author | oheimb |
Mon, 15 Oct 2001 17:02:57 +0200 | |
changeset 11772 | cf618fe8facd |
parent 11565 | ab004c0ecc63 |
child 16417 | 9bc16273c2d4 |
permissions | -rw-r--r-- |
11376 | 1 |
(* Title: HOL/NanoJava/OpSem.thy |
2 |
ID: $Id$ |
|
3 |
Author: David von Oheimb |
|
4 |
Copyright 2001 Technische Universitaet Muenchen |
|
5 |
*) |
|
6 |
||
7 |
header "Operational Evaluation Semantics" |
|
8 |
||
9 |
theory OpSem = State: |
|
10 |
||
11 |
consts |
|
11476 | 12 |
exec :: "(state \<times> stmt \<times> nat \<times> state) set" |
13 |
eval :: "(state \<times> expr \<times> val \<times> nat \<times> state) set" |
|
11376 | 14 |
syntax (xsymbols) |
11508 | 15 |
exec :: "[state,stmt, nat,state] => bool" ("_ -_-_\<rightarrow> _" [98,90, 65,98] 89) |
16 |
eval :: "[state,expr,val,nat,state] => bool" ("_ -_\<succ>_-_\<rightarrow> _"[98,95,99,65,98] 89) |
|
11376 | 17 |
syntax |
11508 | 18 |
exec :: "[state,stmt, nat,state] => bool" ("_ -_-_-> _" [98,90, 65,98]89) |
19 |
eval :: "[state,expr,val,nat,state] => bool" ("_ -_>_-_-> _"[98,95,99,65,98]89) |
|
11376 | 20 |
translations |
11476 | 21 |
"s -c -n-> s'" == "(s, c, n, s') \<in> exec" |
22 |
"s -e>v-n-> s'" == "(s, e, v, n, s') \<in> eval" |
|
11376 | 23 |
|
11476 | 24 |
inductive exec eval intros |
11376 | 25 |
Skip: " s -Skip-n-> s" |
26 |
||
27 |
Comp: "[| s0 -c1-n-> s1; s1 -c2-n-> s2 |] ==> |
|
28 |
s0 -c1;; c2-n-> s2" |
|
29 |
||
11476 | 30 |
Cond: "[| s0 -e>v-n-> s1; s1 -(if v\<noteq>Null then c1 else c2)-n-> s2 |] ==> |
31 |
s0 -If(e) c1 Else c2-n-> s2" |
|
32 |
||
33 |
LoopF:" s0<x> = Null ==> |
|
34 |
s0 -While(x) c-n-> s0" |
|
35 |
LoopT:"[| s0<x> \<noteq> Null; s0 -c-n-> s1; s1 -While(x) c-n-> s2 |] ==> |
|
36 |
s0 -While(x) c-n-> s2" |
|
11376 | 37 |
|
11476 | 38 |
LAcc: " s -LAcc x>s<x>-n-> s" |
39 |
||
40 |
LAss: " s -e>v-n-> s' ==> |
|
41 |
s -x:==e-n-> lupd(x\<mapsto>v) s'" |
|
42 |
||
43 |
FAcc: " s -e>Addr a-n-> s' ==> |
|
44 |
s -e..f>get_field s' a f-n-> s'" |
|
45 |
||
46 |
FAss: "[| s0 -e1>Addr a-n-> s1; s1 -e2>v-n-> s2 |] ==> |
|
47 |
s0 -e1..f:==e2-n-> upd_obj a f v s2" |
|
11376 | 48 |
|
49 |
NewC: " new_Addr s = Addr a ==> |
|
11476 | 50 |
s -new C>Addr a-n-> new_obj a C s" |
11376 | 51 |
|
11476 | 52 |
Cast: "[| s -e>v-n-> s'; |
53 |
case v of Null => True | Addr a => obj_class s' a \<preceq>C C |] ==> |
|
54 |
s -Cast C e>v-n-> s'" |
|
11376 | 55 |
|
11476 | 56 |
Call: "[| s0 -e1>a-n-> s1; s1 -e2>p-n-> s2; |
11772 | 57 |
lupd(This\<mapsto>a)(lupd(Par\<mapsto>p)(del_locs s2)) -Meth (C,m)-n-> s3 |
11476 | 58 |
|] ==> s0 -{C}e1..m(e2)>s3<Res>-n-> set_locs s2 s3" |
11376 | 59 |
|
11497
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
60 |
Meth: "[| s<This> = Addr a; D = obj_class s a; D\<preceq>C C; |
0e66e0114d9a
corrected initialization of locals, streamlined Impl
oheimb
parents:
11486
diff
changeset
|
61 |
init_locs D m s -Impl (D,m)-n-> s' |] ==> |
11507 | 62 |
s -Meth (C,m)-n-> s'" |
11376 | 63 |
|
11508 | 64 |
Impl: " s -body Cm- n-> s' ==> |
65 |
s -Impl Cm-Suc n-> s'" |
|
11376 | 66 |
|
11476 | 67 |
|
11376 | 68 |
inductive_cases exec_elim_cases': |
11486 | 69 |
"s -Skip -n\<rightarrow> t" |
70 |
"s -c1;; c2 -n\<rightarrow> t" |
|
71 |
"s -If(e) c1 Else c2-n\<rightarrow> t" |
|
72 |
"s -While(x) c -n\<rightarrow> t" |
|
73 |
"s -x:==e -n\<rightarrow> t" |
|
74 |
"s -e1..f:==e2 -n\<rightarrow> t" |
|
11508 | 75 |
inductive_cases Meth_elim_cases: "s -Meth Cm -n\<rightarrow> t" |
76 |
inductive_cases Impl_elim_cases: "s -Impl Cm -n\<rightarrow> t" |
|
11376 | 77 |
lemmas exec_elim_cases = exec_elim_cases' Meth_elim_cases Impl_elim_cases |
11476 | 78 |
inductive_cases eval_elim_cases: |
11486 | 79 |
"s -new C \<succ>v-n\<rightarrow> t" |
80 |
"s -Cast C e \<succ>v-n\<rightarrow> t" |
|
81 |
"s -LAcc x \<succ>v-n\<rightarrow> t" |
|
82 |
"s -e..f \<succ>v-n\<rightarrow> t" |
|
83 |
"s -{C}e1..m(e2) \<succ>v-n\<rightarrow> t" |
|
11376 | 84 |
|
11476 | 85 |
lemma exec_eval_mono [rule_format]: |
86 |
"(s -c -n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -c -m\<rightarrow> t)) \<and> |
|
87 |
(s -e\<succ>v-n\<rightarrow> t \<longrightarrow> (\<forall>m. n \<le> m \<longrightarrow> s -e\<succ>v-m\<rightarrow> t))" |
|
88 |
apply (rule exec_eval.induct) |
|
89 |
prefer 14 (* Impl *) |
|
11376 | 90 |
apply clarify |
91 |
apply (rename_tac n) |
|
92 |
apply (case_tac n) |
|
11508 | 93 |
apply (blast intro:exec_eval.intros)+ |
11376 | 94 |
done |
11476 | 95 |
lemmas exec_mono = exec_eval_mono [THEN conjunct1, rule_format] |
96 |
lemmas eval_mono = exec_eval_mono [THEN conjunct2, rule_format] |
|
97 |
||
98 |
lemma exec_exec_max: "\<lbrakk>s1 -c1- n1 \<rightarrow> t1 ; s2 -c2- n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> |
|
99 |
s1 -c1-max n1 n2\<rightarrow> t1 \<and> s2 -c2-max n1 n2\<rightarrow> t2" |
|
100 |
by (fast intro: exec_mono le_maxI1 le_maxI2) |
|
11376 | 101 |
|
11476 | 102 |
lemma eval_exec_max: "\<lbrakk>s1 -c- n1 \<rightarrow> t1 ; s2 -e\<succ>v- n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> |
103 |
s1 -c-max n1 n2\<rightarrow> t1 \<and> s2 -e\<succ>v-max n1 n2\<rightarrow> t2" |
|
104 |
by (fast intro: eval_mono exec_mono le_maxI1 le_maxI2) |
|
105 |
||
106 |
lemma eval_eval_max: "\<lbrakk>s1 -e1\<succ>v1- n1 \<rightarrow> t1 ; s2 -e2\<succ>v2- n2\<rightarrow> t2\<rbrakk> \<Longrightarrow> |
|
107 |
s1 -e1\<succ>v1-max n1 n2\<rightarrow> t1 \<and> s2 -e2\<succ>v2-max n1 n2\<rightarrow> t2" |
|
108 |
by (fast intro: eval_mono le_maxI1 le_maxI2) |
|
109 |
||
110 |
lemma eval_eval_exec_max: |
|
111 |
"\<lbrakk>s1 -e1\<succ>v1-n1\<rightarrow> t1; s2 -e2\<succ>v2-n2\<rightarrow> t2; s3 -c-n3\<rightarrow> t3\<rbrakk> \<Longrightarrow> |
|
112 |
s1 -e1\<succ>v1-max (max n1 n2) n3\<rightarrow> t1 \<and> |
|
113 |
s2 -e2\<succ>v2-max (max n1 n2) n3\<rightarrow> t2 \<and> |
|
114 |
s3 -c -max (max n1 n2) n3\<rightarrow> t3" |
|
115 |
apply (drule (1) eval_eval_max, erule thin_rl) |
|
116 |
by (fast intro: exec_mono eval_mono le_maxI1 le_maxI2) |
|
11376 | 117 |
|
11565 | 118 |
lemma Impl_body_eq: "(\<lambda>t. \<exists>n. Z -Impl M-n\<rightarrow> t) = (\<lambda>t. \<exists>n. Z -body M-n\<rightarrow> t)" |
11376 | 119 |
apply (rule ext) |
11476 | 120 |
apply (fast elim: exec_elim_cases intro: exec_eval.Impl) |
11376 | 121 |
done |
122 |
||
123 |
end |