| author | blanchet | 
| Thu, 18 Oct 2012 15:05:17 +0200 | |
| changeset 49918 | cf441f4a358b | 
| parent 47818 | 151d137f1095 | 
| child 50421 | eb7b59cc8e08 | 
| permissions | -rw-r--r-- | 
| 43158 | 1  | 
header "Verification Conditions"  | 
2  | 
||
3  | 
theory VC imports Hoare begin  | 
|
4  | 
||
5  | 
subsection "VCG via Weakest Preconditions"  | 
|
6  | 
||
7  | 
text{* Annotated commands: commands where loops are annotated with
 | 
|
8  | 
invariants. *}  | 
|
9  | 
||
| 45840 | 10  | 
datatype acom =  | 
11  | 
ASKIP |  | 
|
12  | 
  Aassign vname aexp     ("(_ ::= _)" [1000, 61] 61) |
 | 
|
| 47818 | 13  | 
  Aseq   acom acom       ("_;/ _"  [60, 61] 60) |
 | 
| 45840 | 14  | 
  Aif bexp acom acom     ("(IF _/ THEN _/ ELSE _)"  [0, 0, 61] 61) |
 | 
15  | 
  Awhile assn bexp acom  ("({_}/ WHILE _/ DO _)"  [0, 0, 61] 61)
 | 
|
| 43158 | 16  | 
|
17  | 
text{* Weakest precondition from annotated commands: *}
 | 
|
18  | 
||
19  | 
fun pre :: "acom \<Rightarrow> assn \<Rightarrow> assn" where  | 
|
| 45840 | 20  | 
"pre ASKIP Q = Q" |  | 
| 43158 | 21  | 
"pre (Aassign x a) Q = (\<lambda>s. Q(s(x := aval a s)))" |  | 
| 47818 | 22  | 
"pre (Aseq c\<^isub>1 c\<^isub>2) Q = pre c\<^isub>1 (pre c\<^isub>2 Q)" |  | 
| 43158 | 23  | 
"pre (Aif b c\<^isub>1 c\<^isub>2) Q =  | 
24  | 
(\<lambda>s. (bval b s \<longrightarrow> pre c\<^isub>1 Q s) \<and>  | 
|
25  | 
(\<not> bval b s \<longrightarrow> pre c\<^isub>2 Q s))" |  | 
|
| 45745 | 26  | 
"pre (Awhile I b c) Q = I"  | 
| 43158 | 27  | 
|
28  | 
text{* Verification condition: *}
 | 
|
29  | 
||
30  | 
fun vc :: "acom \<Rightarrow> assn \<Rightarrow> assn" where  | 
|
| 45840 | 31  | 
"vc ASKIP Q = (\<lambda>s. True)" |  | 
| 43158 | 32  | 
"vc (Aassign x a) Q = (\<lambda>s. True)" |  | 
| 47818 | 33  | 
"vc (Aseq c\<^isub>1 c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 (pre c\<^isub>2 Q) s \<and> vc c\<^isub>2 Q s)" |  | 
| 43158 | 34  | 
"vc (Aif b c\<^isub>1 c\<^isub>2) Q = (\<lambda>s. vc c\<^isub>1 Q s \<and> vc c\<^isub>2 Q s)" |  | 
| 45745 | 35  | 
"vc (Awhile I b c) Q =  | 
| 43158 | 36  | 
(\<lambda>s. (I s \<and> \<not> bval b s \<longrightarrow> Q s) \<and>  | 
37  | 
(I s \<and> bval b s \<longrightarrow> pre c I s) \<and>  | 
|
38  | 
vc c I s)"  | 
|
39  | 
||
40  | 
text{* Strip annotations: *}
 | 
|
41  | 
||
| 45840 | 42  | 
fun strip :: "acom \<Rightarrow> com" where  | 
43  | 
"strip ASKIP = SKIP" |  | 
|
44  | 
"strip (Aassign x a) = (x::=a)" |  | 
|
| 47818 | 45  | 
"strip (Aseq c\<^isub>1 c\<^isub>2) = (strip c\<^isub>1; strip c\<^isub>2)" |  | 
| 45840 | 46  | 
"strip (Aif b c\<^isub>1 c\<^isub>2) = (IF b THEN strip c\<^isub>1 ELSE strip c\<^isub>2)" |  | 
47  | 
"strip (Awhile I b c) = (WHILE b DO strip c)"  | 
|
| 43158 | 48  | 
|
49  | 
subsection "Soundness"  | 
|
50  | 
||
| 45840 | 51  | 
lemma vc_sound: "\<forall>s. vc c Q s \<Longrightarrow> \<turnstile> {pre c Q} strip c {Q}"
 | 
| 45015 | 52  | 
proof(induction c arbitrary: Q)  | 
| 45745 | 53  | 
case (Awhile I b c)  | 
| 43158 | 54  | 
show ?case  | 
55  | 
proof(simp, rule While')  | 
|
| 45745 | 56  | 
from `\<forall>s. vc (Awhile I b c) Q s`  | 
| 43158 | 57  | 
have vc: "\<forall>s. vc c I s" and IQ: "\<forall>s. I s \<and> \<not> bval b s \<longrightarrow> Q s" and  | 
58  | 
pre: "\<forall>s. I s \<and> bval b s \<longrightarrow> pre c I s" by simp_all  | 
|
| 45840 | 59  | 
    have "\<turnstile> {pre c I} strip c {I}" by(rule Awhile.IH[OF vc])
 | 
60  | 
    with pre show "\<turnstile> {\<lambda>s. I s \<and> bval b s} strip c {I}"
 | 
|
| 43158 | 61  | 
by(rule strengthen_pre)  | 
62  | 
show "\<forall>s. I s \<and> \<not>bval b s \<longrightarrow> Q s" by(rule IQ)  | 
|
63  | 
qed  | 
|
64  | 
qed (auto intro: hoare.conseq)  | 
|
65  | 
||
66  | 
corollary vc_sound':  | 
|
| 45840 | 67  | 
  "(\<forall>s. vc c Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c Q s) \<Longrightarrow> \<turnstile> {P} strip c {Q}"
 | 
| 43158 | 68  | 
by (metis strengthen_pre vc_sound)  | 
69  | 
||
70  | 
||
71  | 
subsection "Completeness"  | 
|
72  | 
||
73  | 
lemma pre_mono:  | 
|
74  | 
"\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> pre c P s \<Longrightarrow> pre c P' s"  | 
|
| 45015 | 75  | 
proof (induction c arbitrary: P P' s)  | 
| 47818 | 76  | 
case Aseq thus ?case by simp metis  | 
| 43158 | 77  | 
qed simp_all  | 
78  | 
||
79  | 
lemma vc_mono:  | 
|
80  | 
"\<forall>s. P s \<longrightarrow> P' s \<Longrightarrow> vc c P s \<Longrightarrow> vc c P' s"  | 
|
| 45015 | 81  | 
proof(induction c arbitrary: P P')  | 
| 47818 | 82  | 
case Aseq thus ?case by simp (metis pre_mono)  | 
| 43158 | 83  | 
qed simp_all  | 
84  | 
||
85  | 
lemma vc_complete:  | 
|
| 45840 | 86  | 
 "\<turnstile> {P}c{Q} \<Longrightarrow> \<exists>c'. strip c' = c \<and> (\<forall>s. vc c' Q s) \<and> (\<forall>s. P s \<longrightarrow> pre c' Q s)"
 | 
| 43158 | 87  | 
(is "_ \<Longrightarrow> \<exists>c'. ?G P c Q c'")  | 
| 45015 | 88  | 
proof (induction rule: hoare.induct)  | 
| 43158 | 89  | 
case Skip  | 
90  | 
show ?case (is "\<exists>ac. ?C ac")  | 
|
| 45840 | 91  | 
proof show "?C ASKIP" by simp qed  | 
| 43158 | 92  | 
next  | 
93  | 
case (Assign P a x)  | 
|
94  | 
show ?case (is "\<exists>ac. ?C ac")  | 
|
95  | 
proof show "?C(Aassign x a)" by simp qed  | 
|
96  | 
next  | 
|
| 47818 | 97  | 
case (Seq P c1 Q c2 R)  | 
98  | 
from Seq.IH obtain ac1 where ih1: "?G P c1 Q ac1" by blast  | 
|
99  | 
from Seq.IH obtain ac2 where ih2: "?G Q c2 R ac2" by blast  | 
|
| 43158 | 100  | 
show ?case (is "\<exists>ac. ?C ac")  | 
101  | 
proof  | 
|
| 47818 | 102  | 
show "?C(Aseq ac1 ac2)"  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
43158 
diff
changeset
 | 
103  | 
using ih1 ih2 by (fastforce elim!: pre_mono vc_mono)  | 
| 43158 | 104  | 
qed  | 
105  | 
next  | 
|
106  | 
case (If P b c1 Q c2)  | 
|
| 45015 | 107  | 
from If.IH obtain ac1 where ih1: "?G (\<lambda>s. P s \<and> bval b s) c1 Q ac1"  | 
| 43158 | 108  | 
by blast  | 
| 45015 | 109  | 
from If.IH obtain ac2 where ih2: "?G (\<lambda>s. P s \<and> \<not>bval b s) c2 Q ac2"  | 
| 43158 | 110  | 
by blast  | 
111  | 
show ?case (is "\<exists>ac. ?C ac")  | 
|
112  | 
proof  | 
|
113  | 
show "?C(Aif b ac1 ac2)" using ih1 ih2 by simp  | 
|
114  | 
qed  | 
|
115  | 
next  | 
|
116  | 
case (While P b c)  | 
|
| 45015 | 117  | 
from While.IH obtain ac where ih: "?G (\<lambda>s. P s \<and> bval b s) c P ac" by blast  | 
| 43158 | 118  | 
show ?case (is "\<exists>ac. ?C ac")  | 
| 45745 | 119  | 
proof show "?C(Awhile P b ac)" using ih by simp qed  | 
| 43158 | 120  | 
next  | 
121  | 
case conseq thus ?case by(fast elim!: pre_mono vc_mono)  | 
|
122  | 
qed  | 
|
123  | 
||
124  | 
||
125  | 
subsection "An Optimization"  | 
|
126  | 
||
127  | 
fun vcpre :: "acom \<Rightarrow> assn \<Rightarrow> assn \<times> assn" where  | 
|
| 45840 | 128  | 
"vcpre ASKIP Q = (\<lambda>s. True, Q)" |  | 
| 43158 | 129  | 
"vcpre (Aassign x a) Q = (\<lambda>s. True, \<lambda>s. Q(s[a/x]))" |  | 
| 47818 | 130  | 
"vcpre (Aseq c\<^isub>1 c\<^isub>2) Q =  | 
| 43158 | 131  | 
(let (vc\<^isub>2,wp\<^isub>2) = vcpre c\<^isub>2 Q;  | 
132  | 
(vc\<^isub>1,wp\<^isub>1) = vcpre c\<^isub>1 wp\<^isub>2  | 
|
133  | 
in (\<lambda>s. vc\<^isub>1 s \<and> vc\<^isub>2 s, wp\<^isub>1))" |  | 
|
134  | 
"vcpre (Aif b c\<^isub>1 c\<^isub>2) Q =  | 
|
135  | 
(let (vc\<^isub>2,wp\<^isub>2) = vcpre c\<^isub>2 Q;  | 
|
136  | 
(vc\<^isub>1,wp\<^isub>1) = vcpre c\<^isub>1 Q  | 
|
137  | 
in (\<lambda>s. vc\<^isub>1 s \<and> vc\<^isub>2 s, \<lambda>s. (bval b s \<longrightarrow> wp\<^isub>1 s) \<and> (\<not>bval b s \<longrightarrow> wp\<^isub>2 s)))" |  | 
|
| 45745 | 138  | 
"vcpre (Awhile I b c) Q =  | 
| 43158 | 139  | 
(let (vcc,wpc) = vcpre c I  | 
140  | 
in (\<lambda>s. (I s \<and> \<not> bval b s \<longrightarrow> Q s) \<and>  | 
|
141  | 
(I s \<and> bval b s \<longrightarrow> wpc s) \<and> vcc s, I))"  | 
|
142  | 
||
143  | 
lemma vcpre_vc_pre: "vcpre c Q = (vc c Q, pre c Q)"  | 
|
144  | 
by (induct c arbitrary: Q) (simp_all add: Let_def)  | 
|
145  | 
||
146  | 
end  |