| author | wenzelm | 
| Sun, 21 Oct 2012 22:31:39 +0200 | |
| changeset 49966 | cf4c03c019e5 | 
| parent 49759 | ecf1d5d87e5e | 
| child 58880 | 0baae4311a9f | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Sprod.thy | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40436diff
changeset | 2 | Author: Franz Regensburger | 
| 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40436diff
changeset | 3 | Author: Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 5 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 6 | header {* The type of strict products *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 7 | |
| 15577 | 8 | theory Sprod | 
| 40502 
8e92772bc0e8
move map functions to new theory file Map_Functions; add theory file Plain_HOLCF
 huffman parents: 
40436diff
changeset | 9 | imports Cfun | 
| 15577 | 10 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 11 | |
| 36452 | 12 | default_sort pcpo | 
| 16082 | 13 | |
| 15591 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 14 | subsection {* Definition of strict product type *}
 | 
| 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 15 | |
| 45695 | 16 | definition "sprod = {p::'a \<times> 'b. p = \<bottom> \<or> (fst p \<noteq> \<bottom> \<and> snd p \<noteq> \<bottom>)}"
 | 
| 17 | ||
| 49759 
ecf1d5d87e5e
removed support for set constant definitions in HOLCF {cpo,pcpo,domain}def commands;
 huffman parents: 
45695diff
changeset | 18 | pcpodef ('a, 'b) sprod (infixr "**" 20) = "sprod :: ('a \<times> 'b) set"
 | 
| 45695 | 19 | unfolding sprod_def by simp_all | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 20 | |
| 35525 | 21 | instance sprod :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 22 | by (rule typedef_chfin [OF type_definition_sprod below_sprod_def]) | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25757diff
changeset | 23 | |
| 35427 | 24 | type_notation (xsymbols) | 
| 35547 | 25 |   sprod  ("(_ \<otimes>/ _)" [21,20] 20)
 | 
| 35427 | 26 | type_notation (HTML output) | 
| 35547 | 27 |   sprod  ("(_ \<otimes>/ _)" [21,20] 20)
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 28 | |
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 29 | subsection {* Definitions of constants *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 30 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 31 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 32 |   sfst :: "('a ** 'b) \<rightarrow> 'a" where
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 33 | "sfst = (\<Lambda> p. fst (Rep_sprod p))" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 34 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 35 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 36 |   ssnd :: "('a ** 'b) \<rightarrow> 'b" where
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 37 | "ssnd = (\<Lambda> p. snd (Rep_sprod p))" | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 38 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 39 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 40 |   spair :: "'a \<rightarrow> 'b \<rightarrow> ('a ** 'b)" where
 | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 41 | "spair = (\<Lambda> a b. Abs_sprod (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b))" | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 42 | |
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 43 | definition | 
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 44 |   ssplit :: "('a \<rightarrow> 'b \<rightarrow> 'c) \<rightarrow> ('a ** 'b) \<rightarrow> 'c" where
 | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 45 | "ssplit = (\<Lambda> f p. seq\<cdot>p\<cdot>(f\<cdot>(sfst\<cdot>p)\<cdot>(ssnd\<cdot>p)))" | 
| 25135 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 46 | |
| 
4f8176c940cf
modernized specifications ('definition', 'axiomatization');
 wenzelm parents: 
25131diff
changeset | 47 | syntax | 
| 41479 | 48 |   "_stuple" :: "[logic, args] \<Rightarrow> logic"  ("(1'(:_,/ _:'))")
 | 
| 49 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 50 | translations | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 51 | "(:x, y, z:)" == "(:x, (:y, z:):)" | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18078diff
changeset | 52 | "(:x, y:)" == "CONST spair\<cdot>x\<cdot>y" | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 53 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 54 | translations | 
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
18078diff
changeset | 55 | "\<Lambda>(CONST spair\<cdot>x\<cdot>y). t" == "CONST ssplit\<cdot>(\<Lambda> x y. t)" | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 56 | |
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 57 | subsection {* Case analysis *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 58 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 59 | lemma spair_sprod: "(seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b) \<in> sprod" | 
| 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 60 | by (simp add: sprod_def seq_conv_if) | 
| 40083 | 61 | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 62 | lemma Rep_sprod_spair: "Rep_sprod (:a, b:) = (seq\<cdot>b\<cdot>a, seq\<cdot>a\<cdot>b)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 63 | by (simp add: spair_def cont_Abs_sprod Abs_sprod_inverse spair_sprod) | 
| 40080 | 64 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 65 | lemmas Rep_sprod_simps = | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 66 | Rep_sprod_inject [symmetric] below_sprod_def | 
| 44066 
d74182c93f04
rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
 huffman parents: 
42151diff
changeset | 67 | prod_eq_iff below_prod_def | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 68 | Rep_sprod_strict Rep_sprod_spair | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 69 | |
| 35783 | 70 | lemma sprodE [case_names bottom spair, cases type: sprod]: | 
| 40080 | 71 | obtains "p = \<bottom>" | x y where "p = (:x, y:)" and "x \<noteq> \<bottom>" and "y \<noteq> \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 72 | using Rep_sprod [of p] by (auto simp add: sprod_def Rep_sprod_simps) | 
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 73 | |
| 35783 | 74 | lemma sprod_induct [case_names bottom spair, induct type: sprod]: | 
| 25757 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 75 | "\<lbrakk>P \<bottom>; \<And>x y. \<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> P (:x, y:)\<rbrakk> \<Longrightarrow> P x" | 
| 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 76 | by (cases x, simp_all) | 
| 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 77 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 78 | subsection {* Properties of \emph{spair} *}
 | 
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 79 | |
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 80 | lemma spair_strict1 [simp]: "(:\<bottom>, y:) = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 81 | by (simp add: Rep_sprod_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 82 | |
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 83 | lemma spair_strict2 [simp]: "(:x, \<bottom>:) = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 84 | by (simp add: Rep_sprod_simps) | 
| 25914 | 85 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 86 | lemma spair_bottom_iff [simp]: "((:x, y:) = \<bottom>) = (x = \<bottom> \<or> y = \<bottom>)" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 87 | by (simp add: Rep_sprod_simps seq_conv_if) | 
| 25914 | 88 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 89 | lemma spair_below_iff: | 
| 25914 | 90 | "((:a, b:) \<sqsubseteq> (:c, d:)) = (a = \<bottom> \<or> b = \<bottom> \<or> (a \<sqsubseteq> c \<and> b \<sqsubseteq> d))" | 
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 91 | by (simp add: Rep_sprod_simps seq_conv_if) | 
| 25914 | 92 | |
| 93 | lemma spair_eq_iff: | |
| 94 | "((:a, b:) = (:c, d:)) = | |
| 95 | (a = c \<and> b = d \<or> (a = \<bottom> \<or> b = \<bottom>) \<and> (c = \<bottom> \<or> d = \<bottom>))" | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 96 | by (simp add: Rep_sprod_simps seq_conv_if) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 97 | |
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 98 | lemma spair_strict: "x = \<bottom> \<or> y = \<bottom> \<Longrightarrow> (:x, y:) = \<bottom>" | 
| 25914 | 99 | by simp | 
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 100 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 101 | lemma spair_strict_rev: "(:x, y:) \<noteq> \<bottom> \<Longrightarrow> x \<noteq> \<bottom> \<and> y \<noteq> \<bottom>" | 
| 25914 | 102 | by simp | 
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 103 | |
| 25914 | 104 | lemma spair_defined: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<noteq> \<bottom>" | 
| 105 | by simp | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 106 | |
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 107 | lemma spair_defined_rev: "(:x, y:) = \<bottom> \<Longrightarrow> x = \<bottom> \<or> y = \<bottom>" | 
| 25914 | 108 | by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 109 | |
| 40095 | 110 | lemma spair_below: | 
| 111 | "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> (:x, y:) \<sqsubseteq> (:a, b:) = (x \<sqsubseteq> a \<and> y \<sqsubseteq> b)" | |
| 112 | by (simp add: spair_below_iff) | |
| 113 | ||
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 114 | lemma spair_eq: | 
| 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 115 | "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ((:x, y:) = (:a, b:)) = (x = a \<and> y = b)" | 
| 25914 | 116 | by (simp add: spair_eq_iff) | 
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 117 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 118 | lemma spair_inject: | 
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 119 | "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>; (:x, y:) = (:a, b:)\<rbrakk> \<Longrightarrow> x = a \<and> y = b" | 
| 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 120 | by (rule spair_eq [THEN iffD1]) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 121 | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
40774diff
changeset | 122 | lemma inst_sprod_pcpo2: "\<bottom> = (:\<bottom>, \<bottom>:)" | 
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 123 | by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 124 | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 125 | lemma sprodE2: "(\<And>x y. p = (:x, y:) \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 126 | by (cases p, simp only: inst_sprod_pcpo2, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 127 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 128 | subsection {* Properties of \emph{sfst} and \emph{ssnd} *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 129 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 130 | lemma sfst_strict [simp]: "sfst\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 131 | by (simp add: sfst_def cont_Rep_sprod Rep_sprod_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 132 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 133 | lemma ssnd_strict [simp]: "ssnd\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 134 | by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 135 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 136 | lemma sfst_spair [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>(:x, y:) = x" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 137 | by (simp add: sfst_def cont_Rep_sprod Rep_sprod_spair) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 138 | |
| 16212 
422f836f6b39
renamed strict, defined, and inject lemmas; renamed sfst2, ssnd2 to sfst_spair, ssnd_spair
 huffman parents: 
16082diff
changeset | 139 | lemma ssnd_spair [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>(:x, y:) = y" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 140 | by (simp add: ssnd_def cont_Rep_sprod Rep_sprod_spair) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 141 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 142 | lemma sfst_bottom_iff [simp]: "(sfst\<cdot>p = \<bottom>) = (p = \<bottom>)" | 
| 25757 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 143 | by (cases p, simp_all) | 
| 16777 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 144 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 145 | lemma ssnd_bottom_iff [simp]: "(ssnd\<cdot>p = \<bottom>) = (p = \<bottom>)" | 
| 25757 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 146 | by (cases p, simp_all) | 
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 147 | |
| 16777 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 148 | lemma sfst_defined: "p \<noteq> \<bottom> \<Longrightarrow> sfst\<cdot>p \<noteq> \<bottom>" | 
| 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 149 | by simp | 
| 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 150 | |
| 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 151 | lemma ssnd_defined: "p \<noteq> \<bottom> \<Longrightarrow> ssnd\<cdot>p \<noteq> \<bottom>" | 
| 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 152 | by simp | 
| 
555c8951f05c
added lemmas sfst_defined_iff, ssnd_defined_iff, sfst_defined, ssnd_defined
 huffman parents: 
16751diff
changeset | 153 | |
| 40094 
0295606b6a36
rename lemma surjective_pairing_Sprod2 to spair_sfst_ssnd
 huffman parents: 
40093diff
changeset | 154 | lemma spair_sfst_ssnd: "(:sfst\<cdot>p, ssnd\<cdot>p:) = p" | 
| 25757 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 155 | by (cases p, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 156 | |
| 40436 | 157 | lemma below_sprod: "(x \<sqsubseteq> y) = (sfst\<cdot>x \<sqsubseteq> sfst\<cdot>y \<and> ssnd\<cdot>x \<sqsubseteq> ssnd\<cdot>y)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40095diff
changeset | 158 | by (simp add: Rep_sprod_simps sfst_def ssnd_def cont_Rep_sprod) | 
| 16317 
868eddbcaf6e
added theorems less_sprod, spair_less, spair_eq, spair_inject
 huffman parents: 
16212diff
changeset | 159 | |
| 16751 | 160 | lemma eq_sprod: "(x = y) = (sfst\<cdot>x = sfst\<cdot>y \<and> ssnd\<cdot>x = ssnd\<cdot>y)" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 161 | by (auto simp add: po_eq_conv below_sprod) | 
| 16751 | 162 | |
| 40436 | 163 | lemma sfst_below_iff: "sfst\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:y, ssnd\<cdot>x:)" | 
| 25881 | 164 | apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 165 | apply (simp add: below_sprod) | 
| 25881 | 166 | done | 
| 167 | ||
| 40436 | 168 | lemma ssnd_below_iff: "ssnd\<cdot>x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (:sfst\<cdot>x, y:)" | 
| 25881 | 169 | apply (cases "x = \<bottom>", simp, cases "y = \<bottom>", simp) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 170 | apply (simp add: below_sprod) | 
| 25881 | 171 | done | 
| 172 | ||
| 173 | subsection {* Compactness *}
 | |
| 174 | ||
| 175 | lemma compact_sfst: "compact x \<Longrightarrow> compact (sfst\<cdot>x)" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 176 | by (rule compactI, simp add: sfst_below_iff) | 
| 25881 | 177 | |
| 178 | lemma compact_ssnd: "compact x \<Longrightarrow> compact (ssnd\<cdot>x)" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 179 | by (rule compactI, simp add: ssnd_below_iff) | 
| 25881 | 180 | |
| 181 | lemma compact_spair: "\<lbrakk>compact x; compact y\<rbrakk> \<Longrightarrow> compact (:x, y:)" | |
| 40767 
a3e505b236e7
rename function 'strict' to 'seq', which is its name in Haskell
 huffman parents: 
40502diff
changeset | 182 | by (rule compact_sprod, simp add: Rep_sprod_spair seq_conv_if) | 
| 25881 | 183 | |
| 184 | lemma compact_spair_iff: | |
| 185 | "compact (:x, y:) = (x = \<bottom> \<or> y = \<bottom> \<or> (compact x \<and> compact y))" | |
| 186 | apply (safe elim!: compact_spair) | |
| 187 | apply (drule compact_sfst, simp) | |
| 188 | apply (drule compact_ssnd, simp) | |
| 189 | apply simp | |
| 190 | apply simp | |
| 191 | done | |
| 192 | ||
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 193 | subsection {* Properties of \emph{ssplit} *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 194 | |
| 16059 
dab0d004732f
Simplified version of strict product theory, using TypedefPcpo
 huffman parents: 
15930diff
changeset | 195 | lemma ssplit1 [simp]: "ssplit\<cdot>f\<cdot>\<bottom> = \<bottom>" | 
| 15591 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 196 | by (simp add: ssplit_def) | 
| 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 197 | |
| 16920 | 198 | lemma ssplit2 [simp]: "\<lbrakk>x \<noteq> \<bottom>; y \<noteq> \<bottom>\<rbrakk> \<Longrightarrow> ssplit\<cdot>f\<cdot>(:x, y:) = f\<cdot>x\<cdot>y" | 
| 15591 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 199 | by (simp add: ssplit_def) | 
| 
50c3384ca6c4
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 200 | |
| 16553 | 201 | lemma ssplit3 [simp]: "ssplit\<cdot>spair\<cdot>z = z" | 
| 25757 
5957e3d72fec
declare sprodE as cases rule; new induction rule sprod_induct
 huffman parents: 
25135diff
changeset | 202 | by (cases z, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 203 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25757diff
changeset | 204 | subsection {* Strict product preserves flatness *}
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25757diff
changeset | 205 | |
| 35525 | 206 | instance sprod :: (flat, flat) flat | 
| 27310 | 207 | proof | 
| 208 | fix x y :: "'a \<otimes> 'b" | |
| 209 | assume "x \<sqsubseteq> y" thus "x = \<bottom> \<or> x = y" | |
| 210 | apply (induct x, simp) | |
| 211 | apply (induct y, simp) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29138diff
changeset | 212 | apply (simp add: spair_below_iff flat_below_iff) | 
| 27310 | 213 | done | 
| 214 | qed | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25757diff
changeset | 215 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
25914diff
changeset | 216 | end |