author | haftmann |
Mon, 26 Sep 2016 07:56:54 +0200 | |
changeset 63950 | cdc1e59aa513 |
parent 61945 | 1135b8de26c3 |
child 69597 | ff784d5a5bfb |
permissions | -rw-r--r-- |
23193 | 1 |
(* Title: HOL/ex/Arith_Examples.thy |
2 |
Author: Tjark Weber |
|
3 |
*) |
|
4 |
||
61343 | 5 |
section \<open>Arithmetic\<close> |
23193 | 6 |
|
31066 | 7 |
theory Arith_Examples |
8 |
imports Main |
|
9 |
begin |
|
23193 | 10 |
|
61343 | 11 |
text \<open> |
61933 | 12 |
The \<open>arith\<close> method is used frequently throughout the Isabelle |
23193 | 13 |
distribution. This file merely contains some additional tests and special |
14 |
corner cases. Some rather technical remarks: |
|
15 |
||
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
16 |
@{ML Lin_Arith.simple_tac} is a very basic version of the tactic. It performs no |
23193 | 17 |
meta-to-object-logic conversion, and only some splitting of operators. |
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
18 |
@{ML Lin_Arith.tac} performs meta-to-object-logic conversion, full |
61933 | 19 |
splitting of operators, and NNF normalization of the goal. The \<open>arith\<close> |
20 |
method combines them both, and tries other methods (e.g.~\<open>presburger\<close>) |
|
23193 | 21 |
as well. This is the one that you should use in your proofs! |
22 |
||
61933 | 23 |
An \<open>arith\<close>-based simproc is available as well (see @{ML |
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
24 |
Lin_Arith.simproc}), which---for performance |
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
25 |
reasons---however does even less splitting than @{ML Lin_Arith.simple_tac} |
24093 | 26 |
at the moment (namely inequalities only). (On the other hand, it |
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
27 |
does take apart conjunctions, which @{ML Lin_Arith.simple_tac} currently |
24093 | 28 |
does not do.) |
61343 | 29 |
\<close> |
23193 | 30 |
|
31 |
||
61343 | 32 |
subsection \<open>Splitting of Operators: @{term max}, @{term min}, @{term abs}, |
63950
cdc1e59aa513
syntactic type class for operation mod named after mod;
haftmann
parents:
61945
diff
changeset
|
33 |
@{term minus}, @{term nat}, @{term modulo}, |
61343 | 34 |
@{term divide}\<close> |
23193 | 35 |
|
36 |
lemma "(i::nat) <= max i j" |
|
31066 | 37 |
by linarith |
23193 | 38 |
|
39 |
lemma "(i::int) <= max i j" |
|
31066 | 40 |
by linarith |
23193 | 41 |
|
42 |
lemma "min i j <= (i::nat)" |
|
31066 | 43 |
by linarith |
23193 | 44 |
|
45 |
lemma "min i j <= (i::int)" |
|
31066 | 46 |
by linarith |
23193 | 47 |
|
48 |
lemma "min (i::nat) j <= max i j" |
|
31066 | 49 |
by linarith |
23193 | 50 |
|
51 |
lemma "min (i::int) j <= max i j" |
|
31066 | 52 |
by linarith |
23193 | 53 |
|
23208 | 54 |
lemma "min (i::nat) j + max i j = i + j" |
31066 | 55 |
by linarith |
23208 | 56 |
|
57 |
lemma "min (i::int) j + max i j = i + j" |
|
31066 | 58 |
by linarith |
23208 | 59 |
|
23193 | 60 |
lemma "(i::nat) < j ==> min i j < max i j" |
31066 | 61 |
by linarith |
23193 | 62 |
|
63 |
lemma "(i::int) < j ==> min i j < max i j" |
|
31066 | 64 |
by linarith |
23193 | 65 |
|
61945 | 66 |
lemma "(0::int) <= \<bar>i\<bar>" |
31066 | 67 |
by linarith |
23193 | 68 |
|
61945 | 69 |
lemma "(i::int) <= \<bar>i\<bar>" |
31066 | 70 |
by linarith |
23193 | 71 |
|
61945 | 72 |
lemma "\<bar>\<bar>i::int\<bar>\<bar> = \<bar>i\<bar>" |
31066 | 73 |
by linarith |
23193 | 74 |
|
61343 | 75 |
text \<open>Also testing subgoals with bound variables.\<close> |
23193 | 76 |
|
77 |
lemma "!!x. (x::nat) <= y ==> x - y = 0" |
|
31066 | 78 |
by linarith |
23193 | 79 |
|
80 |
lemma "!!x. (x::nat) - y = 0 ==> x <= y" |
|
31066 | 81 |
by linarith |
23193 | 82 |
|
83 |
lemma "!!x. ((x::nat) <= y) = (x - y = 0)" |
|
31066 | 84 |
by linarith |
23193 | 85 |
|
86 |
lemma "[| (x::nat) < y; d < 1 |] ==> x - y = d" |
|
31066 | 87 |
by linarith |
23193 | 88 |
|
89 |
lemma "[| (x::nat) < y; d < 1 |] ==> x - y - x = d - x" |
|
31066 | 90 |
by linarith |
23193 | 91 |
|
92 |
lemma "(x::int) < y ==> x - y < 0" |
|
31066 | 93 |
by linarith |
23193 | 94 |
|
95 |
lemma "nat (i + j) <= nat i + nat j" |
|
31066 | 96 |
by linarith |
23193 | 97 |
|
98 |
lemma "i < j ==> nat (i - j) = 0" |
|
31066 | 99 |
by linarith |
23193 | 100 |
|
101 |
lemma "(i::nat) mod 0 = i" |
|
46597 | 102 |
(* rule split_mod is only declared by default for numerals *) |
103 |
using split_mod [of _ _ "0", arith_split] |
|
31066 | 104 |
by linarith |
23198 | 105 |
|
106 |
lemma "(i::nat) mod 1 = 0" |
|
46597 | 107 |
(* rule split_mod is only declared by default for numerals *) |
108 |
using split_mod [of _ _ "1", arith_split] |
|
31066 | 109 |
by linarith |
23193 | 110 |
|
23198 | 111 |
lemma "(i::nat) mod 42 <= 41" |
31066 | 112 |
by linarith |
23198 | 113 |
|
114 |
lemma "(i::int) mod 0 = i" |
|
46597 | 115 |
(* rule split_zmod is only declared by default for numerals *) |
116 |
using split_zmod [of _ _ "0", arith_split] |
|
31066 | 117 |
by linarith |
23198 | 118 |
|
119 |
lemma "(i::int) mod 1 = 0" |
|
46597 | 120 |
(* rule split_zmod is only declared by default for numerals *) |
121 |
using split_zmod [of _ _ "1", arith_split] |
|
122 |
by linarith |
|
23193 | 123 |
|
23198 | 124 |
lemma "(i::int) mod 42 <= 41" |
46597 | 125 |
by linarith |
23193 | 126 |
|
24328
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
127 |
lemma "-(i::int) * 1 = 0 ==> i = 0" |
31066 | 128 |
by linarith |
24328
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
129 |
|
61945 | 130 |
lemma "[| (0::int) < \<bar>i\<bar>; \<bar>i\<bar> * 1 < \<bar>i\<bar> * j |] ==> 1 < \<bar>i\<bar> * j" |
31066 | 131 |
by linarith |
24328
83afe527504d
fixed a bug in demult: -a in (-a * b) is no longer treated as atomic
webertj
parents:
24093
diff
changeset
|
132 |
|
23218 | 133 |
|
61343 | 134 |
subsection \<open>Meta-Logic\<close> |
23193 | 135 |
|
136 |
lemma "x < Suc y == x <= y" |
|
31066 | 137 |
by linarith |
23193 | 138 |
|
139 |
lemma "((x::nat) == z ==> x ~= y) ==> x ~= y | z ~= y" |
|
31066 | 140 |
by linarith |
23193 | 141 |
|
23218 | 142 |
|
61343 | 143 |
subsection \<open>Various Other Examples\<close> |
23193 | 144 |
|
23198 | 145 |
lemma "(x < Suc y) = (x <= y)" |
31066 | 146 |
by linarith |
23198 | 147 |
|
23193 | 148 |
lemma "[| (x::nat) < y; y < z |] ==> x < z" |
31066 | 149 |
by linarith |
23193 | 150 |
|
151 |
lemma "(x::nat) < y & y < z ==> x < z" |
|
31066 | 152 |
by linarith |
23193 | 153 |
|
61343 | 154 |
text \<open>This example involves no arithmetic at all, but is solved by |
155 |
preprocessing (i.e. NNF normalization) alone.\<close> |
|
23208 | 156 |
|
157 |
lemma "(P::bool) = Q ==> Q = P" |
|
31066 | 158 |
by linarith |
23208 | 159 |
|
160 |
lemma "[| P = (x = 0); (~P) = (y = 0) |] ==> min (x::nat) y = 0" |
|
31066 | 161 |
by linarith |
23208 | 162 |
|
163 |
lemma "[| P = (x = 0); (~P) = (y = 0) |] ==> max (x::nat) y = x + y" |
|
31066 | 164 |
by linarith |
23208 | 165 |
|
23193 | 166 |
lemma "[| (x::nat) ~= y; a + 2 = b; a < y; y < b; a < x; x < b |] ==> False" |
31066 | 167 |
by linarith |
23193 | 168 |
|
169 |
lemma "[| (x::nat) > y; y > z; z > x |] ==> False" |
|
31066 | 170 |
by linarith |
23193 | 171 |
|
172 |
lemma "(x::nat) - 5 > y ==> y < x" |
|
31066 | 173 |
by linarith |
23193 | 174 |
|
175 |
lemma "(x::nat) ~= 0 ==> 0 < x" |
|
31066 | 176 |
by linarith |
23193 | 177 |
|
178 |
lemma "[| (x::nat) ~= y; x <= y |] ==> x < y" |
|
31066 | 179 |
by linarith |
23193 | 180 |
|
23196 | 181 |
lemma "[| (x::nat) < y; P (x - y) |] ==> P 0" |
31066 | 182 |
by linarith |
23193 | 183 |
|
184 |
lemma "(x - y) - (x::nat) = (x - x) - y" |
|
31066 | 185 |
by linarith |
23193 | 186 |
|
187 |
lemma "[| (a::nat) < b; c < d |] ==> (a - b) = (c - d)" |
|
31066 | 188 |
by linarith |
23193 | 189 |
|
190 |
lemma "((a::nat) - (b - (c - (d - e)))) = (a - (b - (c - (d - e))))" |
|
31066 | 191 |
by linarith |
23193 | 192 |
|
23198 | 193 |
lemma "(n < m & m < n') | (n < m & m = n') | (n < n' & n' < m) | |
194 |
(n = n' & n' < m) | (n = m & m < n') | |
|
195 |
(n' < m & m < n) | (n' < m & m = n) | |
|
196 |
(n' < n & n < m) | (n' = n & n < m) | (n' = m & m < n) | |
|
197 |
(m < n & n < n') | (m < n & n' = n) | (m < n' & n' < n) | |
|
198 |
(m = n & n < n') | (m = n' & n' < n) | |
|
199 |
(n' = m & m = (n::nat))" |
|
200 |
(* FIXME: this should work in principle, but is extremely slow because *) |
|
201 |
(* preprocessing negates the goal and tries to compute its negation *) |
|
202 |
(* normal form, which creates lots of separate cases for this *) |
|
203 |
(* disjunction of conjunctions *) |
|
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
204 |
(* by (tactic {* Lin_Arith.tac 1 *}) *) |
23198 | 205 |
oops |
206 |
||
207 |
lemma "2 * (x::nat) ~= 1" |
|
23208 | 208 |
(* FIXME: this is beyond the scope of the decision procedure at the moment, *) |
209 |
(* because its negation is satisfiable in the rationals? *) |
|
31101
26c7bb764a38
qualified names for Lin_Arith tactics and simprocs
haftmann
parents:
31100
diff
changeset
|
210 |
(* by (tactic {* Lin_Arith.simple_tac 1 *}) *) |
23198 | 211 |
oops |
212 |
||
61343 | 213 |
text \<open>Constants.\<close> |
23198 | 214 |
|
215 |
lemma "(0::nat) < 1" |
|
31066 | 216 |
by linarith |
23198 | 217 |
|
218 |
lemma "(0::int) < 1" |
|
31066 | 219 |
by linarith |
23198 | 220 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46597
diff
changeset
|
221 |
lemma "(47::nat) + 11 < 8 * 15" |
31066 | 222 |
by linarith |
23198 | 223 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
46597
diff
changeset
|
224 |
lemma "(47::int) + 11 < 8 * 15" |
31066 | 225 |
by linarith |
23198 | 226 |
|
61343 | 227 |
text \<open>Splitting of inequalities of different type.\<close> |
23193 | 228 |
|
229 |
lemma "[| (a::nat) ~= b; (i::int) ~= j; a < 2; b < 2 |] ==> |
|
61945 | 230 |
a + b <= nat (max \<bar>i\<bar> \<bar>j\<bar>)" |
31066 | 231 |
by linarith |
23193 | 232 |
|
61343 | 233 |
text \<open>Again, but different order.\<close> |
23198 | 234 |
|
23193 | 235 |
lemma "[| (i::int) ~= j; (a::nat) ~= b; a < 2; b < 2 |] ==> |
61945 | 236 |
a + b <= nat (max \<bar>i\<bar> \<bar>j\<bar>)" |
31066 | 237 |
by linarith |
23193 | 238 |
|
239 |
end |