src/Provers/quasi.ML
author huffman
Fri, 26 Feb 2010 09:47:37 -0800
changeset 35452 cf8c5a751a9a
parent 33063 4d462963a7db
child 37744 3daaf23b9ab4
permissions -rw-r--r--
move proof of con_rews into domain_constructor.ML
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
29276
94b1ffec9201 qualified Term.rename_wrt_term;
wenzelm
parents: 22578
diff changeset
     1
(*  Author:     Oliver Kutter, TU Muenchen
94b1ffec9201 qualified Term.rename_wrt_term;
wenzelm
parents: 22578
diff changeset
     2
94b1ffec9201 qualified Term.rename_wrt_term;
wenzelm
parents: 22578
diff changeset
     3
Reasoner for simple transitivity and quasi orders.
94b1ffec9201 qualified Term.rename_wrt_term;
wenzelm
parents: 22578
diff changeset
     4
*)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
     5
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
     6
(*
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
     7
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
     8
The package provides tactics trans_tac and quasi_tac that use
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
     9
premises of the form
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    10
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    11
  t = u, t ~= u, t < u and t <= u
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    12
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    13
to
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    14
- either derive a contradiction, in which case the conclusion can be
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    15
  any term,
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    16
- or prove the concluson, which must be of the form t ~= u, t < u or
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    17
  t <= u.
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    18
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    19
Details:
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    20
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    21
1. trans_tac:
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    22
   Only premises of form t <= u are used and the conclusion must be of
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    23
   the same form.  The conclusion is proved, if possible, by a chain of
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    24
   transitivity from the assumptions.
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    25
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    26
2. quasi_tac:
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    27
   <= is assumed to be a quasi order and < its strict relative, defined
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    28
   as t < u == t <= u & t ~= u.  Again, the conclusion is proved from
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    29
   the assumptions.
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    30
   Note that the presence of a strict relation is not necessary for
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    31
   quasi_tac.  Configure decomp_quasi to ignore < and ~=.  A list of
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    32
   required theorems for both situations is given below.
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    33
*)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    34
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    35
signature LESS_ARITH =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    36
sig
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    37
  (* Transitivity of <=
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    38
     Note that transitivities for < hold for partial orders only. *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    39
  val le_trans: thm  (* [| x <= y; y <= z |] ==> x <= z *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    40
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    41
  (* Additional theorem for quasi orders *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    42
  val le_refl: thm  (* x <= x *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    43
  val eqD1: thm (* x = y ==> x <= y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    44
  val eqD2: thm (* x = y ==> y <= x *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    45
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    46
  (* Additional theorems for premises of the form x < y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    47
  val less_reflE: thm  (* x < x ==> P *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    48
  val less_imp_le : thm (* x < y ==> x <= y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    49
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    50
  (* Additional theorems for premises of the form x ~= y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    51
  val le_neq_trans : thm (* [| x <= y ; x ~= y |] ==> x < y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    52
  val neq_le_trans : thm (* [| x ~= y ; x <= y |] ==> x < y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    53
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    54
  (* Additional theorem for goals of form x ~= y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    55
  val less_imp_neq : thm (* x < y ==> x ~= y *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    56
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    57
  (* Analysis of premises and conclusion *)
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
    58
  (* decomp_x (`x Rel y') should yield SOME (x, Rel, y)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    59
       where Rel is one of "<", "<=", "=" and "~=",
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    60
       other relation symbols cause an error message *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    61
  (* decomp_trans is used by trans_tac, it may only return Rel = "<=" *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
    62
  val decomp_trans: theory -> term -> (term * string * term) option
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    63
  (* decomp_quasi is used by quasi_tac *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
    64
  val decomp_quasi: theory -> term -> (term * string * term) option
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    65
end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    66
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    67
signature QUASI_TAC =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    68
sig
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    69
  val trans_tac: Proof.context -> int -> tactic
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    70
  val quasi_tac: Proof.context -> int -> tactic
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    71
end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    72
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    73
functor Quasi_Tac(Less: LESS_ARITH): QUASI_TAC =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    74
struct
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    75
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    76
(* Internal datatype for the proof *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    77
datatype proof
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    78
  = Asm of int
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    79
  | Thm of proof list * thm;
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    80
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    81
exception Cannot;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    82
 (* Internal exception, raised if conclusion cannot be derived from
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    83
     assumptions. *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    84
exception Contr of proof;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    85
  (* Internal exception, raised if contradiction ( x < x ) was derived *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    86
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    87
fun prove asms =
15570
8d8c70b41bab Move towards standard functions.
skalberg
parents: 15531
diff changeset
    88
  let fun pr (Asm i) = List.nth (asms, i)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    89
  |       pr (Thm (prfs, thm)) = (map pr prfs) MRS thm
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    90
  in pr end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    91
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    92
(* Internal datatype for inequalities *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    93
datatype less
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    94
   = Less  of term * term * proof
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    95
   | Le    of term * term * proof
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
    96
   | NotEq of term * term * proof;
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    97
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    98
 (* Misc functions for datatype less *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
    99
fun lower (Less (x, _, _)) = x
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   100
  | lower (Le (x, _, _)) = x
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   101
  | lower (NotEq (x,_,_)) = x;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   102
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   103
fun upper (Less (_, y, _)) = y
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   104
  | upper (Le (_, y, _)) = y
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   105
  | upper (NotEq (_,y,_)) = y;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   106
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   107
fun getprf   (Less (_, _, p)) = p
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   108
|   getprf   (Le   (_, _, p)) = p
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   109
|   getprf   (NotEq (_,_, p)) = p;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   110
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   111
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   112
(*                                                                          *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   113
(* mkasm_trans sign (t, n) :  theory -> (Term.term * int)  -> less          *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   114
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   115
(* Tuple (t, n) (t an assumption, n its index in the assumptions) is        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   116
(* translated to an element of type less.                                   *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   117
(* Only assumptions of form x <= y are used, all others are ignored         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   118
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   119
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   120
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   121
fun mkasm_trans thy (t, n) =
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   122
  case Less.decomp_trans thy t of
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   123
    SOME (x, rel, y) =>
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   124
    (case rel of
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   125
     "<="  =>  [Le (x, y, Asm n)]
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   126
    | _     => error ("trans_tac: unknown relation symbol ``" ^ rel ^
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   127
                 "''returned by decomp_trans."))
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   128
  | NONE => [];
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   129
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   130
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   131
(*                                                                          *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   132
(* mkasm_quasi sign (t, n) : theory -> (Term.term * int) -> less            *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   133
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   134
(* Tuple (t, n) (t an assumption, n its index in the assumptions) is        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   135
(* translated to an element of type less.                                   *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   136
(* Quasi orders only.                                                       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   137
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   138
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   139
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   140
fun mkasm_quasi thy (t, n) =
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   141
  case Less.decomp_quasi thy t of
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   142
    SOME (x, rel, y) => (case rel of
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   143
      "<"   => if (x aconv y) then raise Contr (Thm ([Asm n], Less.less_reflE))
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   144
               else [Less (x, y, Asm n)]
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   145
    | "<="  => [Le (x, y, Asm n)]
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   146
    | "="   => [Le (x, y, Thm ([Asm n], Less.eqD1)),
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   147
                Le (y, x, Thm ([Asm n], Less.eqD2))]
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   148
    | "~="  => if (x aconv y) then
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   149
                  raise Contr (Thm ([(Thm ([(Thm ([], Less.le_refl)) ,(Asm n)], Less.le_neq_trans))], Less.less_reflE))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   150
               else [ NotEq (x, y, Asm n),
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   151
                      NotEq (y, x,Thm ( [Asm n], thm "not_sym"))]
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   152
    | _     => error ("quasi_tac: unknown relation symbol ``" ^ rel ^
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   153
                 "''returned by decomp_quasi."))
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   154
  | NONE => [];
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   155
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   156
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   157
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   158
(*                                                                          *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   159
(* mkconcl_trans sign t : theory -> Term.term -> less                       *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   160
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   161
(* Translates conclusion t to an element of type less.                      *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   162
(* Only for Conclusions of form x <= y or x < y.                            *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   163
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   164
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   165
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   166
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   167
fun mkconcl_trans thy t =
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   168
  case Less.decomp_trans thy t of
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   169
    SOME (x, rel, y) => (case rel of
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   170
     "<="  => (Le (x, y, Asm ~1), Asm 0)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   171
    | _  => raise Cannot)
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   172
  | NONE => raise Cannot;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   173
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   174
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   175
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   176
(*                                                                          *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   177
(* mkconcl_quasi sign t : theory -> Term.term -> less                       *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   178
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   179
(* Translates conclusion t to an element of type less.                      *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   180
(* Quasi orders only.                                                       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   181
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   182
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   183
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   184
fun mkconcl_quasi thy t =
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   185
  case Less.decomp_quasi thy t of
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   186
    SOME (x, rel, y) => (case rel of
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   187
      "<"   => ([Less (x, y, Asm ~1)], Asm 0)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   188
    | "<="  => ([Le (x, y, Asm ~1)], Asm 0)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   189
    | "~="  => ([NotEq (x,y, Asm ~1)], Asm 0)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   190
    | _  => raise Cannot)
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   191
| NONE => raise Cannot;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   192
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   193
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   194
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   195
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   196
(* mergeLess (less1,less2):  less * less -> less                       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   197
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   198
(* Merge to elements of type less according to the following rules     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   199
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   200
(* x <= y && y <= z ==> x <= z                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   201
(* x <= y && x ~= y ==> x < y                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   202
(* x ~= y && x <= y ==> x < y                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   203
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   204
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   205
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   206
fun mergeLess (Le (x, _, p) , Le (_ , z, q)) =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   207
      Le (x, z, Thm ([p,q] , Less.le_trans))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   208
|   mergeLess (Le (x, z, p) , NotEq (x', z', q)) =
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   209
      if (x aconv x' andalso z aconv z' )
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   210
       then Less (x, z, Thm ([p,q] , Less.le_neq_trans))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   211
        else error "quasi_tac: internal error le_neq_trans"
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   212
|   mergeLess (NotEq (x, z, p) , Le (x' , z', q)) =
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   213
      if (x aconv x' andalso z aconv z')
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   214
      then Less (x, z, Thm ([p,q] , Less.neq_le_trans))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   215
      else error "quasi_tac: internal error neq_le_trans"
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   216
|   mergeLess (_, _) =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   217
      error "quasi_tac: internal error: undefined case";
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   218
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   219
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   220
(* ******************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   221
(* tr checks for valid transitivity step                                *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   222
(* ******************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   223
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   224
infix tr;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   225
fun (Le (_, y, _))   tr (Le (x', _, _))   = ( y aconv x' )
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   226
  | _ tr _ = false;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   227
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   228
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   229
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   230
(* transPath (Lesslist, Less): (less list * less) -> less              *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   231
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   232
(* If a path represented by a list of elements of type less is found,  *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   233
(* this needs to be contracted to a single element of type less.       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   234
(* Prior to each transitivity step it is checked whether the step is   *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   235
(* valid.                                                              *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   236
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   237
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   238
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   239
fun transPath ([],lesss) = lesss
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   240
|   transPath (x::xs,lesss) =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   241
      if lesss tr x then transPath (xs, mergeLess(lesss,x))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   242
      else error "trans/quasi_tac: internal error transpath";
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   243
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   244
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   245
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   246
(* less1 subsumes less2 : less -> less -> bool                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   247
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   248
(* subsumes checks whether less1 implies less2                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   249
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   250
(* ******************************************************************* *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   251
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   252
infix subsumes;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   253
fun (Le (x, y, _)) subsumes (Le (x', y', _)) =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   254
      (x aconv x' andalso y aconv y')
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   255
  | (Le _) subsumes (Less _) =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   256
      error "trans/quasi_tac: internal error: Le cannot subsume Less"
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   257
  | (NotEq(x,y,_)) subsumes (NotEq(x',y',_)) = x aconv x' andalso y aconv y' orelse x aconv y' andalso y aconv x'
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   258
  | _ subsumes _ = false;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   259
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   260
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   261
(*                                                                     *)
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   262
(* triv_solv less1 : less ->  proof option                     *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   263
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   264
(* Solves trivial goal x <= x.                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   265
(*                                                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   266
(* ******************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   267
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   268
fun triv_solv (Le (x, x', _)) =
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   269
    if x aconv x' then  SOME (Thm ([], Less.le_refl))
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   270
    else NONE
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   271
|   triv_solv _ = NONE;
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   272
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   273
(* ********************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   274
(* Graph functions                                                       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   275
(* ********************************************************************* *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   276
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   277
(* *********************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   278
(* Functions for constructing graphs                           *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   279
(* *********************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   280
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   281
fun addEdge (v,d,[]) = [(v,d)]
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   282
|   addEdge (v,d,((u,dl)::el)) = if v aconv u then ((v,d@dl)::el)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   283
    else (u,dl):: (addEdge(v,d,el));
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   284
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   285
(* ********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   286
(*                                                                        *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   287
(* mkQuasiGraph constructs from a list of objects of type less a graph g, *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   288
(* by taking all edges that are candidate for a <=, and a list neqE, by   *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   289
(* taking all edges that are candiate for a ~=                            *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   290
(*                                                                        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   291
(* ********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   292
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   293
fun mkQuasiGraph [] = ([],[])
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   294
|   mkQuasiGraph lessList =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   295
 let
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   296
 fun buildGraphs ([],leG, neqE) = (leG,  neqE)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   297
  |   buildGraphs (l::ls, leG,  neqE) = case l of
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   298
       (Less (x,y,p)) =>
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   299
         let
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   300
          val leEdge  = Le (x,y, Thm ([p], Less.less_imp_le))
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   301
          val neqEdges = [ NotEq (x,y, Thm ([p], Less.less_imp_neq)),
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   302
                           NotEq (y,x, Thm ( [Thm ([p], Less.less_imp_neq)], thm "not_sym"))]
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   303
         in
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   304
           buildGraphs (ls, addEdge(y,[],(addEdge (x,[(y,leEdge)],leG))), neqEdges@neqE)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   305
         end
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   306
     |  (Le (x,y,p))   => buildGraphs (ls, addEdge(y,[],(addEdge (x,[(y,l)],leG))), neqE)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   307
     | _ =>  buildGraphs (ls, leG,  l::neqE) ;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   308
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   309
in buildGraphs (lessList, [],  []) end;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   310
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   311
(* ********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   312
(*                                                                        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   313
(* mkGraph constructs from a list of objects of type less a graph g       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   314
(* Used for plain transitivity chain reasoning.                           *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   315
(*                                                                        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   316
(* ********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   317
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   318
fun mkGraph [] = []
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   319
|   mkGraph lessList =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   320
 let
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   321
  fun buildGraph ([],g) = g
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   322
  |   buildGraph (l::ls, g) =  buildGraph (ls, (addEdge ((lower l),[((upper l),l)],g)))
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   323
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   324
in buildGraph (lessList, []) end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   325
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   326
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   327
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   328
(* adjacent g u : (''a * 'b list ) list -> ''a -> 'b list                  *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   329
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   330
(* List of successors of u in graph g                                      *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   331
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   332
(* *********************************************************************** *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   333
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   334
fun adjacent eq_comp ((v,adj)::el) u =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   335
    if eq_comp (u, v) then adj else adjacent eq_comp el u
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   336
|   adjacent _  []  _ = []
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   337
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   338
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   339
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   340
(* dfs eq_comp g u v:                                                      *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   341
(* ('a * 'a -> bool) -> ('a  *( 'a * less) list) list ->                   *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   342
(* 'a -> 'a -> (bool * ('a * less) list)                                   *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   343
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   344
(* Depth first search of v from u.                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   345
(* Returns (true, path(u, v)) if successful, otherwise (false, []).        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   346
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   347
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   348
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   349
fun dfs eq_comp g u v =
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   350
 let
32740
9dd0a2f83429 explicit indication of Unsynchronized.ref;
wenzelm
parents: 32285
diff changeset
   351
    val pred = Unsynchronized.ref [];
9dd0a2f83429 explicit indication of Unsynchronized.ref;
wenzelm
parents: 32285
diff changeset
   352
    val visited = Unsynchronized.ref [];
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   353
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   354
    fun been_visited v = exists (fn w => eq_comp (w, v)) (!visited)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   355
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   356
    fun dfs_visit u' =
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   357
    let val _ = visited := u' :: (!visited)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   358
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   359
    fun update (x,l) = let val _ = pred := (x,l) ::(!pred) in () end;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   360
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   361
    in if been_visited v then ()
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   362
    else (app (fn (v',l) => if been_visited v' then () else (
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   363
       update (v',l);
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   364
       dfs_visit v'; ()) )) (adjacent eq_comp g u')
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   365
     end
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   366
  in
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   367
    dfs_visit u;
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   368
    if (been_visited v) then (true, (!pred)) else (false , [])
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   369
  end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   370
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   371
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   372
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   373
(* Begin: Quasi Order relevant functions                                    *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   374
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   375
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   376
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   377
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   378
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   379
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   380
(* findPath x y g: Term.term -> Term.term ->                                *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   381
(*                  (Term.term * (Term.term * less list) list) ->           *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   382
(*                  (bool, less list)                                       *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   383
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   384
(*  Searches a path from vertex x to vertex y in Graph g, returns true and  *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   385
(*  the list of edges forming the path, if a path is found, otherwise false *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   386
(*  and nil.                                                                *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   387
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   388
(* ************************************************************************ *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   389
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   390
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   391
 fun findPath x y g =
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   392
  let
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   393
    val (found, tmp) =  dfs (op aconv) g x y ;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   394
    val pred = map snd tmp;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   395
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   396
    fun path x y  =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   397
      let
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   398
       (* find predecessor u of node v and the edge u -> v *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   399
       fun lookup v [] = raise Cannot
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   400
       |   lookup v (e::es) = if (upper e) aconv v then e else lookup v es;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   401
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   402
       (* traverse path backwards and return list of visited edges *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   403
       fun rev_path v =
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   404
        let val l = lookup v pred
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   405
            val u = lower l;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   406
        in
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   407
           if u aconv x then [l] else (rev_path u) @ [l]
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   408
        end
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   409
      in rev_path y end;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   410
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   411
  in
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   412
   if found then (
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   413
    if x aconv y then (found,[(Le (x, y, (Thm ([], Less.le_refl))))])
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   414
    else (found, (path x y) ))
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   415
   else (found,[])
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   416
  end;
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   417
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   418
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   419
(* ************************************************************************ *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   420
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   421
(* findQuasiProof (leqG, neqE) subgoal:                                     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   422
(* (Term.term * (Term.term * less list) list) * less list  -> less -> proof *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   423
(*                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   424
(* Constructs a proof for subgoal by searching a special path in leqG and   *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   425
(* neqE. Raises Cannot if construction of the proof fails.                  *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   426
(*                                                                          *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   427
(* ************************************************************************ *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   428
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   429
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   430
(* As the conlusion can be either of form x <= y, x < y or x ~= y we have        *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   431
(* three cases to deal with. Finding a transitivity path from x to y with label  *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   432
(* 1. <=                                                                         *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   433
(*    This is simply done by searching any path from x to y in the graph leG.    *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   434
(*    The graph leG contains only edges with label <=.                           *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   435
(*                                                                               *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   436
(* 2. <                                                                          *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   437
(*    A path from x to y with label < can be found by searching a path with      *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   438
(*    label <= from x to y in the graph leG and merging the path x <= y with     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   439
(*    a parallel edge x ~= y resp. y ~= x to x < y.                              *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   440
(*                                                                               *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   441
(* 3. ~=                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   442
(*   If the conclusion is of form x ~= y, we can find a proof either directly,   *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   443
(*   if x ~= y or y ~= x are among the assumptions, or by constructing x ~= y if *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   444
(*   x < y or y < x follows from the assumptions.                                *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   445
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   446
fun findQuasiProof (leG, neqE) subgoal =
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   447
  case subgoal of (Le (x,y, _)) => (
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   448
   let
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   449
    val (xyLefound,xyLePath) = findPath x y leG
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   450
   in
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   451
    if xyLefound then (
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   452
     let
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   453
      val Le_x_y = (transPath (tl xyLePath, hd xyLePath))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   454
     in getprf Le_x_y end )
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   455
    else raise Cannot
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   456
   end )
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   457
  | (Less (x,y,_))  => (
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   458
   let
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   459
    fun findParallelNeq []  = NONE
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   460
    |   findParallelNeq (e::es)  =
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   461
     if      (x aconv (lower e) andalso y aconv (upper e)) then SOME e
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   462
     else if (y aconv (lower e) andalso x aconv (upper e)) then SOME (NotEq (x,y, (Thm ([getprf e], thm "not_sym"))))
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   463
     else findParallelNeq es ;
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   464
   in
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   465
   (* test if there is a edge x ~= y respectivly  y ~= x and     *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   466
   (* if it possible to find a path x <= y in leG, thus we can conclude x < y *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   467
    (case findParallelNeq neqE of (SOME e) =>
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   468
      let
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   469
       val (xyLeFound,xyLePath) = findPath x y leG
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   470
      in
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   471
       if xyLeFound then (
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   472
        let
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   473
         val Le_x_y = (transPath (tl xyLePath, hd xyLePath))
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   474
         val Less_x_y = mergeLess (e, Le_x_y)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   475
        in getprf Less_x_y end
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   476
       ) else raise Cannot
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   477
      end
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   478
    | _ => raise Cannot)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   479
   end )
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   480
 | (NotEq (x,y,_)) =>
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   481
  (* First check if a single premiss is sufficient *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   482
  (case (Library.find_first (fn fact => fact subsumes subgoal) neqE, subgoal) of
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   483
    (SOME (NotEq (x, y, p)), NotEq (x', y', _)) =>
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   484
      if  (x aconv x' andalso y aconv y') then p
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   485
      else Thm ([p], thm "not_sym")
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   486
    | _  => raise Cannot
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   487
  )
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   488
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   489
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   490
(* ************************************************************************ *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   491
(*                                                                          *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   492
(* End: Quasi Order relevant functions                                      *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   493
(*                                                                          *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   494
(*                                                                          *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   495
(* ************************************************************************ *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   496
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   497
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   498
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   499
(* solveLeTrans sign (asms,concl) :                                        *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   500
(* theory -> less list * Term.term -> proof list                           *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   501
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   502
(* Solves                                                                  *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   503
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   504
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   505
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   506
fun solveLeTrans thy (asms, concl) =
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   507
 let
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   508
  val g = mkGraph asms
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   509
 in
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   510
   let
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   511
    val (subgoal, prf) = mkconcl_trans thy concl
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   512
    val (found, path) = findPath (lower subgoal) (upper subgoal) g
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   513
   in
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   514
    if found then [getprf (transPath (tl path, hd path))]
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   515
    else raise Cannot
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   516
  end
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   517
 end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   518
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   519
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   520
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   521
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   522
(* solveQuasiOrder sign (asms,concl) :                                     *)
19250
932a50e2332f got rid of type Sign.sg;
wenzelm
parents: 15570
diff changeset
   523
(* theory -> less list * Term.term -> proof list                           *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   524
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   525
(* Find proof if possible for quasi order.                                 *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   526
(*                                                                         *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   527
(* *********************************************************************** *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   528
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   529
fun solveQuasiOrder thy (asms, concl) =
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   530
 let
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   531
  val (leG, neqE) = mkQuasiGraph asms
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   532
 in
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   533
   let
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   534
   val (subgoals, prf) = mkconcl_quasi thy concl
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   535
   fun solve facts less =
15531
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   536
       (case triv_solv less of NONE => findQuasiProof (leG, neqE) less
08c8dad8e399 Deleted Library.option type.
skalberg
parents: 15103
diff changeset
   537
       | SOME prf => prf )
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   538
  in   map (solve asms) subgoals end
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   539
 end;
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   540
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   541
(* ************************************************************************ *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   542
(*                                                                          *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   543
(* Tactics                                                                  *)
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   544
(*                                                                          *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   545
(*  - trans_tac                                                          *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   546
(*  - quasi_tac, solves quasi orders                                        *)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   547
(* ************************************************************************ *)
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   548
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   549
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   550
(* trans_tac - solves transitivity chains over <= *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   551
32277
ff1e59a15146 trans_tac: use theory from goal state, not the static context, which seems to be outdated under certain circumstances (why?);
wenzelm
parents: 32215
diff changeset
   552
fun trans_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   553
 let
32285
ab9b66c2bbca trancl_tac etc.: back to static context -- problem was caused by bad solver in AFP/JiveDataStoreModel;
wenzelm
parents: 32283
diff changeset
   554
  val thy = ProofContext.theory_of ctxt;
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   555
  val rfrees = map Free (Term.rename_wrt_term A (Logic.strip_params A));
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   556
  val Hs = map (fn H => subst_bounds (rfrees, H)) (Logic.strip_assums_hyp A);
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   557
  val C = subst_bounds (rfrees, Logic.strip_assums_concl A);
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   558
  val lesss = flat (map_index (mkasm_trans thy o swap) Hs);
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   559
  val prfs = solveLeTrans thy (lesss, C);
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   560
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   561
  val (subgoal, prf) = mkconcl_trans thy C;
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   562
 in
32283
3bebc195c124 qualified Subgoal.FOCUS;
wenzelm
parents: 32277
diff changeset
   563
  Subgoal.FOCUS (fn {prems, ...} =>
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   564
    let val thms = map (prove prems) prfs
32277
ff1e59a15146 trans_tac: use theory from goal state, not the static context, which seems to be outdated under certain circumstances (why?);
wenzelm
parents: 32215
diff changeset
   565
    in rtac (prove thms prf) 1 end) ctxt n st
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   566
 end
32283
3bebc195c124 qualified Subgoal.FOCUS;
wenzelm
parents: 32277
diff changeset
   567
 handle Contr p => Subgoal.FOCUS (fn {prems, ...} => rtac (prove prems p) 1) ctxt n st
32277
ff1e59a15146 trans_tac: use theory from goal state, not the static context, which seems to be outdated under certain circumstances (why?);
wenzelm
parents: 32215
diff changeset
   568
  | Cannot  => Seq.empty);
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   569
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   570
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   571
(* quasi_tac - solves quasi orders *)
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   572
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   573
fun quasi_tac ctxt = SUBGOAL (fn (A, n) => fn st =>
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   574
 let
32285
ab9b66c2bbca trancl_tac etc.: back to static context -- problem was caused by bad solver in AFP/JiveDataStoreModel;
wenzelm
parents: 32283
diff changeset
   575
  val thy = ProofContext.theory_of ctxt
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   576
  val rfrees = map Free (Term.rename_wrt_term A (Logic.strip_params A));
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   577
  val Hs = map (fn H => subst_bounds (rfrees, H)) (Logic.strip_assums_hyp A);
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   578
  val C = subst_bounds (rfrees, Logic.strip_assums_concl A);
33063
4d462963a7db map_range (and map_index) combinator
haftmann
parents: 32952
diff changeset
   579
  val lesss = flat (map_index (mkasm_quasi thy o swap) Hs);
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   580
  val prfs = solveQuasiOrder thy (lesss, C);
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   581
  val (subgoals, prf) = mkconcl_quasi thy C;
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   582
 in
32283
3bebc195c124 qualified Subgoal.FOCUS;
wenzelm
parents: 32277
diff changeset
   583
  Subgoal.FOCUS (fn {prems, ...} =>
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   584
    let val thms = map (prove prems) prfs
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   585
    in rtac (prove thms prf) 1 end) ctxt n st
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   586
 end
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   587
 handle Contr p =>
32283
3bebc195c124 qualified Subgoal.FOCUS;
wenzelm
parents: 32277
diff changeset
   588
    (Subgoal.FOCUS (fn {prems, ...} => rtac (prove prems p) 1) ctxt n st
32215
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   589
      handle Subscript => Seq.empty)
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   590
  | Cannot => Seq.empty
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   591
  | Subscript => Seq.empty);
87806301a813 replaced old METAHYPS by FOCUS;
wenzelm
parents: 29276
diff changeset
   592
15103
79846e8792eb New transitivity reasoners for transitivity only and quasi orders.
ballarin
parents:
diff changeset
   593
end;