| 
24608
 | 
     1  | 
(*  Title:      HOL/Induct/Common_Patterns.thy
  | 
| 
 | 
     2  | 
    Author:     Makarius
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
header {* Common patterns of induction *}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Common_Patterns
  | 
| 
 | 
     8  | 
imports Main
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
text {*
 | 
| 
 | 
    12  | 
  The subsequent Isar proof schemes illustrate common proof patterns
  | 
| 
 | 
    13  | 
  supported by the generic @{text "induct"} method.
 | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
  To demonstrate variations on statement (goal) structure we refer to
  | 
| 
 | 
    16  | 
  the induction rule of Peano natural numbers: @{thm nat.induct
 | 
| 
 | 
    17  | 
  [no_vars]}, which is the simplest case of datatype induction.  We
  | 
| 
 | 
    18  | 
  shall also see more complex (mutual) datatype inductions involving
  | 
| 
 | 
    19  | 
  several rules.  Working with inductive predicates is similar, but
  | 
| 
 | 
    20  | 
  involves explicit facts about membership, instead of implicit
  | 
| 
 | 
    21  | 
  syntactic typing.
  | 
| 
 | 
    22  | 
*}
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
subsection {* Variations on statement structure *}
 | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
subsubsection {* Local facts and parameters *}
 | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
text {*
 | 
| 
 | 
    30  | 
  Augmenting a problem by additional facts and locally fixed variables
  | 
| 
 | 
    31  | 
  is a bread-and-butter method in many applications.  This is where
  | 
| 
 | 
    32  | 
  unwieldy object-level @{text "\<forall>"} and @{text "\<longrightarrow>"} used to occur in
 | 
| 
 | 
    33  | 
  the past.  The @{text "induct"} method works with primary means of
 | 
| 
 | 
    34  | 
  the proof language instead.
  | 
| 
 | 
    35  | 
*}
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma
  | 
| 
 | 
    38  | 
  fixes n :: nat
  | 
| 
 | 
    39  | 
    and x :: 'a
  | 
| 
 | 
    40  | 
  assumes "A n x"
  | 
| 
 | 
    41  | 
  shows "P n x" using `A n x`
  | 
| 
 | 
    42  | 
proof (induct n arbitrary: x)
  | 
| 
 | 
    43  | 
  case 0
  | 
| 
 | 
    44  | 
  note prem = `A 0 x`
  | 
| 
 | 
    45  | 
  show "P 0 x" sorry
  | 
| 
 | 
    46  | 
next
  | 
| 
 | 
    47  | 
  case (Suc n)
  | 
| 
 | 
    48  | 
  note hyp = `\<And>x. A n x \<Longrightarrow> P n x`
  | 
| 
 | 
    49  | 
    and prem = `A (Suc n) x`
  | 
| 
 | 
    50  | 
  show "P (Suc n) x" sorry
  | 
| 
 | 
    51  | 
qed
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
subsubsection {* Local definitions *}
 | 
| 
 | 
    55  | 
  | 
| 
 | 
    56  | 
text {*
 | 
| 
 | 
    57  | 
  Here the idea is to turn sub-expressions of the problem into a
  | 
| 
 | 
    58  | 
  defined induction variable.  This is often accompanied with fixing
  | 
| 
 | 
    59  | 
  of auxiliary parameters in the original expression, otherwise the
  | 
| 
 | 
    60  | 
  induction step would refer invariably to particular entities.  This
  | 
| 
 | 
    61  | 
  combination essentially expresses a partially abstracted
  | 
| 
 | 
    62  | 
  representation of inductive expressions.
  | 
| 
 | 
    63  | 
*}
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
lemma
  | 
| 
 | 
    66  | 
  fixes a :: "'a \<Rightarrow> nat"
  | 
| 
 | 
    67  | 
  assumes "A (a x)"
  | 
| 
 | 
    68  | 
  shows "P (a x)" using `A (a x)`
  | 
| 
 | 
    69  | 
proof (induct n \<equiv> "a x" arbitrary: x)
  | 
| 
 | 
    70  | 
  case 0
  | 
| 
 | 
    71  | 
  note prem = `A (a x)`
  | 
| 
 | 
    72  | 
    and defn = `0 = a x`
  | 
| 
 | 
    73  | 
  show "P (a x)" sorry
  | 
| 
 | 
    74  | 
next
  | 
| 
 | 
    75  | 
  case (Suc n)
  | 
| 
34915
 | 
    76  | 
  note hyp = `\<And>x. n = a x \<Longrightarrow> A (a x) \<Longrightarrow> P (a x)`
  | 
| 
24608
 | 
    77  | 
    and prem = `A (a x)`
  | 
| 
 | 
    78  | 
    and defn = `Suc n = a x`
  | 
| 
 | 
    79  | 
  show "P (a x)" sorry
  | 
| 
 | 
    80  | 
qed
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
text {*
 | 
| 
 | 
    83  | 
  Observe how the local definition @{text "n = a x"} recurs in the
 | 
| 
 | 
    84  | 
  inductive cases as @{text "0 = a x"} and @{text "Suc n = a x"},
 | 
| 
 | 
    85  | 
  according to underlying induction rule.
  | 
| 
 | 
    86  | 
*}
  | 
| 
 | 
    87  | 
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
subsubsection {* Simple simultaneous goals *}
 | 
| 
 | 
    90  | 
  | 
| 
 | 
    91  | 
text {*
 | 
| 
 | 
    92  | 
  The most basic simultaneous induction operates on several goals
  | 
| 
 | 
    93  | 
  one-by-one, where each case refers to induction hypotheses that are
  | 
| 
 | 
    94  | 
  duplicated according to the number of conclusions.
  | 
| 
 | 
    95  | 
*}
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
lemma
  | 
| 
 | 
    98  | 
  fixes n :: nat
  | 
| 
 | 
    99  | 
  shows "P n" and "Q n"
  | 
| 
 | 
   100  | 
proof (induct n)
  | 
| 
 | 
   101  | 
  case 0 case 1
  | 
| 
 | 
   102  | 
  show "P 0" sorry
  | 
| 
 | 
   103  | 
next
  | 
| 
 | 
   104  | 
  case 0 case 2
  | 
| 
 | 
   105  | 
  show "Q 0" sorry
  | 
| 
 | 
   106  | 
next
  | 
| 
 | 
   107  | 
  case (Suc n) case 1
  | 
| 
 | 
   108  | 
  note hyps = `P n` `Q n`
  | 
| 
 | 
   109  | 
  show "P (Suc n)" sorry
  | 
| 
 | 
   110  | 
next
  | 
| 
 | 
   111  | 
  case (Suc n) case 2
  | 
| 
 | 
   112  | 
  note hyps = `P n` `Q n`
  | 
| 
 | 
   113  | 
  show "Q (Suc n)" sorry
  | 
| 
 | 
   114  | 
qed
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
text {*
 | 
| 
 | 
   117  | 
  The split into subcases may be deferred as follows -- this is
  | 
| 
 | 
   118  | 
  particularly relevant for goal statements with local premises.
  | 
| 
 | 
   119  | 
*}
  | 
| 
 | 
   120  | 
  | 
| 
 | 
   121  | 
lemma
  | 
| 
 | 
   122  | 
  fixes n :: nat
  | 
| 
 | 
   123  | 
  shows "A n \<Longrightarrow> P n"
  | 
| 
 | 
   124  | 
    and "B n \<Longrightarrow> Q n"
  | 
| 
 | 
   125  | 
proof (induct n)
  | 
| 
 | 
   126  | 
  case 0
  | 
| 
 | 
   127  | 
  {
 | 
| 
 | 
   128  | 
    case 1
  | 
| 
 | 
   129  | 
    note `A 0`
  | 
| 
 | 
   130  | 
    show "P 0" sorry
  | 
| 
 | 
   131  | 
  next
  | 
| 
 | 
   132  | 
    case 2
  | 
| 
 | 
   133  | 
    note `B 0`
  | 
| 
 | 
   134  | 
    show "Q 0" sorry
  | 
| 
 | 
   135  | 
  }
  | 
| 
 | 
   136  | 
next
  | 
| 
 | 
   137  | 
  case (Suc n)
  | 
| 
 | 
   138  | 
  note `A n \<Longrightarrow> P n`
  | 
| 
 | 
   139  | 
    and `B n \<Longrightarrow> Q n`
  | 
| 
 | 
   140  | 
  {
 | 
| 
 | 
   141  | 
    case 1
  | 
| 
 | 
   142  | 
    note `A (Suc n)`
  | 
| 
 | 
   143  | 
    show "P (Suc n)" sorry
  | 
| 
 | 
   144  | 
  next
  | 
| 
 | 
   145  | 
    case 2
  | 
| 
 | 
   146  | 
    note `B (Suc n)`
  | 
| 
 | 
   147  | 
    show "Q (Suc n)" sorry
  | 
| 
 | 
   148  | 
  }
  | 
| 
 | 
   149  | 
qed
  | 
| 
 | 
   150  | 
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
subsubsection {* Compound simultaneous goals *}
 | 
| 
 | 
   153  | 
  | 
| 
 | 
   154  | 
text {*
 | 
| 
 | 
   155  | 
  The following pattern illustrates the slightly more complex
  | 
| 
 | 
   156  | 
  situation of simultaneous goals with individual local assumptions.
  | 
| 
 | 
   157  | 
  In compound simultaneous statements like this, local assumptions
  | 
| 
 | 
   158  | 
  need to be included into each goal, using @{text "\<Longrightarrow>"} of the Pure
 | 
| 
 | 
   159  | 
  framework.  In contrast, local parameters do not require separate
  | 
| 
 | 
   160  | 
  @{text "\<And>"} prefixes here, but may be moved into the common context
 | 
| 
 | 
   161  | 
  of the whole statement.
  | 
| 
 | 
   162  | 
*}
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
lemma
  | 
| 
 | 
   165  | 
  fixes n :: nat
  | 
| 
 | 
   166  | 
    and x :: 'a
  | 
| 
 | 
   167  | 
    and y :: 'b
  | 
| 
 | 
   168  | 
  shows "A n x \<Longrightarrow> P n x"
  | 
| 
 | 
   169  | 
    and "B n y \<Longrightarrow> Q n y"
  | 
| 
 | 
   170  | 
proof (induct n arbitrary: x y)
  | 
| 
 | 
   171  | 
  case 0
  | 
| 
 | 
   172  | 
  {
 | 
| 
 | 
   173  | 
    case 1
  | 
| 
 | 
   174  | 
    note prem = `A 0 x`
  | 
| 
 | 
   175  | 
    show "P 0 x" sorry
  | 
| 
 | 
   176  | 
  }
  | 
| 
 | 
   177  | 
  {
 | 
| 
 | 
   178  | 
    case 2
  | 
| 
 | 
   179  | 
    note prem = `B 0 y`
  | 
| 
 | 
   180  | 
    show "Q 0 y" sorry
  | 
| 
 | 
   181  | 
  }
  | 
| 
 | 
   182  | 
next
  | 
| 
 | 
   183  | 
  case (Suc n)
  | 
| 
 | 
   184  | 
  note hyps = `\<And>x. A n x \<Longrightarrow> P n x` `\<And>y. B n y \<Longrightarrow> Q n y`
  | 
| 
 | 
   185  | 
  then have some_intermediate_result sorry
  | 
| 
 | 
   186  | 
  {
 | 
| 
 | 
   187  | 
    case 1
  | 
| 
 | 
   188  | 
    note prem = `A (Suc n) x`
  | 
| 
 | 
   189  | 
    show "P (Suc n) x" sorry
  | 
| 
 | 
   190  | 
  }
  | 
| 
 | 
   191  | 
  {
 | 
| 
 | 
   192  | 
    case 2
  | 
| 
 | 
   193  | 
    note prem = `B (Suc n) y`
  | 
| 
 | 
   194  | 
    show "Q (Suc n) y" sorry
  | 
| 
 | 
   195  | 
  }
  | 
| 
 | 
   196  | 
qed
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
text {*
 | 
| 
 | 
   199  | 
  Here @{text "induct"} provides again nested cases with numbered
 | 
| 
 | 
   200  | 
  sub-cases, which allows to share common parts of the body context.
  | 
| 
 | 
   201  | 
  In typical applications, there could be a long intermediate proof of
  | 
| 
 | 
   202  | 
  general consequences of the induction hypotheses, before finishing
  | 
| 
 | 
   203  | 
  each conclusion separately.
  | 
| 
 | 
   204  | 
*}
  | 
| 
 | 
   205  | 
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
subsection {* Multiple rules *}
 | 
| 
 | 
   208  | 
  | 
| 
 | 
   209  | 
text {*
 | 
| 
 | 
   210  | 
  Multiple induction rules emerge from mutual definitions of
  | 
| 
 | 
   211  | 
  datatypes, inductive predicates, functions etc.  The @{text
 | 
| 
 | 
   212  | 
  "induct"} method accepts replicated arguments (with @{text "and"}
 | 
| 
 | 
   213  | 
  separator), corresponding to each projection of the induction
  | 
| 
 | 
   214  | 
  principle.
  | 
| 
 | 
   215  | 
  | 
| 
 | 
   216  | 
  The goal statement essentially follows the same arrangement,
  | 
| 
 | 
   217  | 
  although it might be subdivided into simultaneous sub-problems as
  | 
| 
 | 
   218  | 
  before!
  | 
| 
 | 
   219  | 
*}
  | 
| 
 | 
   220  | 
  | 
| 
 | 
   221  | 
datatype foo = Foo1 nat | Foo2 bar
  | 
| 
 | 
   222  | 
  and bar = Bar1 bool | Bar2 bazar
  | 
| 
 | 
   223  | 
  and bazar = Bazar foo
  | 
| 
 | 
   224  | 
  | 
| 
 | 
   225  | 
text {*
 | 
| 
 | 
   226  | 
  The pack of induction rules for this datatype is: @{thm [display]
 | 
| 
 | 
   227  | 
  foo_bar_bazar.inducts [no_vars]}
  | 
| 
 | 
   228  | 
  | 
| 
 | 
   229  | 
  This corresponds to the following basic proof pattern:
  | 
| 
 | 
   230  | 
*}
  | 
| 
 | 
   231  | 
  | 
| 
 | 
   232  | 
lemma
  | 
| 
 | 
   233  | 
  fixes foo :: foo
  | 
| 
 | 
   234  | 
    and bar :: bar
  | 
| 
 | 
   235  | 
    and bazar :: bazar
  | 
| 
 | 
   236  | 
  shows "P foo"
  | 
| 
 | 
   237  | 
    and "Q bar"
  | 
| 
 | 
   238  | 
    and "R bazar"
  | 
| 
 | 
   239  | 
proof (induct foo and bar and bazar)
  | 
| 
 | 
   240  | 
  case (Foo1 n)
  | 
| 
 | 
   241  | 
  show "P (Foo1 n)" sorry
  | 
| 
 | 
   242  | 
next
  | 
| 
 | 
   243  | 
  case (Foo2 bar)
  | 
| 
 | 
   244  | 
  note `Q bar`
  | 
| 
 | 
   245  | 
  show "P (Foo2 bar)" sorry
  | 
| 
 | 
   246  | 
next
  | 
| 
 | 
   247  | 
  case (Bar1 b)
  | 
| 
 | 
   248  | 
  show "Q (Bar1 b)" sorry
  | 
| 
 | 
   249  | 
next
  | 
| 
 | 
   250  | 
  case (Bar2 bazar)
  | 
| 
 | 
   251  | 
  note `R bazar`
  | 
| 
 | 
   252  | 
  show "Q (Bar2 bazar)" sorry
  | 
| 
 | 
   253  | 
next
  | 
| 
 | 
   254  | 
  case (Bazar foo)
  | 
| 
 | 
   255  | 
  note `P foo`
  | 
| 
 | 
   256  | 
  show "R (Bazar foo)" sorry
  | 
| 
 | 
   257  | 
qed
  | 
| 
 | 
   258  | 
  | 
| 
 | 
   259  | 
text {*
 | 
| 
 | 
   260  | 
  This can be combined with the previous techniques for compound
  | 
| 
 | 
   261  | 
  statements, e.g.\ like this.
  | 
| 
 | 
   262  | 
*}
  | 
| 
 | 
   263  | 
  | 
| 
 | 
   264  | 
lemma
  | 
| 
 | 
   265  | 
  fixes x :: 'a and y :: 'b and z :: 'c
  | 
| 
 | 
   266  | 
    and foo :: foo
  | 
| 
 | 
   267  | 
    and bar :: bar
  | 
| 
 | 
   268  | 
    and bazar :: bazar
  | 
| 
 | 
   269  | 
  shows
  | 
| 
 | 
   270  | 
    "A x foo \<Longrightarrow> P x foo"
  | 
| 
 | 
   271  | 
  and
  | 
| 
 | 
   272  | 
    "B1 y bar \<Longrightarrow> Q1 y bar"
  | 
| 
 | 
   273  | 
    "B2 y bar \<Longrightarrow> Q2 y bar"
  | 
| 
 | 
   274  | 
  and
  | 
| 
 | 
   275  | 
    "C1 z bazar \<Longrightarrow> R1 z bazar"
  | 
| 
 | 
   276  | 
    "C2 z bazar \<Longrightarrow> R2 z bazar"
  | 
| 
 | 
   277  | 
    "C3 z bazar \<Longrightarrow> R3 z bazar"
  | 
| 
 | 
   278  | 
proof (induct foo and bar and bazar arbitrary: x and y and z)
  | 
| 
 | 
   279  | 
  oops
  | 
| 
 | 
   280  | 
  | 
| 
 | 
   281  | 
  | 
| 
 | 
   282  | 
subsection {* Inductive predicates *}
 | 
| 
 | 
   283  | 
  | 
| 
 | 
   284  | 
text {*
 | 
| 
 | 
   285  | 
  The most basic form of induction involving predicates (or sets)
  | 
| 
 | 
   286  | 
  essentially eliminates a given membership fact.
  | 
| 
 | 
   287  | 
*}
  | 
| 
 | 
   288  | 
  | 
| 
 | 
   289  | 
inductive Even :: "nat \<Rightarrow> bool" where
  | 
| 
 | 
   290  | 
  zero: "Even 0"
  | 
| 
 | 
   291  | 
| double: "Even n \<Longrightarrow> Even (2 * n)"
  | 
| 
 | 
   292  | 
  | 
| 
 | 
   293  | 
lemma
  | 
| 
 | 
   294  | 
  assumes "Even n"
  | 
| 
 | 
   295  | 
  shows "P n"
  | 
| 
 | 
   296  | 
  using assms
  | 
| 
 | 
   297  | 
proof induct
  | 
| 
 | 
   298  | 
  case zero
  | 
| 
 | 
   299  | 
  show "P 0" sorry
  | 
| 
 | 
   300  | 
next
  | 
| 
 | 
   301  | 
  case (double n)
  | 
| 
 | 
   302  | 
  note `Even n` and `P n`
  | 
| 
 | 
   303  | 
  show "P (2 * n)" sorry
  | 
| 
 | 
   304  | 
qed
  | 
| 
 | 
   305  | 
  | 
| 
 | 
   306  | 
text {*
 | 
| 
 | 
   307  | 
  Alternatively, an initial rule statement may be proven as follows,
  | 
| 
 | 
   308  | 
  performing ``in-situ'' elimination with explicit rule specification.
  | 
| 
 | 
   309  | 
*}
  | 
| 
 | 
   310  | 
  | 
| 
 | 
   311  | 
lemma "Even n \<Longrightarrow> P n"
  | 
| 
 | 
   312  | 
proof (induct rule: Even.induct)
  | 
| 
 | 
   313  | 
  oops
  | 
| 
 | 
   314  | 
  | 
| 
 | 
   315  | 
text {*
 | 
| 
 | 
   316  | 
  Simultaneous goals do not introduce anything new.
  | 
| 
 | 
   317  | 
*}
  | 
| 
 | 
   318  | 
  | 
| 
 | 
   319  | 
lemma
  | 
| 
 | 
   320  | 
  assumes "Even n"
  | 
| 
 | 
   321  | 
  shows "P1 n" and "P2 n"
  | 
| 
 | 
   322  | 
  using assms
  | 
| 
 | 
   323  | 
proof induct
  | 
| 
 | 
   324  | 
  case zero
  | 
| 
 | 
   325  | 
  {
 | 
| 
 | 
   326  | 
    case 1
  | 
| 
 | 
   327  | 
    show "P1 0" sorry
  | 
| 
 | 
   328  | 
  next
  | 
| 
 | 
   329  | 
    case 2
  | 
| 
 | 
   330  | 
    show "P2 0" sorry
  | 
| 
 | 
   331  | 
  }
  | 
| 
 | 
   332  | 
next
  | 
| 
 | 
   333  | 
  case (double n)
  | 
| 
 | 
   334  | 
  note `Even n` and `P1 n` and `P2 n`
  | 
| 
 | 
   335  | 
  {
 | 
| 
 | 
   336  | 
    case 1
  | 
| 
 | 
   337  | 
    show "P1 (2 * n)" sorry
  | 
| 
 | 
   338  | 
  next
  | 
| 
 | 
   339  | 
    case 2
  | 
| 
 | 
   340  | 
    show "P2 (2 * n)" sorry
  | 
| 
 | 
   341  | 
  }
  | 
| 
 | 
   342  | 
qed
  | 
| 
 | 
   343  | 
  | 
| 
 | 
   344  | 
text {*
 | 
| 
 | 
   345  | 
  Working with mutual rules requires special care in composing the
  | 
| 
 | 
   346  | 
  statement as a two-level conjunction, using lists of propositions
  | 
| 
 | 
   347  | 
  separated by @{text "and"}.  For example:
 | 
| 
 | 
   348  | 
*}
  | 
| 
 | 
   349  | 
  | 
| 
 | 
   350  | 
inductive Evn :: "nat \<Rightarrow> bool" and Odd :: "nat \<Rightarrow> bool"
  | 
| 
 | 
   351  | 
where
  | 
| 
 | 
   352  | 
  zero: "Evn 0"
  | 
| 
 | 
   353  | 
| succ_Evn: "Evn n \<Longrightarrow> Odd (Suc n)"
  | 
| 
 | 
   354  | 
| succ_Odd: "Odd n \<Longrightarrow> Evn (Suc n)"
  | 
| 
 | 
   355  | 
  | 
| 
24609
 | 
   356  | 
lemma
  | 
| 
 | 
   357  | 
    "Evn n \<Longrightarrow> P1 n"
  | 
| 
 | 
   358  | 
    "Evn n \<Longrightarrow> P2 n"
  | 
| 
 | 
   359  | 
    "Evn n \<Longrightarrow> P3 n"
  | 
| 
 | 
   360  | 
  and
  | 
| 
 | 
   361  | 
    "Odd n \<Longrightarrow> Q1 n"
  | 
| 
 | 
   362  | 
    "Odd n \<Longrightarrow> Q2 n"
  | 
| 
24608
 | 
   363  | 
proof (induct rule: Evn_Odd.inducts)
  | 
| 
 | 
   364  | 
  case zero
  | 
| 
24609
 | 
   365  | 
  { case 1 show "P1 0" sorry }
 | 
| 
 | 
   366  | 
  { case 2 show "P2 0" sorry }
 | 
| 
 | 
   367  | 
  { case 3 show "P3 0" sorry }
 | 
| 
24608
 | 
   368  | 
next
  | 
| 
 | 
   369  | 
  case (succ_Evn n)
  | 
| 
24609
 | 
   370  | 
  note `Evn n` and `P1 n` `P2 n` `P3 n`
  | 
| 
 | 
   371  | 
  { case 1 show "Q1 (Suc n)" sorry }
 | 
| 
 | 
   372  | 
  { case 2 show "Q2 (Suc n)" sorry }
 | 
| 
24608
 | 
   373  | 
next
  | 
| 
 | 
   374  | 
  case (succ_Odd n)
  | 
| 
24609
 | 
   375  | 
  note `Odd n` and `Q1 n` `Q2 n`
  | 
| 
 | 
   376  | 
  { case 1 show "P1 (Suc n)" sorry }
 | 
| 
 | 
   377  | 
  { case 2 show "P2 (Suc n)" sorry }
 | 
| 
 | 
   378  | 
  { case 3 show "P3 (Suc n)" sorry }
 | 
| 
24608
 | 
   379  | 
qed
  | 
| 
 | 
   380  | 
  | 
| 
 | 
   381  | 
end  |