bex |
354 |
(fn ctxt => |
|
355 |
unfold_tac ctxt @{thms rex_def} THEN |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58871
diff
changeset
|
356 |
Quantifier1.prove_one_point_ex_tac ctxt) |
60770 | 357 |
\<close> |
13253 | 358 |
|
60770 | 359 |
simproc_setup defined_rall ("\<forall>x[M]. P(x) \<longrightarrow> Q(x)") = \<open> |
54998 | 360 |
fn _ => Quantifier1.rearrange_ball |
361 |
(fn ctxt => |
|
362 |
unfold_tac ctxt @{thms rall_def} THEN |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
58871
diff
changeset
|
363 |
Quantifier1.prove_one_point_all_tac ctxt) |
60770 | 364 |
\<close> |
13253 | 365 |
|
2469 | 366 |
end |