| 5078 |      1 | (*  Title:      HOL/Integ/Lagrange.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Tobias Nipkow
 | 
|  |      4 |     Copyright   1996 TU Muenchen
 | 
|  |      5 | 
 | 
|  |      6 | 
 | 
|  |      7 | The following lemma essentially shows that all composite natural numbers are
 | 
|  |      8 | sums of fours squares, provided all prime numbers are. However, this is an
 | 
|  |      9 | abstract thm about commutative rings and has a priori nothing to do with nat.
 | 
|  |     10 | *)
 | 
|  |     11 | 
 | 
|  |     12 | Goalw [Lagrange.sq_def] "!!x1::'a::cring. \
 | 
|  |     13 | \  (sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) = \
 | 
|  |     14 | \  sq(x1*y1 - x2*y2 - x3*y3 - x4*y4)  + \
 | 
|  |     15 | \  sq(x1*y2 + x2*y1 + x3*y4 - x4*y3)  + \
 | 
|  |     16 | \  sq(x1*y3 - x2*y4 + x3*y1 + x4*y2)  + \
 | 
|  |     17 | \  sq(x1*y4 + x2*y3 - x3*y2 + x4*y1)";
 | 
|  |     18 | (*Takes up to three minutes...*)
 | 
|  |     19 | by (cring_tac 1);
 | 
|  |     20 | qed "Lagrange_lemma";
 | 
|  |     21 | 
 | 
|  |     22 | (* A challenge by John Harrison.
 | 
|  |     23 |    Takes forever because of the naive bottom-up strategy of the rewriter.
 | 
|  |     24 | 
 | 
|  |     25 | Goalw [Lagrange.sq_def] "!!p1::'a::cring.\
 | 
|  |     26 | \ (sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) * \
 | 
|  |     27 | \ (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2) \
 | 
|  |     28 | \  = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) + \
 | 
|  |     29 | \    sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +\
 | 
|  |     30 | \    sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +\
 | 
|  |     31 | \    sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +\
 | 
|  |     32 | \    sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +\
 | 
|  |     33 | \    sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +\
 | 
|  |     34 | \    sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +\
 | 
|  |     35 | \    sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)";
 | 
|  |     36 | 
 | 
|  |     37 | *)
 |