| author | wenzelm | 
| Tue, 07 Nov 2006 11:46:49 +0100 | |
| changeset 21207 | cef082634be9 | 
| parent 19798 | 94f12468bbba | 
| child 21245 | 23e6eb4d0975 | 
| permissions | -rw-r--r-- | 
| 14770 | 1 | (* Title: HOL/OrderedGroup.thy | 
| 14738 | 2 | ID: $Id$ | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 3 | Author: Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel, | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 14738 | 5 | *) | 
| 6 | ||
| 7 | header {* Ordered Groups *}
 | |
| 8 | ||
| 15131 | 9 | theory OrderedGroup | 
| 15140 | 10 | imports Inductive LOrder | 
| 19798 | 11 | uses "~~/src/Provers/Arith/abel_cancel.ML" | 
| 15131 | 12 | begin | 
| 14738 | 13 | |
| 14 | text {*
 | |
| 15 | The theory of partially ordered groups is taken from the books: | |
| 16 |   \begin{itemize}
 | |
| 17 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 18 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 19 |   \end{itemize}
 | |
| 20 | Most of the used notions can also be looked up in | |
| 21 |   \begin{itemize}
 | |
| 14770 | 22 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | 
| 14738 | 23 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 24 |   \end{itemize}
 | |
| 25 | *} | |
| 26 | ||
| 27 | subsection {* Semigroups, Groups *}
 | |
| 28 | ||
| 29 | axclass semigroup_add \<subseteq> plus | |
| 30 | add_assoc: "(a + b) + c = a + (b + c)" | |
| 31 | ||
| 32 | axclass ab_semigroup_add \<subseteq> semigroup_add | |
| 33 | add_commute: "a + b = b + a" | |
| 34 | ||
| 35 | lemma add_left_commute: "a + (b + c) = b + (a + (c::'a::ab_semigroup_add))" | |
| 36 | by (rule mk_left_commute [of "op +", OF add_assoc add_commute]) | |
| 37 | ||
| 38 | theorems add_ac = add_assoc add_commute add_left_commute | |
| 39 | ||
| 40 | axclass semigroup_mult \<subseteq> times | |
| 41 | mult_assoc: "(a * b) * c = a * (b * c)" | |
| 42 | ||
| 43 | axclass ab_semigroup_mult \<subseteq> semigroup_mult | |
| 44 | mult_commute: "a * b = b * a" | |
| 45 | ||
| 46 | lemma mult_left_commute: "a * (b * c) = b * (a * (c::'a::ab_semigroup_mult))" | |
| 47 | by (rule mk_left_commute [of "op *", OF mult_assoc mult_commute]) | |
| 48 | ||
| 49 | theorems mult_ac = mult_assoc mult_commute mult_left_commute | |
| 50 | ||
| 51 | axclass comm_monoid_add \<subseteq> zero, ab_semigroup_add | |
| 52 | add_0[simp]: "0 + a = a" | |
| 53 | ||
| 54 | axclass monoid_mult \<subseteq> one, semigroup_mult | |
| 55 | mult_1_left[simp]: "1 * a = a" | |
| 56 | mult_1_right[simp]: "a * 1 = a" | |
| 57 | ||
| 58 | axclass comm_monoid_mult \<subseteq> one, ab_semigroup_mult | |
| 59 | mult_1: "1 * a = a" | |
| 60 | ||
| 61 | instance comm_monoid_mult \<subseteq> monoid_mult | |
| 62 | by (intro_classes, insert mult_1, simp_all add: mult_commute, auto) | |
| 63 | ||
| 64 | axclass cancel_semigroup_add \<subseteq> semigroup_add | |
| 65 | add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | |
| 66 | add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c" | |
| 67 | ||
| 68 | axclass cancel_ab_semigroup_add \<subseteq> ab_semigroup_add | |
| 69 | add_imp_eq: "a + b = a + c \<Longrightarrow> b = c" | |
| 70 | ||
| 71 | instance cancel_ab_semigroup_add \<subseteq> cancel_semigroup_add | |
| 72 | proof | |
| 73 |   {
 | |
| 74 | fix a b c :: 'a | |
| 75 | assume "a + b = a + c" | |
| 76 | thus "b = c" by (rule add_imp_eq) | |
| 77 | } | |
| 78 | note f = this | |
| 79 | fix a b c :: 'a | |
| 80 | assume "b + a = c + a" | |
| 81 | hence "a + b = a + c" by (simp only: add_commute) | |
| 82 | thus "b = c" by (rule f) | |
| 83 | qed | |
| 84 | ||
| 85 | axclass ab_group_add \<subseteq> minus, comm_monoid_add | |
| 86 | left_minus[simp]: " - a + a = 0" | |
| 87 | diff_minus: "a - b = a + (-b)" | |
| 88 | ||
| 89 | instance ab_group_add \<subseteq> cancel_ab_semigroup_add | |
| 90 | proof | |
| 91 | fix a b c :: 'a | |
| 92 | assume "a + b = a + c" | |
| 93 | hence "-a + a + b = -a + a + c" by (simp only: add_assoc) | |
| 94 | thus "b = c" by simp | |
| 95 | qed | |
| 96 | ||
| 97 | lemma add_0_right [simp]: "a + 0 = (a::'a::comm_monoid_add)" | |
| 98 | proof - | |
| 99 | have "a + 0 = 0 + a" by (simp only: add_commute) | |
| 100 | also have "... = a" by simp | |
| 101 | finally show ?thesis . | |
| 102 | qed | |
| 103 | ||
| 104 | lemma add_left_cancel [simp]: | |
| 105 | "(a + b = a + c) = (b = (c::'a::cancel_semigroup_add))" | |
| 106 | by (blast dest: add_left_imp_eq) | |
| 107 | ||
| 108 | lemma add_right_cancel [simp]: | |
| 109 | "(b + a = c + a) = (b = (c::'a::cancel_semigroup_add))" | |
| 110 | by (blast dest: add_right_imp_eq) | |
| 111 | ||
| 112 | lemma right_minus [simp]: "a + -(a::'a::ab_group_add) = 0" | |
| 113 | proof - | |
| 114 | have "a + -a = -a + a" by (simp add: add_ac) | |
| 115 | also have "... = 0" by simp | |
| 116 | finally show ?thesis . | |
| 117 | qed | |
| 118 | ||
| 119 | lemma right_minus_eq: "(a - b = 0) = (a = (b::'a::ab_group_add))" | |
| 120 | proof | |
| 121 | have "a = a - b + b" by (simp add: diff_minus add_ac) | |
| 122 | also assume "a - b = 0" | |
| 123 | finally show "a = b" by simp | |
| 124 | next | |
| 125 | assume "a = b" | |
| 126 | thus "a - b = 0" by (simp add: diff_minus) | |
| 127 | qed | |
| 128 | ||
| 129 | lemma minus_minus [simp]: "- (- (a::'a::ab_group_add)) = a" | |
| 130 | proof (rule add_left_cancel [of "-a", THEN iffD1]) | |
| 131 | show "(-a + -(-a) = -a + a)" | |
| 132 | by simp | |
| 133 | qed | |
| 134 | ||
| 135 | lemma equals_zero_I: "a+b = 0 ==> -a = (b::'a::ab_group_add)" | |
| 136 | apply (rule right_minus_eq [THEN iffD1, symmetric]) | |
| 137 | apply (simp add: diff_minus add_commute) | |
| 138 | done | |
| 139 | ||
| 140 | lemma minus_zero [simp]: "- 0 = (0::'a::ab_group_add)" | |
| 141 | by (simp add: equals_zero_I) | |
| 142 | ||
| 143 | lemma diff_self [simp]: "a - (a::'a::ab_group_add) = 0" | |
| 144 | by (simp add: diff_minus) | |
| 145 | ||
| 146 | lemma diff_0 [simp]: "(0::'a::ab_group_add) - a = -a" | |
| 147 | by (simp add: diff_minus) | |
| 148 | ||
| 149 | lemma diff_0_right [simp]: "a - (0::'a::ab_group_add) = a" | |
| 150 | by (simp add: diff_minus) | |
| 151 | ||
| 152 | lemma diff_minus_eq_add [simp]: "a - - b = a + (b::'a::ab_group_add)" | |
| 153 | by (simp add: diff_minus) | |
| 154 | ||
| 155 | lemma neg_equal_iff_equal [simp]: "(-a = -b) = (a = (b::'a::ab_group_add))" | |
| 156 | proof | |
| 157 | assume "- a = - b" | |
| 158 | hence "- (- a) = - (- b)" | |
| 159 | by simp | |
| 160 | thus "a=b" by simp | |
| 161 | next | |
| 162 | assume "a=b" | |
| 163 | thus "-a = -b" by simp | |
| 164 | qed | |
| 165 | ||
| 166 | lemma neg_equal_0_iff_equal [simp]: "(-a = 0) = (a = (0::'a::ab_group_add))" | |
| 167 | by (subst neg_equal_iff_equal [symmetric], simp) | |
| 168 | ||
| 169 | lemma neg_0_equal_iff_equal [simp]: "(0 = -a) = (0 = (a::'a::ab_group_add))" | |
| 170 | by (subst neg_equal_iff_equal [symmetric], simp) | |
| 171 | ||
| 172 | text{*The next two equations can make the simplifier loop!*}
 | |
| 173 | ||
| 174 | lemma equation_minus_iff: "(a = - b) = (b = - (a::'a::ab_group_add))" | |
| 175 | proof - | |
| 176 | have "(- (-a) = - b) = (- a = b)" by (rule neg_equal_iff_equal) | |
| 177 | thus ?thesis by (simp add: eq_commute) | |
| 178 | qed | |
| 179 | ||
| 180 | lemma minus_equation_iff: "(- a = b) = (- (b::'a::ab_group_add) = a)" | |
| 181 | proof - | |
| 182 | have "(- a = - (-b)) = (a = -b)" by (rule neg_equal_iff_equal) | |
| 183 | thus ?thesis by (simp add: eq_commute) | |
| 184 | qed | |
| 185 | ||
| 186 | lemma minus_add_distrib [simp]: "- (a + b) = -a + -(b::'a::ab_group_add)" | |
| 187 | apply (rule equals_zero_I) | |
| 188 | apply (simp add: add_ac) | |
| 189 | done | |
| 190 | ||
| 191 | lemma minus_diff_eq [simp]: "- (a - b) = b - (a::'a::ab_group_add)" | |
| 192 | by (simp add: diff_minus add_commute) | |
| 193 | ||
| 194 | subsection {* (Partially) Ordered Groups *} 
 | |
| 195 | ||
| 196 | axclass pordered_ab_semigroup_add \<subseteq> order, ab_semigroup_add | |
| 197 | add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b" | |
| 198 | ||
| 199 | axclass pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add, cancel_ab_semigroup_add | |
| 200 | ||
| 201 | instance pordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add .. | |
| 202 | ||
| 203 | axclass pordered_ab_semigroup_add_imp_le \<subseteq> pordered_cancel_ab_semigroup_add | |
| 204 | add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b" | |
| 205 | ||
| 206 | axclass pordered_ab_group_add \<subseteq> ab_group_add, pordered_ab_semigroup_add | |
| 207 | ||
| 208 | instance pordered_ab_group_add \<subseteq> pordered_ab_semigroup_add_imp_le | |
| 209 | proof | |
| 210 | fix a b c :: 'a | |
| 211 | assume "c + a \<le> c + b" | |
| 212 | hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono) | |
| 213 | hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc) | |
| 214 | thus "a \<le> b" by simp | |
| 215 | qed | |
| 216 | ||
| 217 | axclass ordered_cancel_ab_semigroup_add \<subseteq> pordered_cancel_ab_semigroup_add, linorder | |
| 218 | ||
| 219 | instance ordered_cancel_ab_semigroup_add \<subseteq> pordered_ab_semigroup_add_imp_le | |
| 220 | proof | |
| 221 | fix a b c :: 'a | |
| 222 | assume le: "c + a <= c + b" | |
| 223 | show "a <= b" | |
| 224 | proof (rule ccontr) | |
| 225 | assume w: "~ a \<le> b" | |
| 226 | hence "b <= a" by (simp add: linorder_not_le) | |
| 227 | hence le2: "c+b <= c+a" by (rule add_left_mono) | |
| 228 | have "a = b" | |
| 229 | apply (insert le) | |
| 230 | apply (insert le2) | |
| 231 | apply (drule order_antisym, simp_all) | |
| 232 | done | |
| 233 | with w show False | |
| 234 | by (simp add: linorder_not_le [symmetric]) | |
| 235 | qed | |
| 236 | qed | |
| 237 | ||
| 238 | lemma add_right_mono: "a \<le> (b::'a::pordered_ab_semigroup_add) ==> a + c \<le> b + c" | |
| 239 | by (simp add: add_commute[of _ c] add_left_mono) | |
| 240 | ||
| 241 | text {* non-strict, in both arguments *}
 | |
| 242 | lemma add_mono: | |
| 243 | "[|a \<le> b; c \<le> d|] ==> a + c \<le> b + (d::'a::pordered_ab_semigroup_add)" | |
| 244 | apply (erule add_right_mono [THEN order_trans]) | |
| 245 | apply (simp add: add_commute add_left_mono) | |
| 246 | done | |
| 247 | ||
| 248 | lemma add_strict_left_mono: | |
| 249 | "a < b ==> c + a < c + (b::'a::pordered_cancel_ab_semigroup_add)" | |
| 250 | by (simp add: order_less_le add_left_mono) | |
| 251 | ||
| 252 | lemma add_strict_right_mono: | |
| 253 | "a < b ==> a + c < b + (c::'a::pordered_cancel_ab_semigroup_add)" | |
| 254 | by (simp add: add_commute [of _ c] add_strict_left_mono) | |
| 255 | ||
| 256 | text{*Strict monotonicity in both arguments*}
 | |
| 257 | lemma add_strict_mono: "[|a<b; c<d|] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 258 | apply (erule add_strict_right_mono [THEN order_less_trans]) | |
| 259 | apply (erule add_strict_left_mono) | |
| 260 | done | |
| 261 | ||
| 262 | lemma add_less_le_mono: | |
| 263 | "[| a<b; c\<le>d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 264 | apply (erule add_strict_right_mono [THEN order_less_le_trans]) | |
| 265 | apply (erule add_left_mono) | |
| 266 | done | |
| 267 | ||
| 268 | lemma add_le_less_mono: | |
| 269 | "[| a\<le>b; c<d |] ==> a + c < b + (d::'a::pordered_cancel_ab_semigroup_add)" | |
| 270 | apply (erule add_right_mono [THEN order_le_less_trans]) | |
| 271 | apply (erule add_strict_left_mono) | |
| 272 | done | |
| 273 | ||
| 274 | lemma add_less_imp_less_left: | |
| 275 | assumes less: "c + a < c + b" shows "a < (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 276 | proof - | |
| 277 | from less have le: "c + a <= c + b" by (simp add: order_le_less) | |
| 278 | have "a <= b" | |
| 279 | apply (insert le) | |
| 280 | apply (drule add_le_imp_le_left) | |
| 281 | by (insert le, drule add_le_imp_le_left, assumption) | |
| 282 | moreover have "a \<noteq> b" | |
| 283 | proof (rule ccontr) | |
| 284 | assume "~(a \<noteq> b)" | |
| 285 | then have "a = b" by simp | |
| 286 | then have "c + a = c + b" by simp | |
| 287 | with less show "False"by simp | |
| 288 | qed | |
| 289 | ultimately show "a < b" by (simp add: order_le_less) | |
| 290 | qed | |
| 291 | ||
| 292 | lemma add_less_imp_less_right: | |
| 293 | "a + c < b + c ==> a < (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 294 | apply (rule add_less_imp_less_left [of c]) | |
| 295 | apply (simp add: add_commute) | |
| 296 | done | |
| 297 | ||
| 298 | lemma add_less_cancel_left [simp]: | |
| 299 | "(c+a < c+b) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 300 | by (blast intro: add_less_imp_less_left add_strict_left_mono) | |
| 301 | ||
| 302 | lemma add_less_cancel_right [simp]: | |
| 303 | "(a+c < b+c) = (a < (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 304 | by (blast intro: add_less_imp_less_right add_strict_right_mono) | |
| 305 | ||
| 306 | lemma add_le_cancel_left [simp]: | |
| 307 | "(c+a \<le> c+b) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 308 | by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) | |
| 309 | ||
| 310 | lemma add_le_cancel_right [simp]: | |
| 311 | "(a+c \<le> b+c) = (a \<le> (b::'a::pordered_ab_semigroup_add_imp_le))" | |
| 312 | by (simp add: add_commute[of a c] add_commute[of b c]) | |
| 313 | ||
| 314 | lemma add_le_imp_le_right: | |
| 315 | "a + c \<le> b + c ==> a \<le> (b::'a::pordered_ab_semigroup_add_imp_le)" | |
| 316 | by simp | |
| 317 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 318 | lemma add_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 319 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 320 | shows "[|0\<le>a; b\<le>c|] ==> b \<le> a + c" | 
| 14738 | 321 | by (insert add_mono [of 0 a b c], simp) | 
| 322 | ||
| 15539 | 323 | lemma add_increasing2: | 
| 324 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | |
| 325 | shows "[|0\<le>c; b\<le>a|] ==> b \<le> a + c" | |
| 326 | by (simp add:add_increasing add_commute[of a]) | |
| 327 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 328 | lemma add_strict_increasing: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 329 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 330 | shows "[|0<a; b\<le>c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 331 | by (insert add_less_le_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 332 | |
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 333 | lemma add_strict_increasing2: | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 334 |   fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 335 | shows "[|0\<le>a; b<c|] ==> b < a + c" | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 336 | by (insert add_le_less_mono [of 0 a b c], simp) | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 337 | |
| 19527 | 338 | lemma max_add_distrib_left: | 
| 339 | fixes z :: "'a::pordered_ab_semigroup_add_imp_le" | |
| 340 | shows "(max x y) + z = max (x+z) (y+z)" | |
| 341 | by (rule max_of_mono [THEN sym], rule add_le_cancel_right) | |
| 342 | ||
| 343 | lemma min_add_distrib_left: | |
| 344 | fixes z :: "'a::pordered_ab_semigroup_add_imp_le" | |
| 345 | shows "(min x y) + z = min (x+z) (y+z)" | |
| 346 | by (rule min_of_mono [THEN sym], rule add_le_cancel_right) | |
| 347 | ||
| 348 | lemma max_diff_distrib_left: | |
| 349 | fixes z :: "'a::pordered_ab_group_add" | |
| 350 | shows "(max x y) - z = max (x-z) (y-z)" | |
| 351 | by (simp add: diff_minus, rule max_add_distrib_left) | |
| 352 | ||
| 353 | lemma min_diff_distrib_left: | |
| 354 | fixes z :: "'a::pordered_ab_group_add" | |
| 355 | shows "(min x y) - z = min (x-z) (y-z)" | |
| 356 | by (simp add: diff_minus, rule min_add_distrib_left) | |
| 357 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 358 | |
| 14738 | 359 | subsection {* Ordering Rules for Unary Minus *}
 | 
| 360 | ||
| 361 | lemma le_imp_neg_le: | |
| 362 |       assumes "a \<le> (b::'a::{pordered_ab_semigroup_add_imp_le, ab_group_add})" shows "-b \<le> -a"
 | |
| 363 | proof - | |
| 364 | have "-a+a \<le> -a+b" | |
| 365 | by (rule add_left_mono) | |
| 366 | hence "0 \<le> -a+b" | |
| 367 | by simp | |
| 368 | hence "0 + (-b) \<le> (-a + b) + (-b)" | |
| 369 | by (rule add_right_mono) | |
| 370 | thus ?thesis | |
| 371 | by (simp add: add_assoc) | |
| 372 | qed | |
| 373 | ||
| 374 | lemma neg_le_iff_le [simp]: "(-b \<le> -a) = (a \<le> (b::'a::pordered_ab_group_add))" | |
| 375 | proof | |
| 376 | assume "- b \<le> - a" | |
| 377 | hence "- (- a) \<le> - (- b)" | |
| 378 | by (rule le_imp_neg_le) | |
| 379 | thus "a\<le>b" by simp | |
| 380 | next | |
| 381 | assume "a\<le>b" | |
| 382 | thus "-b \<le> -a" by (rule le_imp_neg_le) | |
| 383 | qed | |
| 384 | ||
| 385 | lemma neg_le_0_iff_le [simp]: "(-a \<le> 0) = (0 \<le> (a::'a::pordered_ab_group_add))" | |
| 386 | by (subst neg_le_iff_le [symmetric], simp) | |
| 387 | ||
| 388 | lemma neg_0_le_iff_le [simp]: "(0 \<le> -a) = (a \<le> (0::'a::pordered_ab_group_add))" | |
| 389 | by (subst neg_le_iff_le [symmetric], simp) | |
| 390 | ||
| 391 | lemma neg_less_iff_less [simp]: "(-b < -a) = (a < (b::'a::pordered_ab_group_add))" | |
| 392 | by (force simp add: order_less_le) | |
| 393 | ||
| 394 | lemma neg_less_0_iff_less [simp]: "(-a < 0) = (0 < (a::'a::pordered_ab_group_add))" | |
| 395 | by (subst neg_less_iff_less [symmetric], simp) | |
| 396 | ||
| 397 | lemma neg_0_less_iff_less [simp]: "(0 < -a) = (a < (0::'a::pordered_ab_group_add))" | |
| 398 | by (subst neg_less_iff_less [symmetric], simp) | |
| 399 | ||
| 400 | text{*The next several equations can make the simplifier loop!*}
 | |
| 401 | ||
| 402 | lemma less_minus_iff: "(a < - b) = (b < - (a::'a::pordered_ab_group_add))" | |
| 403 | proof - | |
| 404 | have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less) | |
| 405 | thus ?thesis by simp | |
| 406 | qed | |
| 407 | ||
| 408 | lemma minus_less_iff: "(- a < b) = (- b < (a::'a::pordered_ab_group_add))" | |
| 409 | proof - | |
| 410 | have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less) | |
| 411 | thus ?thesis by simp | |
| 412 | qed | |
| 413 | ||
| 414 | lemma le_minus_iff: "(a \<le> - b) = (b \<le> - (a::'a::pordered_ab_group_add))" | |
| 415 | proof - | |
| 416 | have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff) | |
| 417 | have "(- (- a) <= -b) = (b <= - a)" | |
| 418 | apply (auto simp only: order_le_less) | |
| 419 | apply (drule mm) | |
| 420 | apply (simp_all) | |
| 421 | apply (drule mm[simplified], assumption) | |
| 422 | done | |
| 423 | then show ?thesis by simp | |
| 424 | qed | |
| 425 | ||
| 426 | lemma minus_le_iff: "(- a \<le> b) = (- b \<le> (a::'a::pordered_ab_group_add))" | |
| 427 | by (auto simp add: order_le_less minus_less_iff) | |
| 428 | ||
| 429 | lemma add_diff_eq: "a + (b - c) = (a + b) - (c::'a::ab_group_add)" | |
| 430 | by (simp add: diff_minus add_ac) | |
| 431 | ||
| 432 | lemma diff_add_eq: "(a - b) + c = (a + c) - (b::'a::ab_group_add)" | |
| 433 | by (simp add: diff_minus add_ac) | |
| 434 | ||
| 435 | lemma diff_eq_eq: "(a-b = c) = (a = c + (b::'a::ab_group_add))" | |
| 436 | by (auto simp add: diff_minus add_assoc) | |
| 437 | ||
| 438 | lemma eq_diff_eq: "(a = c-b) = (a + (b::'a::ab_group_add) = c)" | |
| 439 | by (auto simp add: diff_minus add_assoc) | |
| 440 | ||
| 441 | lemma diff_diff_eq: "(a - b) - c = a - (b + (c::'a::ab_group_add))" | |
| 442 | by (simp add: diff_minus add_ac) | |
| 443 | ||
| 444 | lemma diff_diff_eq2: "a - (b - c) = (a + c) - (b::'a::ab_group_add)" | |
| 445 | by (simp add: diff_minus add_ac) | |
| 446 | ||
| 447 | lemma diff_add_cancel: "a - b + b = (a::'a::ab_group_add)" | |
| 448 | by (simp add: diff_minus add_ac) | |
| 449 | ||
| 450 | lemma add_diff_cancel: "a + b - b = (a::'a::ab_group_add)" | |
| 451 | by (simp add: diff_minus add_ac) | |
| 452 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 453 | text{*Further subtraction laws*}
 | 
| 14738 | 454 | |
| 455 | lemma less_iff_diff_less_0: "(a < b) = (a - b < (0::'a::pordered_ab_group_add))" | |
| 456 | proof - | |
| 457 | have "(a < b) = (a + (- b) < b + (-b))" | |
| 458 | by (simp only: add_less_cancel_right) | |
| 459 | also have "... = (a - b < 0)" by (simp add: diff_minus) | |
| 460 | finally show ?thesis . | |
| 461 | qed | |
| 462 | ||
| 463 | lemma diff_less_eq: "(a-b < c) = (a < c + (b::'a::pordered_ab_group_add))" | |
| 15481 | 464 | apply (subst less_iff_diff_less_0 [of a]) | 
| 14738 | 465 | apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst]) | 
| 466 | apply (simp add: diff_minus add_ac) | |
| 467 | done | |
| 468 | ||
| 469 | lemma less_diff_eq: "(a < c-b) = (a + (b::'a::pordered_ab_group_add) < c)" | |
| 15481 | 470 | apply (subst less_iff_diff_less_0 [of "a+b"]) | 
| 471 | apply (subst less_iff_diff_less_0 [of a]) | |
| 14738 | 472 | apply (simp add: diff_minus add_ac) | 
| 473 | done | |
| 474 | ||
| 475 | lemma diff_le_eq: "(a-b \<le> c) = (a \<le> c + (b::'a::pordered_ab_group_add))" | |
| 476 | by (auto simp add: order_le_less diff_less_eq diff_add_cancel add_diff_cancel) | |
| 477 | ||
| 478 | lemma le_diff_eq: "(a \<le> c-b) = (a + (b::'a::pordered_ab_group_add) \<le> c)" | |
| 479 | by (auto simp add: order_le_less less_diff_eq diff_add_cancel add_diff_cancel) | |
| 480 | ||
| 481 | text{*This list of rewrites simplifies (in)equalities by bringing subtractions
 | |
| 482 | to the top and then moving negative terms to the other side. | |
| 483 |   Use with @{text add_ac}*}
 | |
| 484 | lemmas compare_rls = | |
| 485 | diff_minus [symmetric] | |
| 486 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 487 | diff_less_eq less_diff_eq diff_le_eq le_diff_eq | |
| 488 | diff_eq_eq eq_diff_eq | |
| 489 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 490 | subsection {* Support for reasoning about signs *}
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 491 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 492 | lemma add_pos_pos: "0 < | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 493 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 494 | ==> 0 < y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 495 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 496 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 497 | apply (erule add_less_le_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 498 | apply (erule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 499 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 500 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 501 | lemma add_pos_nonneg: "0 < | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 502 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 503 | ==> 0 <= y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 504 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 505 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 506 | apply (erule add_less_le_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 507 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 508 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 509 | lemma add_nonneg_pos: "0 <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 510 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 511 | ==> 0 < y ==> 0 < x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 512 | apply (subgoal_tac "0 + 0 < x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 513 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 514 | apply (erule add_le_less_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 515 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 516 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 517 | lemma add_nonneg_nonneg: "0 <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 518 |     (x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 519 | ==> 0 <= y ==> 0 <= x + y" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 520 | apply (subgoal_tac "0 + 0 <= x + y") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 521 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 522 | apply (erule add_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 523 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 524 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 525 | lemma add_neg_neg: "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add})
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 526 | < 0 ==> y < 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 527 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 528 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 529 | apply (erule add_less_le_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 530 | apply (erule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 531 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 532 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 533 | lemma add_neg_nonpos: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 534 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) < 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 535 | ==> y <= 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 536 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 537 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 538 | apply (erule add_less_le_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 539 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 540 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 541 | lemma add_nonpos_neg: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 542 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 543 | ==> y < 0 ==> x + y < 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 544 | apply (subgoal_tac "x + y < 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 545 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 546 | apply (erule add_le_less_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 547 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 548 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 549 | lemma add_nonpos_nonpos: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 550 |     "(x::'a::{comm_monoid_add,pordered_cancel_ab_semigroup_add}) <= 0 
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 551 | ==> y <= 0 ==> x + y <= 0" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 552 | apply (subgoal_tac "x + y <= 0 + 0") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 553 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 554 | apply (erule add_mono, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 555 | done | 
| 14738 | 556 | |
| 557 | subsection{*Lemmas for the @{text cancel_numerals} simproc*}
 | |
| 558 | ||
| 559 | lemma eq_iff_diff_eq_0: "(a = b) = (a-b = (0::'a::ab_group_add))" | |
| 560 | by (simp add: compare_rls) | |
| 561 | ||
| 562 | lemma le_iff_diff_le_0: "(a \<le> b) = (a-b \<le> (0::'a::pordered_ab_group_add))" | |
| 563 | by (simp add: compare_rls) | |
| 564 | ||
| 565 | subsection {* Lattice Ordered (Abelian) Groups *}
 | |
| 566 | ||
| 567 | axclass lordered_ab_group_meet < pordered_ab_group_add, meet_semilorder | |
| 568 | ||
| 569 | axclass lordered_ab_group_join < pordered_ab_group_add, join_semilorder | |
| 570 | ||
| 571 | lemma add_meet_distrib_left: "a + (meet b c) = meet (a + b) (a + (c::'a::{pordered_ab_group_add, meet_semilorder}))"
 | |
| 572 | apply (rule order_antisym) | |
| 573 | apply (rule meet_imp_le, simp_all add: meet_join_le) | |
| 574 | apply (rule add_le_imp_le_left [of "-a"]) | |
| 575 | apply (simp only: add_assoc[symmetric], simp) | |
| 576 | apply (rule meet_imp_le) | |
| 577 | apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+ | |
| 578 | done | |
| 579 | ||
| 580 | lemma add_join_distrib_left: "a + (join b c) = join (a + b) (a+ (c::'a::{pordered_ab_group_add, join_semilorder}))" 
 | |
| 581 | apply (rule order_antisym) | |
| 582 | apply (rule add_le_imp_le_left [of "-a"]) | |
| 583 | apply (simp only: add_assoc[symmetric], simp) | |
| 584 | apply (rule join_imp_le) | |
| 585 | apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp add: meet_join_le)+ | |
| 586 | apply (rule join_imp_le) | |
| 587 | apply (simp_all add: meet_join_le) | |
| 588 | done | |
| 589 | ||
| 590 | lemma is_join_neg_meet: "is_join (% (a::'a::{pordered_ab_group_add, meet_semilorder}) b. - (meet (-a) (-b)))"
 | |
| 591 | apply (auto simp add: is_join_def) | |
| 592 | apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le) | |
| 593 | apply (rule_tac c="meet (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_meet_distrib_left meet_join_le) | |
| 594 | apply (subst neg_le_iff_le[symmetric]) | |
| 595 | apply (simp add: meet_imp_le) | |
| 596 | done | |
| 597 | ||
| 598 | lemma is_meet_neg_join: "is_meet (% (a::'a::{pordered_ab_group_add, join_semilorder}) b. - (join (-a) (-b)))"
 | |
| 599 | apply (auto simp add: is_meet_def) | |
| 600 | apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le) | |
| 601 | apply (rule_tac c="join (-a) (-b)" in add_le_imp_le_right, simp, simp add: add_join_distrib_left meet_join_le) | |
| 602 | apply (subst neg_le_iff_le[symmetric]) | |
| 603 | apply (simp add: join_imp_le) | |
| 604 | done | |
| 605 | ||
| 606 | axclass lordered_ab_group \<subseteq> pordered_ab_group_add, lorder | |
| 607 | ||
| 608 | instance lordered_ab_group_meet \<subseteq> lordered_ab_group | |
| 609 | proof | |
| 610 |   show "? j. is_join (j::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_meet))" by (blast intro: is_join_neg_meet)
 | |
| 611 | qed | |
| 612 | ||
| 613 | instance lordered_ab_group_join \<subseteq> lordered_ab_group | |
| 614 | proof | |
| 615 |   show "? m. is_meet (m::'a\<Rightarrow>'a\<Rightarrow>('a::lordered_ab_group_join))" by (blast intro: is_meet_neg_join)
 | |
| 616 | qed | |
| 617 | ||
| 618 | lemma add_join_distrib_right: "(join a b) + (c::'a::lordered_ab_group) = join (a+c) (b+c)" | |
| 619 | proof - | |
| 620 | have "c + (join a b) = join (c+a) (c+b)" by (simp add: add_join_distrib_left) | |
| 621 | thus ?thesis by (simp add: add_commute) | |
| 622 | qed | |
| 623 | ||
| 624 | lemma add_meet_distrib_right: "(meet a b) + (c::'a::lordered_ab_group) = meet (a+c) (b+c)" | |
| 625 | proof - | |
| 626 | have "c + (meet a b) = meet (c+a) (c+b)" by (simp add: add_meet_distrib_left) | |
| 627 | thus ?thesis by (simp add: add_commute) | |
| 628 | qed | |
| 629 | ||
| 630 | lemmas add_meet_join_distribs = add_meet_distrib_right add_meet_distrib_left add_join_distrib_right add_join_distrib_left | |
| 631 | ||
| 632 | lemma join_eq_neg_meet: "join a (b::'a::lordered_ab_group) = - meet (-a) (-b)" | |
| 633 | by (simp add: is_join_unique[OF is_join_join is_join_neg_meet]) | |
| 634 | ||
| 635 | lemma meet_eq_neg_join: "meet a (b::'a::lordered_ab_group) = - join (-a) (-b)" | |
| 636 | by (simp add: is_meet_unique[OF is_meet_meet is_meet_neg_join]) | |
| 637 | ||
| 638 | lemma add_eq_meet_join: "a + b = (join a b) + (meet a (b::'a::lordered_ab_group))" | |
| 639 | proof - | |
| 640 | have "0 = - meet 0 (a-b) + meet (a-b) 0" by (simp add: meet_comm) | |
| 641 | hence "0 = join 0 (b-a) + meet (a-b) 0" by (simp add: meet_eq_neg_join) | |
| 642 | hence "0 = (-a + join a b) + (meet a b + (-b))" | |
| 643 | apply (simp add: add_join_distrib_left add_meet_distrib_right) | |
| 644 | by (simp add: diff_minus add_commute) | |
| 645 | thus ?thesis | |
| 646 | apply (simp add: compare_rls) | |
| 647 | apply (subst add_left_cancel[symmetric, of "a+b" "join a b + meet a b" "-a"]) | |
| 648 | apply (simp only: add_assoc, simp add: add_assoc[symmetric]) | |
| 649 | done | |
| 650 | qed | |
| 651 | ||
| 652 | subsection {* Positive Part, Negative Part, Absolute Value *}
 | |
| 653 | ||
| 654 | constdefs | |
| 655 |   pprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
 | |
| 656 | "pprt x == join x 0" | |
| 657 |   nprt :: "'a \<Rightarrow> ('a::lordered_ab_group)"
 | |
| 658 | "nprt x == meet x 0" | |
| 659 | ||
| 660 | lemma prts: "a = pprt a + nprt a" | |
| 661 | by (simp add: pprt_def nprt_def add_eq_meet_join[symmetric]) | |
| 662 | ||
| 663 | lemma zero_le_pprt[simp]: "0 \<le> pprt a" | |
| 664 | by (simp add: pprt_def meet_join_le) | |
| 665 | ||
| 666 | lemma nprt_le_zero[simp]: "nprt a \<le> 0" | |
| 667 | by (simp add: nprt_def meet_join_le) | |
| 668 | ||
| 669 | lemma le_eq_neg: "(a \<le> -b) = (a + b \<le> (0::_::lordered_ab_group))" (is "?l = ?r") | |
| 670 | proof - | |
| 671 | have a: "?l \<longrightarrow> ?r" | |
| 672 | apply (auto) | |
| 673 | apply (rule add_le_imp_le_right[of _ "-b" _]) | |
| 674 | apply (simp add: add_assoc) | |
| 675 | done | |
| 676 | have b: "?r \<longrightarrow> ?l" | |
| 677 | apply (auto) | |
| 678 | apply (rule add_le_imp_le_right[of _ "b" _]) | |
| 679 | apply (simp) | |
| 680 | done | |
| 681 | from a b show ?thesis by blast | |
| 682 | qed | |
| 683 | ||
| 15580 | 684 | lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def) | 
| 685 | lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def) | |
| 686 | ||
| 687 | lemma pprt_eq_id[simp]: "0 <= x \<Longrightarrow> pprt x = x" | |
| 688 | by (simp add: pprt_def le_def_join join_aci) | |
| 689 | ||
| 690 | lemma nprt_eq_id[simp]: "x <= 0 \<Longrightarrow> nprt x = x" | |
| 691 | by (simp add: nprt_def le_def_meet meet_aci) | |
| 692 | ||
| 693 | lemma pprt_eq_0[simp]: "x <= 0 \<Longrightarrow> pprt x = 0" | |
| 694 | by (simp add: pprt_def le_def_join join_aci) | |
| 695 | ||
| 696 | lemma nprt_eq_0[simp]: "0 <= x \<Longrightarrow> nprt x = 0" | |
| 697 | by (simp add: nprt_def le_def_meet meet_aci) | |
| 698 | ||
| 14738 | 699 | lemma join_0_imp_0: "join a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" | 
| 700 | proof - | |
| 701 |   {
 | |
| 702 | fix a::'a | |
| 703 | assume hyp: "join a (-a) = 0" | |
| 704 | hence "join a (-a) + a = a" by (simp) | |
| 705 | hence "join (a+a) 0 = a" by (simp add: add_join_distrib_right) | |
| 706 | hence "join (a+a) 0 <= a" by (simp) | |
| 707 | hence "0 <= a" by (blast intro: order_trans meet_join_le) | |
| 708 | } | |
| 709 | note p = this | |
| 710 | assume hyp:"join a (-a) = 0" | |
| 711 | hence hyp2:"join (-a) (-(-a)) = 0" by (simp add: join_comm) | |
| 712 | from p[OF hyp] p[OF hyp2] show "a = 0" by simp | |
| 713 | qed | |
| 714 | ||
| 715 | lemma meet_0_imp_0: "meet a (-a) = 0 \<Longrightarrow> a = (0::'a::lordered_ab_group)" | |
| 716 | apply (simp add: meet_eq_neg_join) | |
| 717 | apply (simp add: join_comm) | |
| 15481 | 718 | apply (erule join_0_imp_0) | 
| 719 | done | |
| 14738 | 720 | |
| 721 | lemma join_0_eq_0[simp]: "(join a (-a) = 0) = (a = (0::'a::lordered_ab_group))" | |
| 722 | by (auto, erule join_0_imp_0) | |
| 723 | ||
| 724 | lemma meet_0_eq_0[simp]: "(meet a (-a) = 0) = (a = (0::'a::lordered_ab_group))" | |
| 725 | by (auto, erule meet_0_imp_0) | |
| 726 | ||
| 727 | lemma zero_le_double_add_iff_zero_le_single_add[simp]: "(0 \<le> a + a) = (0 \<le> (a::'a::lordered_ab_group))" | |
| 728 | proof | |
| 729 | assume "0 <= a + a" | |
| 730 | hence a:"meet (a+a) 0 = 0" by (simp add: le_def_meet meet_comm) | |
| 731 | have "(meet a 0)+(meet a 0) = meet (meet (a+a) 0) a" (is "?l=_") by (simp add: add_meet_join_distribs meet_aci) | |
| 732 | hence "?l = 0 + meet a 0" by (simp add: a, simp add: meet_comm) | |
| 733 | hence "meet a 0 = 0" by (simp only: add_right_cancel) | |
| 734 | then show "0 <= a" by (simp add: le_def_meet meet_comm) | |
| 735 | next | |
| 736 | assume a: "0 <= a" | |
| 737 | show "0 <= a + a" by (simp add: add_mono[OF a a, simplified]) | |
| 738 | qed | |
| 739 | ||
| 740 | lemma double_add_le_zero_iff_single_add_le_zero[simp]: "(a + a <= 0) = ((a::'a::lordered_ab_group) <= 0)" | |
| 741 | proof - | |
| 742 | have "(a + a <= 0) = (0 <= -(a+a))" by (subst le_minus_iff, simp) | |
| 743 | moreover have "\<dots> = (a <= 0)" by (simp add: zero_le_double_add_iff_zero_le_single_add) | |
| 744 | ultimately show ?thesis by blast | |
| 745 | qed | |
| 746 | ||
| 747 | lemma double_add_less_zero_iff_single_less_zero[simp]: "(a+a<0) = ((a::'a::{pordered_ab_group_add,linorder}) < 0)" (is ?s)
 | |
| 748 | proof cases | |
| 749 | assume a: "a < 0" | |
| 750 | thus ?s by (simp add: add_strict_mono[OF a a, simplified]) | |
| 751 | next | |
| 752 | assume "~(a < 0)" | |
| 753 | hence a:"0 <= a" by (simp) | |
| 754 | hence "0 <= a+a" by (simp add: add_mono[OF a a, simplified]) | |
| 755 | hence "~(a+a < 0)" by simp | |
| 756 | with a show ?thesis by simp | |
| 757 | qed | |
| 758 | ||
| 759 | axclass lordered_ab_group_abs \<subseteq> lordered_ab_group | |
| 760 | abs_lattice: "abs x = join x (-x)" | |
| 761 | ||
| 762 | lemma abs_zero[simp]: "abs 0 = (0::'a::lordered_ab_group_abs)" | |
| 763 | by (simp add: abs_lattice) | |
| 764 | ||
| 765 | lemma abs_eq_0[simp]: "(abs a = 0) = (a = (0::'a::lordered_ab_group_abs))" | |
| 766 | by (simp add: abs_lattice) | |
| 767 | ||
| 768 | lemma abs_0_eq[simp]: "(0 = abs a) = (a = (0::'a::lordered_ab_group_abs))" | |
| 769 | proof - | |
| 770 | have "(0 = abs a) = (abs a = 0)" by (simp only: eq_ac) | |
| 771 | thus ?thesis by simp | |
| 772 | qed | |
| 773 | ||
| 774 | lemma neg_meet_eq_join[simp]: "- meet a (b::_::lordered_ab_group) = join (-a) (-b)" | |
| 775 | by (simp add: meet_eq_neg_join) | |
| 776 | ||
| 777 | lemma neg_join_eq_meet[simp]: "- join a (b::_::lordered_ab_group) = meet (-a) (-b)" | |
| 778 | by (simp del: neg_meet_eq_join add: join_eq_neg_meet) | |
| 779 | ||
| 780 | lemma join_eq_if: "join a (-a) = (if a < 0 then -a else (a::'a::{lordered_ab_group, linorder}))"
 | |
| 781 | proof - | |
| 782 | note b = add_le_cancel_right[of a a "-a",symmetric,simplified] | |
| 783 | have c: "a + a = 0 \<Longrightarrow> -a = a" by (rule add_right_imp_eq[of _ a], simp) | |
| 15197 | 784 | show ?thesis by (auto simp add: join_max max_def b linorder_not_less) | 
| 14738 | 785 | qed | 
| 786 | ||
| 787 | lemma abs_if_lattice: "\<bar>a\<bar> = (if a < 0 then -a else (a::'a::{lordered_ab_group_abs, linorder}))"
 | |
| 788 | proof - | |
| 789 | show ?thesis by (simp add: abs_lattice join_eq_if) | |
| 790 | qed | |
| 791 | ||
| 792 | lemma abs_ge_zero[simp]: "0 \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 793 | proof - | |
| 794 | have a:"a <= abs a" and b:"-a <= abs a" by (auto simp add: abs_lattice meet_join_le) | |
| 795 | show ?thesis by (rule add_mono[OF a b, simplified]) | |
| 796 | qed | |
| 797 | ||
| 798 | lemma abs_le_zero_iff [simp]: "(abs a \<le> (0::'a::lordered_ab_group_abs)) = (a = 0)" | |
| 799 | proof | |
| 800 | assume "abs a <= 0" | |
| 801 | hence "abs a = 0" by (auto dest: order_antisym) | |
| 802 | thus "a = 0" by simp | |
| 803 | next | |
| 804 | assume "a = 0" | |
| 805 | thus "abs a <= 0" by simp | |
| 806 | qed | |
| 807 | ||
| 808 | lemma zero_less_abs_iff [simp]: "(0 < abs a) = (a \<noteq> (0::'a::lordered_ab_group_abs))" | |
| 809 | by (simp add: order_less_le) | |
| 810 | ||
| 811 | lemma abs_not_less_zero [simp]: "~ abs a < (0::'a::lordered_ab_group_abs)" | |
| 812 | proof - | |
| 813 | have a:"!! x (y::_::order). x <= y \<Longrightarrow> ~(y < x)" by auto | |
| 814 | show ?thesis by (simp add: a) | |
| 815 | qed | |
| 816 | ||
| 817 | lemma abs_ge_self: "a \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 818 | by (simp add: abs_lattice meet_join_le) | |
| 819 | ||
| 820 | lemma abs_ge_minus_self: "-a \<le> abs (a::'a::lordered_ab_group_abs)" | |
| 821 | by (simp add: abs_lattice meet_join_le) | |
| 822 | ||
| 823 | lemma le_imp_join_eq: "a \<le> b \<Longrightarrow> join a b = b" | |
| 824 | by (simp add: le_def_join) | |
| 825 | ||
| 826 | lemma ge_imp_join_eq: "b \<le> a \<Longrightarrow> join a b = a" | |
| 827 | by (simp add: le_def_join join_aci) | |
| 828 | ||
| 829 | lemma le_imp_meet_eq: "a \<le> b \<Longrightarrow> meet a b = a" | |
| 830 | by (simp add: le_def_meet) | |
| 831 | ||
| 832 | lemma ge_imp_meet_eq: "b \<le> a \<Longrightarrow> meet a b = b" | |
| 833 | by (simp add: le_def_meet meet_aci) | |
| 834 | ||
| 835 | lemma abs_prts: "abs (a::_::lordered_ab_group_abs) = pprt a - nprt a" | |
| 836 | apply (simp add: pprt_def nprt_def diff_minus) | |
| 837 | apply (simp add: add_meet_join_distribs join_aci abs_lattice[symmetric]) | |
| 838 | apply (subst le_imp_join_eq, auto) | |
| 839 | done | |
| 840 | ||
| 841 | lemma abs_minus_cancel [simp]: "abs (-a) = abs(a::'a::lordered_ab_group_abs)" | |
| 842 | by (simp add: abs_lattice join_comm) | |
| 843 | ||
| 844 | lemma abs_idempotent [simp]: "abs (abs a) = abs (a::'a::lordered_ab_group_abs)" | |
| 845 | apply (simp add: abs_lattice[of "abs a"]) | |
| 846 | apply (subst ge_imp_join_eq) | |
| 847 | apply (rule order_trans[of _ 0]) | |
| 848 | by auto | |
| 849 | ||
| 15093 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 850 | lemma abs_minus_commute: | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 851 | fixes a :: "'a::lordered_ab_group_abs" | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 852 | shows "abs (a-b) = abs(b-a)" | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 853 | proof - | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 854 | have "abs (a-b) = abs (- (a-b))" by (simp only: abs_minus_cancel) | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 855 | also have "... = abs(b-a)" by simp | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 856 | finally show ?thesis . | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 857 | qed | 
| 
49ede01e9ee6
conversion of Integration and NSPrimes to Isar scripts
 paulson parents: 
15010diff
changeset | 858 | |
| 14738 | 859 | lemma zero_le_iff_zero_nprt: "(0 \<le> a) = (nprt a = 0)" | 
| 860 | by (simp add: le_def_meet nprt_def meet_comm) | |
| 861 | ||
| 862 | lemma le_zero_iff_zero_pprt: "(a \<le> 0) = (pprt a = 0)" | |
| 863 | by (simp add: le_def_join pprt_def join_comm) | |
| 864 | ||
| 865 | lemma le_zero_iff_pprt_id: "(0 \<le> a) = (pprt a = a)" | |
| 866 | by (simp add: le_def_join pprt_def join_comm) | |
| 867 | ||
| 868 | lemma zero_le_iff_nprt_id: "(a \<le> 0) = (nprt a = a)" | |
| 869 | by (simp add: le_def_meet nprt_def meet_comm) | |
| 870 | ||
| 15580 | 871 | lemma pprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> pprt a <= pprt b" | 
| 872 | by (simp add: le_def_join pprt_def join_aci) | |
| 873 | ||
| 874 | lemma nprt_mono[simp]: "(a::_::lordered_ab_group) <= b \<Longrightarrow> nprt a <= nprt b" | |
| 875 | by (simp add: le_def_meet nprt_def meet_aci) | |
| 876 | ||
| 19404 | 877 | lemma pprt_neg: "pprt (-x) = - nprt x" | 
| 878 | by (simp add: pprt_def nprt_def) | |
| 879 | ||
| 880 | lemma nprt_neg: "nprt (-x) = - pprt x" | |
| 881 | by (simp add: pprt_def nprt_def) | |
| 882 | ||
| 14738 | 883 | lemma iff2imp: "(A=B) \<Longrightarrow> (A \<Longrightarrow> B)" | 
| 884 | by (simp) | |
| 885 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 886 | lemma abs_of_nonneg [simp]: "0 \<le> a \<Longrightarrow> abs a = (a::'a::lordered_ab_group_abs)" | 
| 14738 | 887 | by (simp add: iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_pprt_id] abs_prts) | 
| 888 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 889 | lemma abs_of_pos: "0 < (x::'a::lordered_ab_group_abs) ==> abs x = x"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 890 | by (rule abs_of_nonneg, rule order_less_imp_le); | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 891 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 892 | lemma abs_of_nonpos [simp]: "a \<le> 0 \<Longrightarrow> abs a = -(a::'a::lordered_ab_group_abs)" | 
| 14738 | 893 | by (simp add: iff2imp[OF le_zero_iff_zero_pprt] iff2imp[OF zero_le_iff_nprt_id] abs_prts) | 
| 894 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 895 | lemma abs_of_neg: "(x::'a::lordered_ab_group_abs) < 0 ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 896 | abs x = - x" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 897 | by (rule abs_of_nonpos, rule order_less_imp_le) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 898 | |
| 14738 | 899 | lemma abs_leI: "[|a \<le> b; -a \<le> b|] ==> abs a \<le> (b::'a::lordered_ab_group_abs)" | 
| 900 | by (simp add: abs_lattice join_imp_le) | |
| 901 | ||
| 902 | lemma le_minus_self_iff: "(a \<le> -a) = (a \<le> (0::'a::lordered_ab_group))" | |
| 903 | proof - | |
| 904 | from add_le_cancel_left[of "-a" "a+a" "0"] have "(a <= -a) = (a+a <= 0)" | |
| 905 | by (simp add: add_assoc[symmetric]) | |
| 906 | thus ?thesis by simp | |
| 907 | qed | |
| 908 | ||
| 909 | lemma minus_le_self_iff: "(-a \<le> a) = (0 \<le> (a::'a::lordered_ab_group))" | |
| 910 | proof - | |
| 911 | from add_le_cancel_left[of "-a" "0" "a+a"] have "(-a <= a) = (0 <= a+a)" | |
| 912 | by (simp add: add_assoc[symmetric]) | |
| 913 | thus ?thesis by simp | |
| 914 | qed | |
| 915 | ||
| 916 | lemma abs_le_D1: "abs a \<le> b ==> a \<le> (b::'a::lordered_ab_group_abs)" | |
| 917 | by (insert abs_ge_self, blast intro: order_trans) | |
| 918 | ||
| 919 | lemma abs_le_D2: "abs a \<le> b ==> -a \<le> (b::'a::lordered_ab_group_abs)" | |
| 920 | by (insert abs_le_D1 [of "-a"], simp) | |
| 921 | ||
| 922 | lemma abs_le_iff: "(abs a \<le> b) = (a \<le> b & -a \<le> (b::'a::lordered_ab_group_abs))" | |
| 923 | by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2) | |
| 924 | ||
| 15539 | 925 | lemma abs_triangle_ineq: "abs(a+b) \<le> abs a + abs(b::'a::lordered_ab_group_abs)" | 
| 14738 | 926 | proof - | 
| 927 | have g:"abs a + abs b = join (a+b) (join (-a-b) (join (-a+b) (a + (-b))))" (is "_=join ?m ?n") | |
| 19233 
77ca20b0ed77
renamed HOL + - * etc. to HOL.plus HOL.minus HOL.times etc.
 haftmann parents: 
17085diff
changeset | 928 | by (simp add: abs_lattice add_meet_join_distribs join_aci diff_minus) | 
| 14738 | 929 | have a:"a+b <= join ?m ?n" by (simp add: meet_join_le) | 
| 930 | have b:"-a-b <= ?n" by (simp add: meet_join_le) | |
| 931 | have c:"?n <= join ?m ?n" by (simp add: meet_join_le) | |
| 932 | from b c have d: "-a-b <= join ?m ?n" by simp | |
| 933 | have e:"-a-b = -(a+b)" by (simp add: diff_minus) | |
| 934 | from a d e have "abs(a+b) <= join ?m ?n" | |
| 935 | by (drule_tac abs_leI, auto) | |
| 936 | with g[symmetric] show ?thesis by simp | |
| 937 | qed | |
| 938 | ||
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 939 | lemma abs_triangle_ineq2: "abs (a::'a::lordered_ab_group_abs) - | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 940 | abs b <= abs (a - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 941 | apply (simp add: compare_rls) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 942 | apply (subgoal_tac "abs a = abs (a - b + b)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 943 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 944 | apply (rule abs_triangle_ineq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 945 | apply (rule arg_cong);back; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 946 | apply (simp add: compare_rls) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 947 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 948 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 949 | lemma abs_triangle_ineq3: | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 950 | "abs(abs (a::'a::lordered_ab_group_abs) - abs b) <= abs (a - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 951 | apply (subst abs_le_iff) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 952 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 953 | apply (rule abs_triangle_ineq2) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 954 | apply (subst abs_minus_commute) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 955 | apply (rule abs_triangle_ineq2) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 956 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 957 | |
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 958 | lemma abs_triangle_ineq4: "abs ((a::'a::lordered_ab_group_abs) - b) <= | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 959 | abs a + abs b" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 960 | proof -; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 961 | have "abs(a - b) = abs(a + - b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 962 | by (subst diff_minus, rule refl) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 963 | also have "... <= abs a + abs (- b)" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 964 | by (rule abs_triangle_ineq) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 965 | finally show ?thesis | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 966 | by simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 967 | qed | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 968 | |
| 14738 | 969 | lemma abs_diff_triangle_ineq: | 
| 970 | "\<bar>(a::'a::lordered_ab_group_abs) + b - (c+d)\<bar> \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" | |
| 971 | proof - | |
| 972 | have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac) | |
| 973 | also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq) | |
| 974 | finally show ?thesis . | |
| 975 | qed | |
| 976 | ||
| 15539 | 977 | lemma abs_add_abs[simp]: | 
| 978 | fixes a:: "'a::{lordered_ab_group_abs}"
 | |
| 979 | shows "abs(abs a + abs b) = abs a + abs b" (is "?L = ?R") | |
| 980 | proof (rule order_antisym) | |
| 981 | show "?L \<ge> ?R" by(rule abs_ge_self) | |
| 982 | next | |
| 983 | have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq) | |
| 984 | also have "\<dots> = ?R" by simp | |
| 985 | finally show "?L \<le> ?R" . | |
| 986 | qed | |
| 987 | ||
| 14754 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 988 | text {* Needed for abelian cancellation simprocs: *}
 | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 989 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 990 | lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 991 | apply (subst add_left_commute) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 992 | apply (subst add_left_cancel) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 993 | apply simp | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 994 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 995 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 996 | lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 997 | apply (subst add_cancel_21[of _ _ _ 0, simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 998 | apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 999 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1000 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1001 | lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1002 | by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1003 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1004 | lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1005 | apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of y' x']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1006 | apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1007 | done | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1008 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1009 | lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1010 | by (simp add: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y']) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1011 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1012 | lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1013 | by (simp add: diff_minus) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1014 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1015 | lemma add_minus_cancel: "(a::'a::ab_group_add) + (-a + b) = b" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1016 | by (simp add: add_assoc[symmetric]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1017 | |
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1018 | lemma minus_add_cancel: "-(a::'a::ab_group_add) + (a + b) = b" | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1019 | by (simp add: add_assoc[symmetric]) | 
| 
a080eeeaec14
Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
 obua parents: 
14738diff
changeset | 1020 | |
| 15178 | 1021 | lemma le_add_right_mono: | 
| 1022 | assumes | |
| 1023 | "a <= b + (c::'a::pordered_ab_group_add)" | |
| 1024 | "c <= d" | |
| 1025 | shows "a <= b + d" | |
| 1026 | apply (rule_tac order_trans[where y = "b+c"]) | |
| 1027 | apply (simp_all add: prems) | |
| 1028 | done | |
| 1029 | ||
| 1030 | lemmas group_eq_simps = | |
| 1031 | mult_ac | |
| 1032 | add_ac | |
| 1033 | add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2 | |
| 1034 | diff_eq_eq eq_diff_eq | |
| 1035 | ||
| 1036 | lemma estimate_by_abs: | |
| 1037 | "a + b <= (c::'a::lordered_ab_group_abs) \<Longrightarrow> a <= c + abs b" | |
| 1038 | proof - | |
| 1039 | assume 1: "a+b <= c" | |
| 1040 | have 2: "a <= c+(-b)" | |
| 1041 | apply (insert 1) | |
| 1042 | apply (drule_tac add_right_mono[where c="-b"]) | |
| 1043 | apply (simp add: group_eq_simps) | |
| 1044 | done | |
| 1045 | have 3: "(-b) <= abs b" by (rule abs_ge_minus_self) | |
| 1046 | show ?thesis by (rule le_add_right_mono[OF 2 3]) | |
| 1047 | qed | |
| 1048 | ||
| 17085 | 1049 | text{*Simplification of @{term "x-y < 0"}, etc.*}
 | 
| 1050 | lemmas diff_less_0_iff_less = less_iff_diff_less_0 [symmetric] | |
| 1051 | lemmas diff_eq_0_iff_eq = eq_iff_diff_eq_0 [symmetric] | |
| 1052 | lemmas diff_le_0_iff_le = le_iff_diff_le_0 [symmetric] | |
| 1053 | declare diff_less_0_iff_less [simp] | |
| 1054 | declare diff_eq_0_iff_eq [simp] | |
| 1055 | declare diff_le_0_iff_le [simp] | |
| 1056 | ||
| 1057 | ||
| 19404 | 1058 | |
| 1059 | ||
| 14738 | 1060 | ML {*
 | 
| 1061 | val add_zero_left = thm"add_0"; | |
| 1062 | val add_zero_right = thm"add_0_right"; | |
| 1063 | *} | |
| 1064 | ||
| 1065 | ML {*
 | |
| 1066 | val add_assoc = thm "add_assoc"; | |
| 1067 | val add_commute = thm "add_commute"; | |
| 1068 | val add_left_commute = thm "add_left_commute"; | |
| 1069 | val add_ac = thms "add_ac"; | |
| 1070 | val mult_assoc = thm "mult_assoc"; | |
| 1071 | val mult_commute = thm "mult_commute"; | |
| 1072 | val mult_left_commute = thm "mult_left_commute"; | |
| 1073 | val mult_ac = thms "mult_ac"; | |
| 1074 | val add_0 = thm "add_0"; | |
| 1075 | val mult_1_left = thm "mult_1_left"; | |
| 1076 | val mult_1_right = thm "mult_1_right"; | |
| 1077 | val mult_1 = thm "mult_1"; | |
| 1078 | val add_left_imp_eq = thm "add_left_imp_eq"; | |
| 1079 | val add_right_imp_eq = thm "add_right_imp_eq"; | |
| 1080 | val add_imp_eq = thm "add_imp_eq"; | |
| 1081 | val left_minus = thm "left_minus"; | |
| 1082 | val diff_minus = thm "diff_minus"; | |
| 1083 | val add_0_right = thm "add_0_right"; | |
| 1084 | val add_left_cancel = thm "add_left_cancel"; | |
| 1085 | val add_right_cancel = thm "add_right_cancel"; | |
| 1086 | val right_minus = thm "right_minus"; | |
| 1087 | val right_minus_eq = thm "right_minus_eq"; | |
| 1088 | val minus_minus = thm "minus_minus"; | |
| 1089 | val equals_zero_I = thm "equals_zero_I"; | |
| 1090 | val minus_zero = thm "minus_zero"; | |
| 1091 | val diff_self = thm "diff_self"; | |
| 1092 | val diff_0 = thm "diff_0"; | |
| 1093 | val diff_0_right = thm "diff_0_right"; | |
| 1094 | val diff_minus_eq_add = thm "diff_minus_eq_add"; | |
| 1095 | val neg_equal_iff_equal = thm "neg_equal_iff_equal"; | |
| 1096 | val neg_equal_0_iff_equal = thm "neg_equal_0_iff_equal"; | |
| 1097 | val neg_0_equal_iff_equal = thm "neg_0_equal_iff_equal"; | |
| 1098 | val equation_minus_iff = thm "equation_minus_iff"; | |
| 1099 | val minus_equation_iff = thm "minus_equation_iff"; | |
| 1100 | val minus_add_distrib = thm "minus_add_distrib"; | |
| 1101 | val minus_diff_eq = thm "minus_diff_eq"; | |
| 1102 | val add_left_mono = thm "add_left_mono"; | |
| 1103 | val add_le_imp_le_left = thm "add_le_imp_le_left"; | |
| 1104 | val add_right_mono = thm "add_right_mono"; | |
| 1105 | val add_mono = thm "add_mono"; | |
| 1106 | val add_strict_left_mono = thm "add_strict_left_mono"; | |
| 1107 | val add_strict_right_mono = thm "add_strict_right_mono"; | |
| 1108 | val add_strict_mono = thm "add_strict_mono"; | |
| 1109 | val add_less_le_mono = thm "add_less_le_mono"; | |
| 1110 | val add_le_less_mono = thm "add_le_less_mono"; | |
| 1111 | val add_less_imp_less_left = thm "add_less_imp_less_left"; | |
| 1112 | val add_less_imp_less_right = thm "add_less_imp_less_right"; | |
| 1113 | val add_less_cancel_left = thm "add_less_cancel_left"; | |
| 1114 | val add_less_cancel_right = thm "add_less_cancel_right"; | |
| 1115 | val add_le_cancel_left = thm "add_le_cancel_left"; | |
| 1116 | val add_le_cancel_right = thm "add_le_cancel_right"; | |
| 1117 | val add_le_imp_le_right = thm "add_le_imp_le_right"; | |
| 1118 | val add_increasing = thm "add_increasing"; | |
| 1119 | val le_imp_neg_le = thm "le_imp_neg_le"; | |
| 1120 | val neg_le_iff_le = thm "neg_le_iff_le"; | |
| 1121 | val neg_le_0_iff_le = thm "neg_le_0_iff_le"; | |
| 1122 | val neg_0_le_iff_le = thm "neg_0_le_iff_le"; | |
| 1123 | val neg_less_iff_less = thm "neg_less_iff_less"; | |
| 1124 | val neg_less_0_iff_less = thm "neg_less_0_iff_less"; | |
| 1125 | val neg_0_less_iff_less = thm "neg_0_less_iff_less"; | |
| 1126 | val less_minus_iff = thm "less_minus_iff"; | |
| 1127 | val minus_less_iff = thm "minus_less_iff"; | |
| 1128 | val le_minus_iff = thm "le_minus_iff"; | |
| 1129 | val minus_le_iff = thm "minus_le_iff"; | |
| 1130 | val add_diff_eq = thm "add_diff_eq"; | |
| 1131 | val diff_add_eq = thm "diff_add_eq"; | |
| 1132 | val diff_eq_eq = thm "diff_eq_eq"; | |
| 1133 | val eq_diff_eq = thm "eq_diff_eq"; | |
| 1134 | val diff_diff_eq = thm "diff_diff_eq"; | |
| 1135 | val diff_diff_eq2 = thm "diff_diff_eq2"; | |
| 1136 | val diff_add_cancel = thm "diff_add_cancel"; | |
| 1137 | val add_diff_cancel = thm "add_diff_cancel"; | |
| 1138 | val less_iff_diff_less_0 = thm "less_iff_diff_less_0"; | |
| 1139 | val diff_less_eq = thm "diff_less_eq"; | |
| 1140 | val less_diff_eq = thm "less_diff_eq"; | |
| 1141 | val diff_le_eq = thm "diff_le_eq"; | |
| 1142 | val le_diff_eq = thm "le_diff_eq"; | |
| 1143 | val compare_rls = thms "compare_rls"; | |
| 1144 | val eq_iff_diff_eq_0 = thm "eq_iff_diff_eq_0"; | |
| 1145 | val le_iff_diff_le_0 = thm "le_iff_diff_le_0"; | |
| 1146 | val add_meet_distrib_left = thm "add_meet_distrib_left"; | |
| 1147 | val add_join_distrib_left = thm "add_join_distrib_left"; | |
| 1148 | val is_join_neg_meet = thm "is_join_neg_meet"; | |
| 1149 | val is_meet_neg_join = thm "is_meet_neg_join"; | |
| 1150 | val add_join_distrib_right = thm "add_join_distrib_right"; | |
| 1151 | val add_meet_distrib_right = thm "add_meet_distrib_right"; | |
| 1152 | val add_meet_join_distribs = thms "add_meet_join_distribs"; | |
| 1153 | val join_eq_neg_meet = thm "join_eq_neg_meet"; | |
| 1154 | val meet_eq_neg_join = thm "meet_eq_neg_join"; | |
| 1155 | val add_eq_meet_join = thm "add_eq_meet_join"; | |
| 1156 | val prts = thm "prts"; | |
| 1157 | val zero_le_pprt = thm "zero_le_pprt"; | |
| 1158 | val nprt_le_zero = thm "nprt_le_zero"; | |
| 1159 | val le_eq_neg = thm "le_eq_neg"; | |
| 1160 | val join_0_imp_0 = thm "join_0_imp_0"; | |
| 1161 | val meet_0_imp_0 = thm "meet_0_imp_0"; | |
| 1162 | val join_0_eq_0 = thm "join_0_eq_0"; | |
| 1163 | val meet_0_eq_0 = thm "meet_0_eq_0"; | |
| 1164 | val zero_le_double_add_iff_zero_le_single_add = thm "zero_le_double_add_iff_zero_le_single_add"; | |
| 1165 | val double_add_le_zero_iff_single_add_le_zero = thm "double_add_le_zero_iff_single_add_le_zero"; | |
| 1166 | val double_add_less_zero_iff_single_less_zero = thm "double_add_less_zero_iff_single_less_zero"; | |
| 1167 | val abs_lattice = thm "abs_lattice"; | |
| 1168 | val abs_zero = thm "abs_zero"; | |
| 1169 | val abs_eq_0 = thm "abs_eq_0"; | |
| 1170 | val abs_0_eq = thm "abs_0_eq"; | |
| 1171 | val neg_meet_eq_join = thm "neg_meet_eq_join"; | |
| 1172 | val neg_join_eq_meet = thm "neg_join_eq_meet"; | |
| 1173 | val join_eq_if = thm "join_eq_if"; | |
| 1174 | val abs_if_lattice = thm "abs_if_lattice"; | |
| 1175 | val abs_ge_zero = thm "abs_ge_zero"; | |
| 1176 | val abs_le_zero_iff = thm "abs_le_zero_iff"; | |
| 1177 | val zero_less_abs_iff = thm "zero_less_abs_iff"; | |
| 1178 | val abs_not_less_zero = thm "abs_not_less_zero"; | |
| 1179 | val abs_ge_self = thm "abs_ge_self"; | |
| 1180 | val abs_ge_minus_self = thm "abs_ge_minus_self"; | |
| 1181 | val le_imp_join_eq = thm "le_imp_join_eq"; | |
| 1182 | val ge_imp_join_eq = thm "ge_imp_join_eq"; | |
| 1183 | val le_imp_meet_eq = thm "le_imp_meet_eq"; | |
| 1184 | val ge_imp_meet_eq = thm "ge_imp_meet_eq"; | |
| 1185 | val abs_prts = thm "abs_prts"; | |
| 1186 | val abs_minus_cancel = thm "abs_minus_cancel"; | |
| 1187 | val abs_idempotent = thm "abs_idempotent"; | |
| 1188 | val zero_le_iff_zero_nprt = thm "zero_le_iff_zero_nprt"; | |
| 1189 | val le_zero_iff_zero_pprt = thm "le_zero_iff_zero_pprt"; | |
| 1190 | val le_zero_iff_pprt_id = thm "le_zero_iff_pprt_id"; | |
| 1191 | val zero_le_iff_nprt_id = thm "zero_le_iff_nprt_id"; | |
| 1192 | val iff2imp = thm "iff2imp"; | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1193 | (* val imp_abs_id = thm "imp_abs_id"; | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16417diff
changeset | 1194 | val imp_abs_neg_id = thm "imp_abs_neg_id"; *) | 
| 14738 | 1195 | val abs_leI = thm "abs_leI"; | 
| 1196 | val le_minus_self_iff = thm "le_minus_self_iff"; | |
| 1197 | val minus_le_self_iff = thm "minus_le_self_iff"; | |
| 1198 | val abs_le_D1 = thm "abs_le_D1"; | |
| 1199 | val abs_le_D2 = thm "abs_le_D2"; | |
| 1200 | val abs_le_iff = thm "abs_le_iff"; | |
| 1201 | val abs_triangle_ineq = thm "abs_triangle_ineq"; | |
| 1202 | val abs_diff_triangle_ineq = thm "abs_diff_triangle_ineq"; | |
| 1203 | *} | |
| 1204 | ||
| 1205 | end |