| author | mueller | 
| Tue, 20 May 1997 10:28:19 +0200 | |
| changeset 3225 | cee363fc07d7 | 
| parent 2935 | 998cb95fdd43 | 
| child 3341 | 89fe22bf9f54 | 
| permissions | -rw-r--r-- | 
| 1465 | 1  | 
(* Title: HOL/Fun  | 
| 923 | 2  | 
ID: $Id$  | 
| 1465 | 3  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
| 923 | 4  | 
Copyright 1993 University of Cambridge  | 
5  | 
||
6  | 
Lemmas about functions.  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
goal Fun.thy "(f = g) = (!x. f(x)=g(x))";  | 
|
10  | 
by (rtac iffI 1);  | 
|
| 1264 | 11  | 
by (Asm_simp_tac 1);  | 
12  | 
by (rtac ext 1 THEN Asm_simp_tac 1);  | 
|
| 923 | 13  | 
qed "expand_fun_eq";  | 
14  | 
||
15  | 
val prems = goal Fun.thy  | 
|
16  | 
"[| f(x)=u; !!x. P(x) ==> g(f(x)) = x; P(x) |] ==> x=g(u)";  | 
|
17  | 
by (rtac (arg_cong RS box_equals) 1);  | 
|
18  | 
by (REPEAT (resolve_tac (prems@[refl]) 1));  | 
|
19  | 
qed "apply_inverse";  | 
|
20  | 
||
21  | 
||
22  | 
(*** inj(f): f is a one-to-one function ***)  | 
|
23  | 
||
24  | 
val prems = goalw Fun.thy [inj_def]  | 
|
25  | 
"[| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)";  | 
|
| 2935 | 26  | 
by (blast_tac (!claset addIs prems) 1);  | 
| 923 | 27  | 
qed "injI";  | 
28  | 
||
29  | 
val [major] = goal Fun.thy "(!!x. g(f(x)) = x) ==> inj(f)";  | 
|
30  | 
by (rtac injI 1);  | 
|
31  | 
by (etac (arg_cong RS box_equals) 1);  | 
|
32  | 
by (rtac major 1);  | 
|
33  | 
by (rtac major 1);  | 
|
34  | 
qed "inj_inverseI";  | 
|
35  | 
||
36  | 
val [major,minor] = goalw Fun.thy [inj_def]  | 
|
37  | 
"[| inj(f); f(x) = f(y) |] ==> x=y";  | 
|
38  | 
by (rtac (major RS spec RS spec RS mp) 1);  | 
|
39  | 
by (rtac minor 1);  | 
|
40  | 
qed "injD";  | 
|
41  | 
||
42  | 
(*Useful with the simplifier*)  | 
|
43  | 
val [major] = goal Fun.thy "inj(f) ==> (f(x) = f(y)) = (x=y)";  | 
|
44  | 
by (rtac iffI 1);  | 
|
45  | 
by (etac (major RS injD) 1);  | 
|
46  | 
by (etac arg_cong 1);  | 
|
47  | 
qed "inj_eq";  | 
|
48  | 
||
49  | 
val [major] = goal Fun.thy "inj(f) ==> (@x.f(x)=f(y)) = y";  | 
|
50  | 
by (rtac (major RS injD) 1);  | 
|
51  | 
by (rtac selectI 1);  | 
|
52  | 
by (rtac refl 1);  | 
|
53  | 
qed "inj_select";  | 
|
54  | 
||
55  | 
(*A one-to-one function has an inverse (given using select).*)  | 
|
| 2912 | 56  | 
val [major] = goalw Fun.thy [inv_def] "inj(f) ==> inv f (f x) = x";  | 
| 923 | 57  | 
by (EVERY1 [rtac (major RS inj_select)]);  | 
| 2912 | 58  | 
qed "inv_f_f";  | 
| 923 | 59  | 
|
60  | 
(* Useful??? *)  | 
|
61  | 
val [oneone,minor] = goal Fun.thy  | 
|
| 2912 | 62  | 
"[| inj(f); !!y. y: range(f) ==> P(inv f y) |] ==> P(x)";  | 
63  | 
by (res_inst_tac [("t", "x")] (oneone RS (inv_f_f RS subst)) 1);
 | 
|
| 923 | 64  | 
by (rtac (rangeI RS minor) 1);  | 
65  | 
qed "inj_transfer";  | 
|
66  | 
||
67  | 
||
68  | 
(*** inj_onto f A: f is one-to-one over A ***)  | 
|
69  | 
||
70  | 
val prems = goalw Fun.thy [inj_onto_def]  | 
|
71  | 
"(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> inj_onto f A";  | 
|
| 2935 | 72  | 
by (blast_tac (!claset addIs prems) 1);  | 
| 923 | 73  | 
qed "inj_ontoI";  | 
74  | 
||
75  | 
val [major] = goal Fun.thy  | 
|
76  | 
"(!!x. x:A ==> g(f(x)) = x) ==> inj_onto f A";  | 
|
77  | 
by (rtac inj_ontoI 1);  | 
|
78  | 
by (etac (apply_inverse RS trans) 1);  | 
|
79  | 
by (REPEAT (eresolve_tac [asm_rl,major] 1));  | 
|
80  | 
qed "inj_onto_inverseI";  | 
|
81  | 
||
82  | 
val major::prems = goalw Fun.thy [inj_onto_def]  | 
|
83  | 
"[| inj_onto f A; f(x)=f(y); x:A; y:A |] ==> x=y";  | 
|
84  | 
by (rtac (major RS bspec RS bspec RS mp) 1);  | 
|
85  | 
by (REPEAT (resolve_tac prems 1));  | 
|
86  | 
qed "inj_ontoD";  | 
|
87  | 
||
88  | 
goal Fun.thy "!!x y.[| inj_onto f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)";  | 
|
| 2935 | 89  | 
by (blast_tac (!claset addSDs [inj_ontoD]) 1);  | 
| 923 | 90  | 
qed "inj_onto_iff";  | 
91  | 
||
92  | 
val major::prems = goal Fun.thy  | 
|
93  | 
"[| inj_onto f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)";  | 
|
94  | 
by (rtac contrapos 1);  | 
|
95  | 
by (etac (major RS inj_ontoD) 2);  | 
|
96  | 
by (REPEAT (resolve_tac prems 1));  | 
|
97  | 
qed "inj_onto_contraD";  | 
|
98  | 
||
99  | 
||
100  | 
(*** Lemmas about inj ***)  | 
|
101  | 
||
| 2922 | 102  | 
goalw Fun.thy [o_def]  | 
103  | 
"!!f g. [| inj(f); inj_onto g (range f) |] ==> inj(g o f)";  | 
|
104  | 
by (fast_tac (!claset addIs [injI] addEs [injD, inj_ontoD]) 1);  | 
|
| 923 | 105  | 
qed "comp_inj";  | 
106  | 
||
107  | 
val [prem] = goal Fun.thy "inj(f) ==> inj_onto f A";  | 
|
| 2935 | 108  | 
by (blast_tac (!claset addIs [prem RS injD, inj_ontoI]) 1);  | 
| 923 | 109  | 
qed "inj_imp";  | 
110  | 
||
| 2912 | 111  | 
val [prem] = goalw Fun.thy [inv_def] "y : range(f) ==> f(inv f y) = y";  | 
| 923 | 112  | 
by (EVERY1 [rtac (prem RS rangeE), rtac selectI, etac sym]);  | 
| 2912 | 113  | 
qed "f_inv_f";  | 
| 923 | 114  | 
|
115  | 
val prems = goal Fun.thy  | 
|
| 2912 | 116  | 
"[| inv f x=inv f y; x: range(f); y: range(f) |] ==> x=y";  | 
117  | 
by (rtac (arg_cong RS box_equals) 1);  | 
|
118  | 
by (REPEAT (resolve_tac (prems @ [f_inv_f]) 1));  | 
|
119  | 
qed "inv_injective";  | 
|
120  | 
||
| 2935 | 121  | 
goal Fun.thy "!!f. [| inj(f); A<=range(f) |] ==> inj_onto (inv f) A";  | 
| 
1754
 
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
 
berghofe 
parents: 
1672 
diff
changeset
 | 
122  | 
by (fast_tac (!claset addIs [inj_ontoI]  | 
| 2912 | 123  | 
addEs [inv_injective,injD]) 1);  | 
124  | 
qed "inj_onto_inv";  | 
|
| 923 | 125  | 
|
126  | 
||
| 1837 | 127  | 
val set_cs = !claset delrules [equalityI];  |