| author | blanchet | 
| Thu, 02 Sep 2010 22:49:56 +0200 | |
| changeset 39109 | ceee95f41823 | 
| parent 38621 | d6cb7e625d75 | 
| child 41853 | 258a489c24b2 | 
| permissions | -rw-r--r-- | 
| 11355 | 1 | (* Title: HOL/Library/Nat_Infinity.thy | 
| 27110 | 2 | Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 3 | *) | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 4 | |
| 14706 | 5 | header {* Natural numbers with infinity *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 6 | |
| 15131 | 7 | theory Nat_Infinity | 
| 30663 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 haftmann parents: 
29668diff
changeset | 8 | imports Main | 
| 15131 | 9 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 10 | |
| 27110 | 11 | subsection {* Type definition *}
 | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 12 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 13 | text {*
 | 
| 11355 | 14 | We extend the standard natural numbers by a special value indicating | 
| 27110 | 15 | infinity. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 16 | *} | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 17 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 18 | datatype inat = Fin nat | Infty | 
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 19 | |
| 21210 | 20 | notation (xsymbols) | 
| 19736 | 21 |   Infty  ("\<infinity>")
 | 
| 22 | ||
| 21210 | 23 | notation (HTML output) | 
| 19736 | 24 |   Infty  ("\<infinity>")
 | 
| 25 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 26 | |
| 31084 | 27 | lemma not_Infty_eq[iff]: "(x ~= Infty) = (EX i. x = Fin i)" | 
| 28 | by (cases x) auto | |
| 29 | ||
| 30 | lemma not_Fin_eq [iff]: "(ALL y. x ~= Fin y) = (x = Infty)" | |
| 31077 | 31 | by (cases x) auto | 
| 32 | ||
| 33 | ||
| 27110 | 34 | subsection {* Constructors and numbers *}
 | 
| 35 | ||
| 36 | instantiation inat :: "{zero, one, number}"
 | |
| 25594 | 37 | begin | 
| 38 | ||
| 39 | definition | |
| 27110 | 40 | "0 = Fin 0" | 
| 25594 | 41 | |
| 42 | definition | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 43 | [code_unfold]: "1 = Fin 1" | 
| 25594 | 44 | |
| 45 | definition | |
| 32069 
6d28bbd33e2c
prefer code_inline over code_unfold; use code_unfold_post where appropriate
 haftmann parents: 
31998diff
changeset | 46 | [code_unfold, code del]: "number_of k = Fin (number_of k)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 47 | |
| 25594 | 48 | instance .. | 
| 49 | ||
| 50 | end | |
| 51 | ||
| 27110 | 52 | definition iSuc :: "inat \<Rightarrow> inat" where | 
| 53 | "iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 54 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 55 | lemma Fin_0: "Fin 0 = 0" | 
| 27110 | 56 | by (simp add: zero_inat_def) | 
| 57 | ||
| 58 | lemma Fin_1: "Fin 1 = 1" | |
| 59 | by (simp add: one_inat_def) | |
| 60 | ||
| 61 | lemma Fin_number: "Fin (number_of k) = number_of k" | |
| 62 | by (simp add: number_of_inat_def) | |
| 63 | ||
| 64 | lemma one_iSuc: "1 = iSuc 0" | |
| 65 | by (simp add: zero_inat_def one_inat_def iSuc_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 66 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 67 | lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0" | 
| 27110 | 68 | by (simp add: zero_inat_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 69 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 70 | lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>" | 
| 27110 | 71 | by (simp add: zero_inat_def) | 
| 72 | ||
| 73 | lemma zero_inat_eq [simp]: | |
| 74 | "number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 75 | "(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)" | |
| 76 | unfolding zero_inat_def number_of_inat_def by simp_all | |
| 77 | ||
| 78 | lemma one_inat_eq [simp]: | |
| 79 | "number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 80 | "(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)" | |
| 81 | unfolding one_inat_def number_of_inat_def by simp_all | |
| 82 | ||
| 83 | lemma zero_one_inat_neq [simp]: | |
| 84 | "\<not> 0 = (1\<Colon>inat)" | |
| 85 | "\<not> 1 = (0\<Colon>inat)" | |
| 86 | unfolding zero_inat_def one_inat_def by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 87 | |
| 27110 | 88 | lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1" | 
| 89 | by (simp add: one_inat_def) | |
| 90 | ||
| 91 | lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>" | |
| 92 | by (simp add: one_inat_def) | |
| 93 | ||
| 94 | lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k" | |
| 95 | by (simp add: number_of_inat_def) | |
| 96 | ||
| 97 | lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>" | |
| 98 | by (simp add: number_of_inat_def) | |
| 99 | ||
| 100 | lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)" | |
| 101 | by (simp add: iSuc_def) | |
| 102 | ||
| 103 | lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))" | |
| 104 | by (simp add: iSuc_Fin number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 105 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 106 | lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>" | 
| 27110 | 107 | by (simp add: iSuc_def) | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 108 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 109 | lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0" | 
| 27110 | 110 | by (simp add: iSuc_def zero_inat_def split: inat.splits) | 
| 111 | ||
| 112 | lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n" | |
| 113 | by (rule iSuc_ne_0 [symmetric]) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 114 | |
| 27110 | 115 | lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n" | 
| 116 | by (simp add: iSuc_def split: inat.splits) | |
| 117 | ||
| 118 | lemma number_of_inat_inject [simp]: | |
| 119 | "(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l" | |
| 120 | by (simp add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 121 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 122 | |
| 27110 | 123 | subsection {* Addition *}
 | 
| 124 | ||
| 125 | instantiation inat :: comm_monoid_add | |
| 126 | begin | |
| 127 | ||
| 38167 | 128 | definition [nitpick_simp]: | 
| 37765 | 129 | "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 130 | |
| 27110 | 131 | lemma plus_inat_simps [simp, code]: | 
| 132 | "Fin m + Fin n = Fin (m + n)" | |
| 133 | "\<infinity> + q = \<infinity>" | |
| 134 | "q + \<infinity> = \<infinity>" | |
| 135 | by (simp_all add: plus_inat_def split: inat.splits) | |
| 136 | ||
| 137 | instance proof | |
| 138 | fix n m q :: inat | |
| 139 | show "n + m + q = n + (m + q)" | |
| 140 | by (cases n, auto, cases m, auto, cases q, auto) | |
| 141 | show "n + m = m + n" | |
| 142 | by (cases n, auto, cases m, auto) | |
| 143 | show "0 + n = n" | |
| 144 | by (cases n) (simp_all add: zero_inat_def) | |
| 26089 | 145 | qed | 
| 146 | ||
| 27110 | 147 | end | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 148 | |
| 27110 | 149 | lemma plus_inat_0 [simp]: | 
| 150 | "0 + (q\<Colon>inat) = q" | |
| 151 | "(q\<Colon>inat) + 0 = q" | |
| 152 | by (simp_all add: plus_inat_def zero_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 153 | |
| 27110 | 154 | lemma plus_inat_number [simp]: | 
| 29012 | 155 | "(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l | 
| 156 | else if l < Int.Pls then number_of k else number_of (k + l))" | |
| 27110 | 157 | unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] .. | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 158 | |
| 27110 | 159 | lemma iSuc_number [simp]: | 
| 160 | "iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))" | |
| 161 | unfolding iSuc_number_of | |
| 162 | unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] .. | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 163 | |
| 27110 | 164 | lemma iSuc_plus_1: | 
| 165 | "iSuc n = n + 1" | |
| 166 | by (cases n) (simp_all add: iSuc_Fin one_inat_def) | |
| 167 | ||
| 168 | lemma plus_1_iSuc: | |
| 169 | "1 + q = iSuc q" | |
| 170 | "q + 1 = iSuc q" | |
| 171 | unfolding iSuc_plus_1 by (simp_all add: add_ac) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 172 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 173 | |
| 29014 | 174 | subsection {* Multiplication *}
 | 
| 175 | ||
| 176 | instantiation inat :: comm_semiring_1 | |
| 177 | begin | |
| 178 | ||
| 38167 | 179 | definition times_inat_def [nitpick_simp]: | 
| 29014 | 180 | "m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow> | 
| 181 | (case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))" | |
| 182 | ||
| 183 | lemma times_inat_simps [simp, code]: | |
| 184 | "Fin m * Fin n = Fin (m * n)" | |
| 185 | "\<infinity> * \<infinity> = \<infinity>" | |
| 186 | "\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)" | |
| 187 | "Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)" | |
| 188 | unfolding times_inat_def zero_inat_def | |
| 189 | by (simp_all split: inat.split) | |
| 190 | ||
| 191 | instance proof | |
| 192 | fix a b c :: inat | |
| 193 | show "(a * b) * c = a * (b * c)" | |
| 194 | unfolding times_inat_def zero_inat_def | |
| 195 | by (simp split: inat.split) | |
| 196 | show "a * b = b * a" | |
| 197 | unfolding times_inat_def zero_inat_def | |
| 198 | by (simp split: inat.split) | |
| 199 | show "1 * a = a" | |
| 200 | unfolding times_inat_def zero_inat_def one_inat_def | |
| 201 | by (simp split: inat.split) | |
| 202 | show "(a + b) * c = a * c + b * c" | |
| 203 | unfolding times_inat_def zero_inat_def | |
| 204 | by (simp split: inat.split add: left_distrib) | |
| 205 | show "0 * a = 0" | |
| 206 | unfolding times_inat_def zero_inat_def | |
| 207 | by (simp split: inat.split) | |
| 208 | show "a * 0 = 0" | |
| 209 | unfolding times_inat_def zero_inat_def | |
| 210 | by (simp split: inat.split) | |
| 211 | show "(0::inat) \<noteq> 1" | |
| 212 | unfolding zero_inat_def one_inat_def | |
| 213 | by simp | |
| 214 | qed | |
| 215 | ||
| 216 | end | |
| 217 | ||
| 218 | lemma mult_iSuc: "iSuc m * n = n + m * n" | |
| 29667 | 219 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 220 | |
| 221 | lemma mult_iSuc_right: "m * iSuc n = m + m * n" | |
| 29667 | 222 | unfolding iSuc_plus_1 by (simp add: algebra_simps) | 
| 29014 | 223 | |
| 29023 | 224 | lemma of_nat_eq_Fin: "of_nat n = Fin n" | 
| 225 | apply (induct n) | |
| 226 | apply (simp add: Fin_0) | |
| 227 | apply (simp add: plus_1_iSuc iSuc_Fin) | |
| 228 | done | |
| 229 | ||
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 230 | instance inat :: semiring_char_0 proof | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 231 | have "inj Fin" by (rule injI) simp | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 232 | then show "inj (\<lambda>n. of_nat n :: inat)" by (simp add: of_nat_eq_Fin) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
38167diff
changeset | 233 | qed | 
| 29023 | 234 | |
| 29014 | 235 | |
| 27110 | 236 | subsection {* Ordering *}
 | 
| 237 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32069diff
changeset | 238 | instantiation inat :: linordered_ab_semigroup_add | 
| 27110 | 239 | begin | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 240 | |
| 38167 | 241 | definition [nitpick_simp]: | 
| 37765 | 242 | "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) | 
| 27110 | 243 | | \<infinity> \<Rightarrow> True)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 244 | |
| 38167 | 245 | definition [nitpick_simp]: | 
| 37765 | 246 | "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) | 
| 27110 | 247 | | \<infinity> \<Rightarrow> False)" | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 248 | |
| 27110 | 249 | lemma inat_ord_simps [simp]: | 
| 250 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 251 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 252 | "q \<le> \<infinity>" | |
| 253 | "q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>" | |
| 254 | "\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>" | |
| 255 | "\<infinity> < q \<longleftrightarrow> False" | |
| 256 | by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 257 | |
| 27110 | 258 | lemma inat_ord_code [code]: | 
| 259 | "Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" | |
| 260 | "Fin m < Fin n \<longleftrightarrow> m < n" | |
| 261 | "q \<le> \<infinity> \<longleftrightarrow> True" | |
| 262 | "Fin m < \<infinity> \<longleftrightarrow> True" | |
| 263 | "\<infinity> \<le> Fin n \<longleftrightarrow> False" | |
| 264 | "\<infinity> < q \<longleftrightarrow> False" | |
| 265 | by simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 266 | |
| 27110 | 267 | instance by default | 
| 268 | (auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 269 | |
| 27110 | 270 | end | 
| 271 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
32069diff
changeset | 272 | instance inat :: ordered_comm_semiring | 
| 29014 | 273 | proof | 
| 274 | fix a b c :: inat | |
| 275 | assume "a \<le> b" and "0 \<le> c" | |
| 276 | thus "c * a \<le> c * b" | |
| 277 | unfolding times_inat_def less_eq_inat_def zero_inat_def | |
| 278 | by (simp split: inat.splits) | |
| 279 | qed | |
| 280 | ||
| 27110 | 281 | lemma inat_ord_number [simp]: | 
| 282 | "(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n" | |
| 283 | "(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n" | |
| 284 | by (simp_all add: number_of_inat_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 285 | |
| 27110 | 286 | lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n" | 
| 287 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 288 | |
| 27110 | 289 | lemma i0_neq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0" | 
| 290 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 291 | ||
| 292 | lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R" | |
| 293 | by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 294 | |
| 27110 | 295 | lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R" | 
| 296 | by simp | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 297 | |
| 27110 | 298 | lemma not_ilessi0 [simp]: "\<not> n < (0\<Colon>inat)" | 
| 299 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 300 | ||
| 301 | lemma i0_eq [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0" | |
| 302 | by (simp add: zero_inat_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 303 | |
| 27110 | 304 | lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m" | 
| 305 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 306 | ||
| 307 | lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m" | |
| 308 | by (simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 309 | |
| 27110 | 310 | lemma ile_iSuc [simp]: "n \<le> iSuc n" | 
| 311 | by (simp add: iSuc_def less_eq_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 312 | |
| 11355 | 313 | lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0" | 
| 27110 | 314 | by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits) | 
| 315 | ||
| 316 | lemma i0_iless_iSuc [simp]: "0 < iSuc n" | |
| 317 | by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits) | |
| 318 | ||
| 319 | lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n" | |
| 320 | by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits) | |
| 321 | ||
| 322 | lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n" | |
| 323 | by (cases n) auto | |
| 324 | ||
| 325 | lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n" | |
| 326 | by (auto simp add: iSuc_def less_inat_def split: inat.splits) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 327 | |
| 27110 | 328 | lemma min_inat_simps [simp]: | 
| 329 | "min (Fin m) (Fin n) = Fin (min m n)" | |
| 330 | "min q 0 = 0" | |
| 331 | "min 0 q = 0" | |
| 332 | "min q \<infinity> = q" | |
| 333 | "min \<infinity> q = q" | |
| 334 | by (auto simp add: min_def) | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 335 | |
| 27110 | 336 | lemma max_inat_simps [simp]: | 
| 337 | "max (Fin m) (Fin n) = Fin (max m n)" | |
| 338 | "max q 0 = q" | |
| 339 | "max 0 q = q" | |
| 340 | "max q \<infinity> = \<infinity>" | |
| 341 | "max \<infinity> q = \<infinity>" | |
| 342 | by (simp_all add: max_def) | |
| 343 | ||
| 344 | lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 345 | by (cases n) simp_all | |
| 346 | ||
| 347 | lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k" | |
| 348 | by (cases n) simp_all | |
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 349 | |
| 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 350 | lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j" | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 351 | apply (induct_tac k) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 352 | apply (simp (no_asm) only: Fin_0) | 
| 27110 | 353 | apply (fast intro: le_less_trans [OF i0_lb]) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 354 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 355 | apply (drule spec) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 356 | apply (erule exE) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 357 | apply (drule ileI1) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 358 | apply (rule iSuc_Fin [THEN subst]) | 
| 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 359 | apply (rule exI) | 
| 27110 | 360 | apply (erule (1) le_less_trans) | 
| 25134 
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
 nipkow parents: 
25112diff
changeset | 361 | done | 
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 362 | |
| 29337 | 363 | instantiation inat :: "{bot, top}"
 | 
| 364 | begin | |
| 365 | ||
| 366 | definition bot_inat :: inat where | |
| 367 | "bot_inat = 0" | |
| 368 | ||
| 369 | definition top_inat :: inat where | |
| 370 | "top_inat = \<infinity>" | |
| 371 | ||
| 372 | instance proof | |
| 373 | qed (simp_all add: bot_inat_def top_inat_def) | |
| 374 | ||
| 375 | end | |
| 376 | ||
| 26089 | 377 | |
| 27110 | 378 | subsection {* Well-ordering *}
 | 
| 26089 | 379 | |
| 380 | lemma less_FinE: | |
| 381 | "[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P" | |
| 382 | by (induct n) auto | |
| 383 | ||
| 384 | lemma less_InftyE: | |
| 385 | "[| n < Infty; !!k. n = Fin k ==> P |] ==> P" | |
| 386 | by (induct n) auto | |
| 387 | ||
| 388 | lemma inat_less_induct: | |
| 389 | assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n" | |
| 390 | proof - | |
| 391 | have P_Fin: "!!k. P (Fin k)" | |
| 392 | apply (rule nat_less_induct) | |
| 393 | apply (rule prem, clarify) | |
| 394 | apply (erule less_FinE, simp) | |
| 395 | done | |
| 396 | show ?thesis | |
| 397 | proof (induct n) | |
| 398 | fix nat | |
| 399 | show "P (Fin nat)" by (rule P_Fin) | |
| 400 | next | |
| 401 | show "P Infty" | |
| 402 | apply (rule prem, clarify) | |
| 403 | apply (erule less_InftyE) | |
| 404 | apply (simp add: P_Fin) | |
| 405 | done | |
| 406 | qed | |
| 407 | qed | |
| 408 | ||
| 409 | instance inat :: wellorder | |
| 410 | proof | |
| 27823 | 411 | fix P and n | 
| 412 | assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" | |
| 413 | show "P n" by (blast intro: inat_less_induct hyp) | |
| 26089 | 414 | qed | 
| 415 | ||
| 27110 | 416 | |
| 417 | subsection {* Traditional theorem names *}
 | |
| 418 | ||
| 419 | lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def | |
| 420 | plus_inat_def less_eq_inat_def less_inat_def | |
| 421 | ||
| 422 | lemmas inat_splits = inat.splits | |
| 423 | ||
| 11351 
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
 oheimb parents: diff
changeset | 424 | end |