| 50087 |      1 | (* Author: Fabian Immler, TUM *)
 | 
|  |      2 | 
 | 
|  |      3 | header {* Sequence of Properties on Subsequences *}
 | 
|  |      4 | 
 | 
|  |      5 | theory Diagonal_Subsequence
 | 
| 51526 |      6 | imports Complex_Main
 | 
| 50087 |      7 | begin
 | 
|  |      8 | 
 | 
|  |      9 | locale subseqs =
 | 
|  |     10 |   fixes P::"nat\<Rightarrow>(nat\<Rightarrow>nat)\<Rightarrow>bool"
 | 
|  |     11 |   assumes ex_subseq: "\<And>n s. subseq s \<Longrightarrow> \<exists>r'. subseq r' \<and> P n (s o r')"
 | 
|  |     12 | begin
 | 
|  |     13 | 
 | 
|  |     14 | primrec seqseq where
 | 
|  |     15 |   "seqseq 0 = id"
 | 
|  |     16 | | "seqseq (Suc n) = seqseq n o (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
 | 
|  |     17 | 
 | 
|  |     18 | lemma seqseq_ex:
 | 
|  |     19 |   shows "subseq (seqseq n) \<and>
 | 
|  |     20 |   (\<exists>r'. seqseq (Suc n) = seqseq n o r' \<and> subseq r' \<and> P n (seqseq n o r'))"
 | 
|  |     21 | proof (induct n)
 | 
|  |     22 |   case 0
 | 
|  |     23 |   let ?P = "\<lambda>r'. subseq r' \<and> P 0 r'"
 | 
|  |     24 |   let ?r = "Eps ?P"
 | 
|  |     25 |   have "?P ?r" using ex_subseq[of id 0] by (intro someI_ex[of ?P]) (auto simp: subseq_def)
 | 
|  |     26 |   thus ?case by (auto simp: subseq_def)
 | 
|  |     27 | next
 | 
|  |     28 |   case (Suc n)
 | 
|  |     29 |   then obtain r' where
 | 
|  |     30 |     Suc': "seqseq (Suc n) = seqseq n \<circ> r'" "subseq (seqseq n)" "subseq r'"
 | 
|  |     31 |       "P n (seqseq n o r')"
 | 
|  |     32 |     by blast
 | 
|  |     33 |   let ?P = "\<lambda>r'a. subseq (r'a ) \<and> P (Suc n) (seqseq n o r' o r'a)"
 | 
|  |     34 |   let ?r = "Eps ?P"
 | 
|  |     35 |   have "?P ?r" using ex_subseq[of "seqseq n o r'" "Suc n"] Suc'
 | 
|  |     36 |     by (intro someI_ex[of ?P]) (auto intro: subseq_o simp: o_assoc)
 | 
|  |     37 |   moreover have "seqseq (Suc (Suc n)) = seqseq n \<circ> r' \<circ> ?r"
 | 
|  |     38 |     by (subst seqseq.simps) (simp only: Suc' o_assoc)
 | 
|  |     39 |   moreover note subseq_o[OF `subseq (seqseq n)` `subseq r'`]
 | 
|  |     40 |   ultimately show ?case unfolding Suc' by (auto simp: o_def)
 | 
|  |     41 | qed
 | 
|  |     42 | 
 | 
|  |     43 | lemma subseq_seqseq:
 | 
|  |     44 |   shows "subseq (seqseq n)" using seqseq_ex[OF assms] by auto
 | 
|  |     45 | 
 | 
|  |     46 | definition reducer where "reducer n = (SOME r'. subseq r' \<and> P n (seqseq n o r'))"
 | 
|  |     47 | 
 | 
|  |     48 | lemma subseq_reducer: "subseq (reducer n)" and reducer_reduces: "P n (seqseq n o reducer n)"
 | 
|  |     49 |   unfolding atomize_conj unfolding reducer_def using subseq_seqseq
 | 
|  |     50 |   by (rule someI_ex[OF ex_subseq])
 | 
|  |     51 | 
 | 
|  |     52 | lemma seqseq_reducer[simp]:
 | 
|  |     53 |   "seqseq (Suc n) = seqseq n o reducer n"
 | 
|  |     54 |   by (simp add: reducer_def)
 | 
|  |     55 | 
 | 
|  |     56 | declare seqseq.simps(2)[simp del]
 | 
|  |     57 | 
 | 
|  |     58 | definition diagseq where "diagseq i = seqseq i i"
 | 
|  |     59 | 
 | 
|  |     60 | lemma diagseq_mono: "diagseq n < diagseq (Suc n)"
 | 
|  |     61 |   unfolding diagseq_def seqseq_reducer o_def
 | 
|  |     62 |   by (metis subseq_mono[OF subseq_seqseq] less_le_trans lessI seq_suble subseq_reducer)
 | 
|  |     63 | 
 | 
|  |     64 | lemma subseq_diagseq: "subseq diagseq"
 | 
|  |     65 |   using diagseq_mono by (simp add: subseq_Suc_iff diagseq_def)
 | 
|  |     66 | 
 | 
|  |     67 | primrec fold_reduce where
 | 
|  |     68 |   "fold_reduce n 0 = id"
 | 
|  |     69 | | "fold_reduce n (Suc k) = fold_reduce n k o reducer (n + k)"
 | 
|  |     70 | 
 | 
|  |     71 | lemma subseq_fold_reduce: "subseq (fold_reduce n k)"
 | 
|  |     72 | proof (induct k)
 | 
|  |     73 |   case (Suc k) from subseq_o[OF this subseq_reducer] show ?case by (simp add: o_def)
 | 
|  |     74 | qed (simp add: subseq_def)
 | 
|  |     75 | 
 | 
|  |     76 | lemma ex_subseq_reduce_index: "seqseq (n + k) = seqseq n o fold_reduce n k"
 | 
|  |     77 |   by (induct k) simp_all
 | 
|  |     78 | 
 | 
|  |     79 | lemma seqseq_fold_reduce: "seqseq n = fold_reduce 0 n"
 | 
|  |     80 |   by (induct n) (simp_all)
 | 
|  |     81 | 
 | 
|  |     82 | lemma diagseq_fold_reduce: "diagseq n = fold_reduce 0 n n"
 | 
|  |     83 |   using seqseq_fold_reduce by (simp add: diagseq_def)
 | 
|  |     84 | 
 | 
|  |     85 | lemma fold_reduce_add: "fold_reduce 0 (m + n) = fold_reduce 0 m o fold_reduce m n"
 | 
|  |     86 |   by (induct n) simp_all
 | 
|  |     87 | 
 | 
|  |     88 | lemma diagseq_add: "diagseq (k + n) = (seqseq k o (fold_reduce k n)) (k + n)"
 | 
|  |     89 | proof -
 | 
|  |     90 |   have "diagseq (k + n) = fold_reduce 0 (k + n) (k + n)"
 | 
|  |     91 |     by (simp add: diagseq_fold_reduce)
 | 
|  |     92 |   also have "\<dots> = (seqseq k o fold_reduce k n) (k + n)"
 | 
|  |     93 |     unfolding fold_reduce_add seqseq_fold_reduce ..
 | 
|  |     94 |   finally show ?thesis .
 | 
|  |     95 | qed
 | 
|  |     96 | 
 | 
|  |     97 | lemma diagseq_sub:
 | 
|  |     98 |   assumes "m \<le> n" shows "diagseq n = (seqseq m o (fold_reduce m (n - m))) n"
 | 
|  |     99 |   using diagseq_add[of m "n - m"] assms by simp
 | 
|  |    100 | 
 | 
|  |    101 | lemma subseq_diagonal_rest: "subseq (\<lambda>x. fold_reduce k x (k + x))"
 | 
|  |    102 |   unfolding subseq_Suc_iff fold_reduce.simps o_def
 | 
|  |    103 |   by (metis subseq_mono[OF subseq_fold_reduce] less_le_trans lessI add_Suc_right seq_suble
 | 
|  |    104 |       subseq_reducer)
 | 
|  |    105 | 
 | 
|  |    106 | lemma diagseq_seqseq: "diagseq o (op + k) = (seqseq k o (\<lambda>x. fold_reduce k x (k + x)))"
 | 
|  |    107 |   by (auto simp: o_def diagseq_add)
 | 
|  |    108 | 
 | 
|  |    109 | end
 | 
|  |    110 | 
 | 
|  |    111 | end
 |