author | wenzelm |
Thu, 27 Sep 2001 15:42:30 +0200 | |
changeset 11587 | cf448586f26a |
parent 11451 | 8abfb4f7bd02 |
child 12486 | 0ed8bdd883e0 |
permissions | -rw-r--r-- |
10213 | 1 |
(* Title: HOL/Wellfounded_Recursion.ML |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, with minor changes by Konrad Slind |
|
4 |
Copyright 1992 University of Cambridge/1995 TU Munich |
|
5 |
||
6 |
Wellfoundedness, induction, and recursion |
|
7 |
*) |
|
8 |
||
9 |
Goal "x = y ==> H x z = H y z"; |
|
10 |
by (Asm_simp_tac 1); |
|
11 |
val H_cong2 = (*freeze H!*) |
|
12 |
read_instantiate [("H","H")] (result()); |
|
13 |
||
14 |
val [prem] = Goalw [wf_def] |
|
15 |
"(!!P x. (ALL x. (ALL y. (y,x) : r --> P(y)) --> P(x)) ==> P(x)) ==> wf(r)"; |
|
16 |
by (Clarify_tac 1); |
|
17 |
by (rtac prem 1); |
|
18 |
by (assume_tac 1); |
|
19 |
qed "wfUNIVI"; |
|
20 |
||
21 |
(*Restriction to domain A. If r is well-founded over A then wf(r)*) |
|
22 |
val [prem1,prem2] = Goalw [wf_def] |
|
23 |
"[| r <= A <*> A; \ |
|
24 |
\ !!x P. [| ALL x. (ALL y. (y,x) : r --> P y) --> P x; x:A |] ==> P x |] \ |
|
25 |
\ ==> wf r"; |
|
26 |
by (cut_facts_tac [prem1] 1); |
|
27 |
by (blast_tac (claset() addIs [prem2]) 1); |
|
28 |
qed "wfI"; |
|
29 |
||
30 |
val major::prems = Goalw [wf_def] |
|
31 |
"[| wf(r); \ |
|
32 |
\ !!x.[| ALL y. (y,x): r --> P(y) |] ==> P(x) \ |
|
33 |
\ |] ==> P(a)"; |
|
34 |
by (rtac (major RS spec RS mp RS spec) 1); |
|
35 |
by (blast_tac (claset() addIs prems) 1); |
|
36 |
qed "wf_induct"; |
|
37 |
||
38 |
(*Perform induction on i, then prove the wf(r) subgoal using prems. *) |
|
39 |
fun wf_ind_tac a prems i = |
|
40 |
EVERY [res_inst_tac [("a",a)] wf_induct i, |
|
41 |
rename_last_tac a ["1"] (i+1), |
|
42 |
ares_tac prems i]; |
|
43 |
||
44 |
Goal "wf(r) ==> ALL x. (a,x):r --> (x,a)~:r"; |
|
45 |
by (wf_ind_tac "a" [] 1); |
|
46 |
by (Blast_tac 1); |
|
47 |
qed_spec_mp "wf_not_sym"; |
|
48 |
||
49 |
(* [| wf r; ~Z ==> (a,x) : r; (x,a) ~: r ==> Z |] ==> Z *) |
|
50 |
bind_thm ("wf_asym", cla_make_elim wf_not_sym); |
|
51 |
||
52 |
Goal "wf(r) ==> (a,a) ~: r"; |
|
53 |
by (blast_tac (claset() addEs [wf_asym]) 1); |
|
54 |
qed "wf_not_refl"; |
|
55 |
||
56 |
(* [| wf r; (a,a) ~: r ==> PROP W |] ==> PROP W *) |
|
57 |
bind_thm ("wf_irrefl", make_elim wf_not_refl); |
|
58 |
||
59 |
(*transitive closure of a wf relation is wf! *) |
|
60 |
Goal "wf(r) ==> wf(r^+)"; |
|
61 |
by (stac wf_def 1); |
|
62 |
by (Clarify_tac 1); |
|
63 |
(*must retain the universal formula for later use!*) |
|
64 |
by (rtac allE 1 THEN assume_tac 1); |
|
65 |
by (etac mp 1); |
|
66 |
by (eres_inst_tac [("a","x")] wf_induct 1); |
|
67 |
by (blast_tac (claset() addEs [tranclE]) 1); |
|
68 |
qed "wf_trancl"; |
|
69 |
||
70 |
Goal "wf (r^-1) ==> wf ((r^+)^-1)"; |
|
71 |
by (stac (trancl_converse RS sym) 1); |
|
72 |
by (etac wf_trancl 1); |
|
73 |
qed "wf_converse_trancl"; |
|
74 |
||
75 |
||
76 |
(*---------------------------------------------------------------------------- |
|
77 |
* Minimal-element characterization of well-foundedness |
|
78 |
*---------------------------------------------------------------------------*) |
|
79 |
||
80 |
Goalw [wf_def] "wf r ==> x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)"; |
|
81 |
by (dtac spec 1); |
|
82 |
by (etac (mp RS spec) 1); |
|
83 |
by (Blast_tac 1); |
|
84 |
val lemma1 = result(); |
|
85 |
||
86 |
Goalw [wf_def] "(ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q)) ==> wf r"; |
|
87 |
by (Clarify_tac 1); |
|
88 |
by (dres_inst_tac [("x", "{x. ~ P x}")] spec 1); |
|
89 |
by (Blast_tac 1); |
|
90 |
val lemma2 = result(); |
|
91 |
||
92 |
Goal "wf r = (ALL Q x. x:Q --> (EX z:Q. ALL y. (y,z):r --> y~:Q))"; |
|
93 |
by (blast_tac (claset() addSIs [lemma1, lemma2]) 1); |
|
94 |
qed "wf_eq_minimal"; |
|
95 |
||
96 |
(*--------------------------------------------------------------------------- |
|
97 |
* Wellfoundedness of subsets |
|
98 |
*---------------------------------------------------------------------------*) |
|
99 |
||
100 |
Goal "[| wf(r); p<=r |] ==> wf(p)"; |
|
101 |
by (full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1); |
|
102 |
by (Fast_tac 1); |
|
103 |
qed "wf_subset"; |
|
104 |
||
105 |
(*--------------------------------------------------------------------------- |
|
106 |
* Wellfoundedness of the empty relation. |
|
107 |
*---------------------------------------------------------------------------*) |
|
108 |
||
109 |
Goal "wf({})"; |
|
110 |
by (simp_tac (simpset() addsimps [wf_def]) 1); |
|
111 |
qed "wf_empty"; |
|
112 |
AddIffs [wf_empty]; |
|
113 |
||
114 |
(*--------------------------------------------------------------------------- |
|
115 |
* Wellfoundedness of `insert' |
|
116 |
*---------------------------------------------------------------------------*) |
|
117 |
||
118 |
Goal "wf(insert (y,x) r) = (wf(r) & (x,y) ~: r^*)"; |
|
119 |
by (rtac iffI 1); |
|
120 |
by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl] |
|
121 |
addIs [rtrancl_into_trancl1,wf_subset,impOfSubs rtrancl_mono]) 1); |
|
122 |
by (asm_full_simp_tac (simpset() addsimps [wf_eq_minimal]) 1); |
|
123 |
by Safe_tac; |
|
124 |
by (EVERY1[rtac allE, assume_tac, etac impE, Blast_tac]); |
|
125 |
by (etac bexE 1); |
|
11141 | 126 |
by (rename_tac "a" 1 THEN case_tac "a = x" 1); |
10213 | 127 |
by (res_inst_tac [("x","a")]bexI 2); |
128 |
by (assume_tac 3); |
|
129 |
by (Blast_tac 2); |
|
130 |
by (case_tac "y:Q" 1); |
|
131 |
by (Blast_tac 2); |
|
132 |
by (res_inst_tac [("x","{z. z:Q & (z,y) : r^*}")] allE 1); |
|
133 |
by (assume_tac 1); |
|
134 |
by (thin_tac "ALL Q. (EX x. x : Q) --> ?P Q" 1); (*essential for speed*) |
|
135 |
(*Blast_tac with new substOccur fails*) |
|
136 |
by (best_tac (claset() addIs [rtrancl_into_rtrancl2]) 1); |
|
137 |
qed "wf_insert"; |
|
138 |
AddIffs [wf_insert]; |
|
139 |
||
140 |
(*--------------------------------------------------------------------------- |
|
141 |
* Wellfoundedness of `disjoint union' |
|
142 |
*---------------------------------------------------------------------------*) |
|
143 |
||
144 |
(*Intuition behind this proof for the case of binary union: |
|
145 |
||
146 |
Goal: find an (R u S)-min element of a nonempty subset A. |
|
147 |
by case distinction: |
|
148 |
1. There is a step a -R-> b with a,b : A. |
|
149 |
Pick an R-min element z of the (nonempty) set {a:A | EX b:A. a -R-> b}. |
|
150 |
By definition, there is z':A s.t. z -R-> z'. Because z is R-min in the |
|
151 |
subset, z' must be R-min in A. Because z' has an R-predecessor, it cannot |
|
152 |
have an S-successor and is thus S-min in A as well. |
|
153 |
2. There is no such step. |
|
154 |
Pick an S-min element of A. In this case it must be an R-min |
|
155 |
element of A as well. |
|
156 |
||
157 |
*) |
|
158 |
||
159 |
Goal "[| ALL i:I. wf(r i); \ |
|
160 |
\ ALL i:I. ALL j:I. r i ~= r j --> Domain(r i) Int Range(r j) = {} & \ |
|
161 |
\ Domain(r j) Int Range(r i) = {} \ |
|
162 |
\ |] ==> wf(UN i:I. r i)"; |
|
163 |
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1); |
|
164 |
by (Clarify_tac 1); |
|
11141 | 165 |
by (rename_tac "A a" 1 THEN case_tac "EX i:I. EX a:A. EX b:A. (b,a) : r i" 1); |
10213 | 166 |
by (Asm_full_simp_tac 2); |
167 |
by (Best_tac 2); (*much faster than Blast_tac*) |
|
168 |
by (Clarify_tac 1); |
|
169 |
by (EVERY1[dtac bspec, assume_tac, |
|
170 |
eres_inst_tac [("x","{a. a:A & (EX b:A. (b,a) : r i)}")] allE]); |
|
171 |
by (EVERY1[etac allE, etac impE]); |
|
172 |
by (ALLGOALS Blast_tac); |
|
173 |
qed "wf_UN"; |
|
174 |
||
175 |
Goalw [Union_def] |
|
176 |
"[| ALL r:R. wf r; \ |
|
177 |
\ ALL r:R. ALL s:R. r ~= s --> Domain r Int Range s = {} & \ |
|
178 |
\ Domain s Int Range r = {} \ |
|
179 |
\ |] ==> wf(Union R)"; |
|
180 |
by (blast_tac (claset() addIs [wf_UN]) 1); |
|
181 |
qed "wf_Union"; |
|
182 |
||
183 |
Goal "[| wf r; wf s; Domain r Int Range s = {}; Domain s Int Range r = {} \ |
|
184 |
\ |] ==> wf(r Un s)"; |
|
185 |
by (rtac (simplify (simpset()) (read_instantiate[("R","{r,s}")]wf_Union)) 1); |
|
186 |
by (Blast_tac 1); |
|
187 |
by (Blast_tac 1); |
|
188 |
qed "wf_Un"; |
|
189 |
||
190 |
(*--------------------------------------------------------------------------- |
|
191 |
* Wellfoundedness of `image' |
|
192 |
*---------------------------------------------------------------------------*) |
|
193 |
||
10832 | 194 |
Goal "[| wf r; inj f |] ==> wf(prod_fun f f ` r)"; |
10213 | 195 |
by (asm_full_simp_tac (HOL_basic_ss addsimps [wf_eq_minimal]) 1); |
196 |
by (Clarify_tac 1); |
|
197 |
by (case_tac "EX p. f p : Q" 1); |
|
198 |
by (eres_inst_tac [("x","{p. f p : Q}")]allE 1); |
|
199 |
by (fast_tac (claset() addDs [injD]) 1); |
|
200 |
by (Blast_tac 1); |
|
201 |
qed "wf_prod_fun_image"; |
|
202 |
||
203 |
(*** acyclic ***) |
|
204 |
||
205 |
Goalw [acyclic_def] "ALL x. (x, x) ~: r^+ ==> acyclic r"; |
|
206 |
by (assume_tac 1); |
|
207 |
qed "acyclicI"; |
|
208 |
||
209 |
Goalw [acyclic_def] "wf r ==> acyclic r"; |
|
210 |
by (blast_tac (claset() addEs [wf_trancl RS wf_irrefl]) 1); |
|
211 |
qed "wf_acyclic"; |
|
212 |
||
213 |
Goalw [acyclic_def] "acyclic(insert (y,x) r) = (acyclic r & (x,y) ~: r^*)"; |
|
214 |
by (simp_tac (simpset() addsimps [trancl_insert]) 1); |
|
215 |
by (blast_tac (claset() addIs [rtrancl_trans]) 1); |
|
216 |
qed "acyclic_insert"; |
|
217 |
AddIffs [acyclic_insert]; |
|
218 |
||
219 |
Goalw [acyclic_def] "acyclic(r^-1) = acyclic r"; |
|
220 |
by (simp_tac (simpset() addsimps [trancl_converse]) 1); |
|
221 |
qed "acyclic_converse"; |
|
222 |
AddIffs [acyclic_converse]; |
|
223 |
||
224 |
Goalw [acyclic_def,antisym_def] "acyclic r ==> antisym(r^*)"; |
|
225 |
by(blast_tac (claset() addEs [rtranclE] |
|
226 |
addIs [rtrancl_into_trancl1,rtrancl_trancl_trancl]) 1); |
|
227 |
qed "acyclic_impl_antisym_rtrancl"; |
|
228 |
||
229 |
(* Other direction: |
|
230 |
acyclic = no loops |
|
231 |
antisym = only self loops |
|
232 |
Goalw [acyclic_def,antisym_def] "antisym(r^* ) ==> acyclic(r - Id)"; |
|
233 |
==> "antisym(r^* ) = acyclic(r - Id)"; |
|
234 |
*) |
|
235 |
||
236 |
Goalw [acyclic_def] "[| acyclic s; r <= s |] ==> acyclic r"; |
|
237 |
by (blast_tac (claset() addIs [trancl_mono]) 1); |
|
238 |
qed "acyclic_subset"; |
|
239 |
||
240 |
(** cut **) |
|
241 |
||
242 |
(*This rewrite rule works upon formulae; thus it requires explicit use of |
|
243 |
H_cong to expose the equality*) |
|
244 |
Goalw [cut_def] "(cut f r x = cut g r x) = (ALL y. (y,x):r --> f(y)=g(y))"; |
|
245 |
by (simp_tac (HOL_ss addsimps [expand_fun_eq]) 1); |
|
246 |
qed "cuts_eq"; |
|
247 |
||
248 |
Goalw [cut_def] "(x,a):r ==> (cut f r a)(x) = f(x)"; |
|
249 |
by (asm_simp_tac HOL_ss 1); |
|
250 |
qed "cut_apply"; |
|
251 |
||
11328 | 252 |
(*** Inductive characterization of wfrec combinator; for details see: ***) |
253 |
(*** John Harrison, "Inductive definitions: automation and application" ***) |
|
10213 | 254 |
|
11328 | 255 |
Goalw [adm_wf_def] |
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
256 |
"[| adm_wf R F; wf R |] ==> EX! y. (x, y) : wfrec_rel R F"; |
11328 | 257 |
by (wf_ind_tac "x" [] 1); |
258 |
by (rtac ex1I 1); |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
259 |
by (res_inst_tac [("g","%x. THE y. (x, y) : wfrec_rel R F")] wfrec_rel.wfrecI 1); |
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
260 |
by (fast_tac (claset() addSDs [theI']) 1); |
11328 | 261 |
by (etac wfrec_rel.elim 1); |
262 |
by (Asm_full_simp_tac 1); |
|
263 |
byev [etac allE 1, etac allE 1, etac allE 1, etac mp 1]; |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
264 |
by (fast_tac (claset() addIs [the_equality RS sym]) 1); |
11328 | 265 |
qed "wfrec_unique"; |
10213 | 266 |
|
11328 | 267 |
Goalw [adm_wf_def] "adm_wf R (%f x. F (cut f R x) x)"; |
268 |
by (strip_tac 1); |
|
269 |
by (rtac (cuts_eq RS iffD2 RS subst) 1); |
|
270 |
by (atac 1); |
|
271 |
by (rtac refl 1); |
|
272 |
qed "adm_lemma"; |
|
10213 | 273 |
|
274 |
Goalw [wfrec_def] |
|
275 |
"wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
276 |
by (rtac (adm_lemma RS wfrec_unique RS the1_equality) 1); |
11328 | 277 |
by (atac 1); |
278 |
by (rtac wfrec_rel.wfrecI 1); |
|
279 |
by (strip_tac 1); |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
280 |
by (etac (adm_lemma RS wfrec_unique RS theI') 1); |
10213 | 281 |
qed "wfrec"; |
282 |
||
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11328
diff
changeset
|
283 |
|
10213 | 284 |
(*--------------------------------------------------------------------------- |
285 |
* This form avoids giant explosions in proofs. NOTE USE OF == |
|
286 |
*---------------------------------------------------------------------------*) |
|
287 |
Goal "[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a"; |
|
288 |
by Auto_tac; |
|
289 |
by (blast_tac (claset() addIs [wfrec]) 1); |
|
290 |
qed "def_wfrec"; |
|
291 |
||
292 |
||
293 |
(**** TFL variants ****) |
|
294 |
||
295 |
Goal "ALL R. wf R --> \ |
|
296 |
\ (ALL P. (ALL x. (ALL y. (y,x):R --> P y) --> P x) --> (ALL x. P x))"; |
|
297 |
by (Clarify_tac 1); |
|
298 |
by (res_inst_tac [("r","R"),("P","P"), ("a","x")] wf_induct 1); |
|
299 |
by (assume_tac 1); |
|
300 |
by (Blast_tac 1); |
|
301 |
qed"tfl_wf_induct"; |
|
302 |
||
303 |
Goal "ALL f R. (x,a):R --> (cut f R a)(x) = f(x)"; |
|
304 |
by (Clarify_tac 1); |
|
305 |
by (rtac cut_apply 1); |
|
306 |
by (assume_tac 1); |
|
307 |
qed"tfl_cut_apply"; |
|
308 |
||
309 |
Goal "ALL M R f. (f=wfrec R M) --> wf R --> (ALL x. f x = M (cut f R x) x)"; |
|
310 |
by (Clarify_tac 1); |
|
311 |
by (etac wfrec 1); |
|
312 |
qed "tfl_wfrec"; |
|
11141 | 313 |
|
314 |
(*LEAST and wellorderings*) |
|
315 |
(* ### see also wf_linord_ex_has_least and its consequences in Wellfounded_Relations.ML *) |
|
316 |
||
317 |
Goal "P (k::'a::wellorder) --> P (LEAST x. P(x)) & (LEAST x. P(x)) <= k"; |
|
318 |
by (res_inst_tac [("a","k")] (wf RS wf_induct) 1); |
|
319 |
by (rtac impI 1); |
|
320 |
by (rtac classical 1); |
|
321 |
by (res_inst_tac [("s","x")] (Least_equality RS ssubst) 1); |
|
322 |
by Auto_tac; |
|
323 |
by (auto_tac (claset(), simpset() addsimps [linorder_not_less RS sym])); |
|
324 |
by (blast_tac (claset() addIs [order_less_trans]) 1); |
|
325 |
bind_thm("wellorder_LeastI", result() RS mp RS conjunct1); |
|
326 |
bind_thm("wellorder_Least_le", result() RS mp RS conjunct2); |
|
327 |
||
328 |
Goal "[| k < (LEAST x. P x) |] ==> ~P (k::'a::wellorder)"; |
|
329 |
by (full_simp_tac (simpset() addsimps [linorder_not_le RS sym]) 1); |
|
330 |
by (etac contrapos_nn 1); |
|
331 |
by (etac wellorder_Least_le 1); |
|
332 |
qed "wellorder_not_less_Least"; |
|
333 |