src/HOL/Wellfounded_Recursion.ML
author wenzelm
Thu, 27 Sep 2001 15:42:30 +0200
changeset 11587 cf448586f26a
parent 11451 8abfb4f7bd02
child 12486 0ed8bdd883e0
permissions -rw-r--r--
ex/Hilbert_Classical.thy ex/document/root.tex;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     1
(*  Title:      HOL/Wellfounded_Recursion.ML
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     2
    ID:         $Id$
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     3
    Author:     Tobias Nipkow, with minor changes by Konrad Slind
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     4
    Copyright   1992  University of Cambridge/1995 TU Munich
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     5
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     6
Wellfoundedness, induction, and  recursion
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     7
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     8
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
     9
Goal "x = y ==> H x z = H y z";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    10
by (Asm_simp_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    11
val H_cong2 = (*freeze H!*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    12
	      read_instantiate [("H","H")] (result());
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    13
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    14
val [prem] = Goalw [wf_def]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    15
 "(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    16
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    17
by (rtac prem 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    18
by (assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    19
qed "wfUNIVI";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    20
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    21
(*Restriction to domain A.  If r is well-founded over A then wf(r)*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    22
val [prem1,prem2] = Goalw [wf_def]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    23
 "[| r <= A <*> A;  \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    24
\    !!x P. [| ALL x. (ALL y. (y,x) : r --> P y) --> P x;  x:A |] ==> P x |]  \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    25
\ ==>  wf r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    26
by (cut_facts_tac [prem1] 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    27
by (blast_tac (claset() addIs [prem2]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    28
qed "wfI";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    29
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    30
val major::prems = Goalw [wf_def]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    31
    "[| wf(r);          \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    32
\       !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x) \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    33
\    |]  ==>  P(a)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    34
by (rtac (major RS spec RS mp RS spec) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    35
by (blast_tac (claset() addIs prems) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    36
qed "wf_induct";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    37
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    38
(*Perform induction on i, then prove the wf(r) subgoal using prems. *)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    39
fun wf_ind_tac a prems i = 
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    40
    EVERY [res_inst_tac [("a",a)] wf_induct i,
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    41
           rename_last_tac a ["1"] (i+1),
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    42
           ares_tac prems i];
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    43
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    44
Goal "wf(r) ==> ALL x. (a,x):r --> (x,a)~:r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    45
by (wf_ind_tac "a" [] 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    46
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    47
qed_spec_mp "wf_not_sym";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    48
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    49
(* [| wf r;  ~Z ==> (a,x) : r;  (x,a) ~: r ==> Z |] ==> Z *)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    50
bind_thm ("wf_asym", cla_make_elim wf_not_sym);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    51
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    52
Goal "wf(r) ==> (a,a) ~: r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    53
by (blast_tac (claset() addEs [wf_asym]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    54
qed "wf_not_refl";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    55
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    56
(* [| wf r;  (a,a) ~: r ==> PROP W |] ==> PROP W *)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    57
bind_thm ("wf_irrefl", make_elim wf_not_refl);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    58
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    59
(*transitive closure of a wf relation is wf! *)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    60
Goal "wf(r) ==> wf(r^+)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    61
by (stac wf_def 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    62
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    63
(*must retain the universal formula for later use!*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    64
by (rtac allE 1 THEN assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    65
by (etac mp 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    66
by (eres_inst_tac [("a","x")] wf_induct 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    67
by (blast_tac (claset() addEs [tranclE]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    68
qed "wf_trancl";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    69
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    70
Goal "wf (r^-1) ==> wf ((r^+)^-1)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    71
by (stac (trancl_converse RS sym) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    72
by (etac wf_trancl 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    73
qed "wf_converse_trancl";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    74
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    75
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    76
(*----------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    77
 * Minimal-element characterization of well-foundedness
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    78
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    79
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    80
Goalw [wf_def] "wf r ==> x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    81
by (dtac spec 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    82
by (etac (mp RS spec) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    83
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    84
val lemma1 = result();
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    85
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    86
Goalw [wf_def] "(ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)) ==> wf r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    87
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    88
by (dres_inst_tac [("x", "{x. ~ P x}")] spec 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    89
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    90
val lemma2 = result();
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    91
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    92
Goal "wf r = (ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q))";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    93
by (blast_tac (claset() addSIs [lemma1, lemma2]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    94
qed "wf_eq_minimal";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    95
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    96
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    97
 * Wellfoundedness of subsets
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    98
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
    99
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   100
Goal "[| wf(r);  p<=r |] ==> wf(p)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   101
by (full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   102
by (Fast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   103
qed "wf_subset";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   104
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   105
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   106
 * Wellfoundedness of the empty relation.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   107
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   108
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   109
Goal "wf({})";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   110
by (simp_tac (simpset() addsimps [wf_def]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   111
qed "wf_empty";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   112
AddIffs [wf_empty];
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   113
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   114
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   115
 * Wellfoundedness of `insert'
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   116
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   117
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   118
Goal "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   119
by (rtac iffI 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   120
 by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl] 
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   121
	addIs [rtrancl_into_trancl1,wf_subset,impOfSubs rtrancl_mono]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   122
by (asm_full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   123
by Safe_tac;
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   124
by (EVERY1[rtac allE, assume_tac, etac impE, Blast_tac]);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   125
by (etac bexE 1);
11141
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   126
by (rename_tac "a" 1 THEN case_tac "a = x" 1);
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   127
 by (res_inst_tac [("x","a")]bexI 2);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   128
  by (assume_tac 3);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   129
 by (Blast_tac 2);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   130
by (case_tac "y:Q" 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   131
 by (Blast_tac 2);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   132
by (res_inst_tac [("x","{z. z:Q & (z,y) : r^*}")] allE 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   133
 by (assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   134
by (thin_tac "ALL Q. (EX x. x : Q) --> ?P Q" 1);	(*essential for speed*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   135
(*Blast_tac with new substOccur fails*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   136
by (best_tac (claset() addIs [rtrancl_into_rtrancl2]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   137
qed "wf_insert";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   138
AddIffs [wf_insert];
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   139
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   140
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   141
 * Wellfoundedness of `disjoint union'
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   142
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   143
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   144
(*Intuition behind this proof for the case of binary union:
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   145
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   146
  Goal: find an (R u S)-min element of a nonempty subset A.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   147
  by case distinction:
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   148
  1. There is a step a -R-> b with a,b : A.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   149
     Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   150
     By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   151
     subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   152
     have an S-successor and is thus S-min in A as well.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   153
  2. There is no such step.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   154
     Pick an S-min element of A. In this case it must be an R-min
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   155
     element of A as well.
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   156
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   157
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   158
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   159
Goal "[| ALL i:I. wf(r i); \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   160
\        ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {} & \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   161
\                                         Domain(r j) Int Range(r i) = {} \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   162
\     |] ==> wf(UN i:I. r i)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   163
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   164
by (Clarify_tac 1);
11141
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   165
by (rename_tac "A a" 1 THEN case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i" 1);
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   166
 by (Asm_full_simp_tac 2);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   167
 by (Best_tac 2);  (*much faster than Blast_tac*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   168
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   169
by (EVERY1[dtac bspec, assume_tac,
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   170
	   eres_inst_tac [("x","{a. a:A & (EX b:A. (b,a) : r i)}")] allE]);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   171
by (EVERY1[etac allE, etac impE]);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   172
 by (ALLGOALS Blast_tac);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   173
qed "wf_UN";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   174
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   175
Goalw [Union_def]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   176
 "[| ALL r:R. wf r; \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   177
\    ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {} & \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   178
\                                 Domain s Int Range r = {} \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   179
\ |] ==> wf(Union R)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   180
by (blast_tac (claset() addIs [wf_UN]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   181
qed "wf_Union";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   182
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   183
Goal "[| wf r; wf s; Domain r Int Range s = {}; Domain s Int Range r = {} \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   184
\     |] ==> wf(r Un s)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   185
by (rtac (simplify (simpset()) (read_instantiate[("R","{r,s}")]wf_Union)) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   186
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   187
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   188
qed "wf_Un";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   189
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   190
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   191
 * Wellfoundedness of `image'
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   192
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   193
10832
e33b47e4246d `` -> and ``` -> ``
nipkow
parents: 10213
diff changeset
   194
Goal "[| wf r; inj f |] ==> wf(prod_fun f f ` r)";
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   195
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   196
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   197
by (case_tac "EX p. f p : Q" 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   198
by (eres_inst_tac [("x","{p. f p : Q}")]allE 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   199
by (fast_tac (claset() addDs [injD]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   200
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   201
qed "wf_prod_fun_image";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   202
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   203
(*** acyclic ***)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   204
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   205
Goalw [acyclic_def] "ALL x. (x, x) ~: r^+ ==> acyclic r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   206
by (assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   207
qed "acyclicI";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   208
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   209
Goalw [acyclic_def] "wf r ==> acyclic r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   210
by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   211
qed "wf_acyclic";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   212
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   213
Goalw [acyclic_def] "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   214
by (simp_tac (simpset() addsimps [trancl_insert]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   215
by (blast_tac (claset() addIs [rtrancl_trans]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   216
qed "acyclic_insert";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   217
AddIffs [acyclic_insert];
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   218
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   219
Goalw [acyclic_def] "acyclic(r^-1) = acyclic r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   220
by (simp_tac (simpset() addsimps [trancl_converse]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   221
qed "acyclic_converse";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   222
AddIffs [acyclic_converse];
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   223
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   224
Goalw [acyclic_def,antisym_def] "acyclic r ==> antisym(r^*)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   225
by(blast_tac (claset() addEs [rtranclE]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   226
     addIs [rtrancl_into_trancl1,rtrancl_trancl_trancl]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   227
qed "acyclic_impl_antisym_rtrancl";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   228
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   229
(* Other direction:
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   230
acyclic = no loops
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   231
antisym = only self loops
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   232
Goalw [acyclic_def,antisym_def] "antisym(r^* ) ==> acyclic(r - Id)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   233
==> "antisym(r^* ) = acyclic(r - Id)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   234
*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   235
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   236
Goalw [acyclic_def] "[| acyclic s; r <= s |] ==> acyclic r";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   237
by (blast_tac (claset() addIs [trancl_mono]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   238
qed "acyclic_subset";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   239
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   240
(** cut **)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   241
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   242
(*This rewrite rule works upon formulae; thus it requires explicit use of
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   243
  H_cong to expose the equality*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   244
Goalw [cut_def] "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   245
by (simp_tac (HOL_ss addsimps [expand_fun_eq]) 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   246
qed "cuts_eq";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   247
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   248
Goalw [cut_def] "(x,a):r ==> (cut f r a)(x) = f(x)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   249
by (asm_simp_tac HOL_ss 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   250
qed "cut_apply";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   251
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   252
(*** Inductive characterization of wfrec combinator; for details see:   ***)
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   253
(*** John Harrison, "Inductive definitions: automation and application" ***)
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   254
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   255
Goalw [adm_wf_def]
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   256
  "[| adm_wf R F; wf R |] ==> EX! y. (x, y) : wfrec_rel R F";
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   257
by (wf_ind_tac "x" [] 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   258
by (rtac ex1I 1);
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   259
by (res_inst_tac [("g","%x. THE y. (x, y) : wfrec_rel R F")] wfrec_rel.wfrecI 1);
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   260
by (fast_tac (claset() addSDs [theI']) 1); 
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   261
by (etac wfrec_rel.elim 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   262
by (Asm_full_simp_tac 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   263
byev [etac allE 1, etac allE 1, etac allE 1, etac mp 1];
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   264
by (fast_tac (claset() addIs [the_equality RS sym]) 1);
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   265
qed "wfrec_unique";
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   266
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   267
Goalw [adm_wf_def] "adm_wf R (%f x. F (cut f R x) x)";
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   268
by (strip_tac 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   269
by (rtac (cuts_eq RS iffD2 RS subst) 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   270
by (atac 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   271
by (rtac refl 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   272
qed "adm_lemma";
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   273
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   274
Goalw [wfrec_def]
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   275
    "wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a";
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   276
by (rtac (adm_lemma RS wfrec_unique RS the1_equality) 1);
11328
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   277
by (atac 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   278
by (rtac wfrec_rel.wfrecI 1);
956ec01b46e0 Inductive characterization of wfrec combinator.
berghofe
parents: 11141
diff changeset
   279
by (strip_tac 1);
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   280
by (etac (adm_lemma RS wfrec_unique RS theI') 1);
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   281
qed "wfrec";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   282
11451
8abfb4f7bd02 partial restructuring to reduce dependence on Axiom of Choice
paulson
parents: 11328
diff changeset
   283
10213
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   284
(*---------------------------------------------------------------------------
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   285
 * This form avoids giant explosions in proofs.  NOTE USE OF == 
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   286
 *---------------------------------------------------------------------------*)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   287
Goal "[| f==wfrec r H;  wf(r) |] ==> f(a) = H (cut f r a) a";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   288
by Auto_tac;
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   289
by (blast_tac (claset() addIs [wfrec]) 1);   
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   290
qed "def_wfrec";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   291
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   292
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   293
(**** TFL variants ****)
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   294
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   295
Goal "ALL R. wf R --> \
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   296
\      (ALL P. (ALL x. (ALL y. (y,x):R --> P y) --> P x) --> (ALL x. P x))";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   297
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   298
by (res_inst_tac [("r","R"),("P","P"), ("a","x")] wf_induct 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   299
by (assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   300
by (Blast_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   301
qed"tfl_wf_induct";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   302
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   303
Goal "ALL f R. (x,a):R --> (cut f R a)(x) = f(x)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   304
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   305
by (rtac cut_apply 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   306
by (assume_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   307
qed"tfl_cut_apply";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   308
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   309
Goal "ALL M R f. (f=wfrec R M) --> wf R --> (ALL x. f x = M (cut f R x) x)";
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   310
by (Clarify_tac 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   311
by (etac wfrec 1);
01c2744a3786 *** empty log message ***
nipkow
parents:
diff changeset
   312
qed "tfl_wfrec";
11141
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   313
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   314
(*LEAST and wellorderings*)
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   315
(* ### see also wf_linord_ex_has_least and its consequences in Wellfounded_Relations.ML *)
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   316
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   317
Goal "P (k::'a::wellorder) --> P (LEAST x. P(x)) & (LEAST x. P(x)) <= k";
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   318
by (res_inst_tac [("a","k")] (wf RS wf_induct) 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   319
by (rtac impI 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   320
by (rtac classical 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   321
by (res_inst_tac [("s","x")] (Least_equality RS ssubst) 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   322
by Auto_tac;
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   323
by (auto_tac (claset(), simpset() addsimps [linorder_not_less RS sym]));  
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   324
by (blast_tac (claset() addIs [order_less_trans]) 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   325
bind_thm("wellorder_LeastI",   result() RS mp RS conjunct1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   326
bind_thm("wellorder_Least_le", result() RS mp RS conjunct2);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   327
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   328
Goal "[| k < (LEAST x. P x) |] ==> ~P (k::'a::wellorder)";
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   329
by (full_simp_tac (simpset() addsimps [linorder_not_le RS sym]) 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   330
by (etac contrapos_nn 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   331
by (etac wellorder_Least_le 1);
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   332
qed "wellorder_not_less_Least";
0d4ca3b3741f supressed some warnings on identical proofstate
oheimb
parents: 10832
diff changeset
   333