author | paulson <lp15@cam.ac.uk> |
Wed, 28 Sep 2022 11:23:49 +0100 | |
changeset 76220 | cf8f85e2a807 |
parent 76216 | 9fc34f76b4e8 |
child 81181 | ff2a637a449e |
permissions | -rw-r--r-- |
13543 | 1 |
(* Title: ZF/Constructible/AC_in_L.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
*) |
|
4 |
||
60770 | 5 |
section \<open>The Axiom of Choice Holds in L!\<close> |
13543 | 6 |
|
47084 | 7 |
theory AC_in_L imports Formula Separation begin |
13543 | 8 |
|
60770 | 9 |
subsection\<open>Extending a Wellordering over a List -- Lexicographic Power\<close> |
13543 | 10 |
|
60770 | 11 |
text\<open>This could be moved into a library.\<close> |
13543 | 12 |
|
13 |
consts |
|
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
14 |
rlist :: "[i,i]\<Rightarrow>i" |
13543 | 15 |
|
16 |
inductive |
|
17 |
domains "rlist(A,r)" \<subseteq> "list(A) * list(A)" |
|
18 |
intros |
|
19 |
shorterI: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
20 |
"\<lbrakk>length(l') < length(l); l' \<in> list(A); l \<in> list(A)\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
21 |
\<Longrightarrow> <l', l> \<in> rlist(A,r)" |
13543 | 22 |
|
23 |
sameI: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
24 |
"\<lbrakk><l',l> \<in> rlist(A,r); a \<in> A\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
25 |
\<Longrightarrow> <Cons(a,l'), Cons(a,l)> \<in> rlist(A,r)" |
13543 | 26 |
|
27 |
diffI: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
28 |
"\<lbrakk>length(l') = length(l); <a',a> \<in> r; |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
29 |
l' \<in> list(A); l \<in> list(A); a' \<in> A; a \<in> A\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
30 |
\<Longrightarrow> <Cons(a',l'), Cons(a,l)> \<in> rlist(A,r)" |
13543 | 31 |
type_intros list.intros |
32 |
||
33 |
||
60770 | 34 |
subsubsection\<open>Type checking\<close> |
13543 | 35 |
|
36 |
lemmas rlist_type = rlist.dom_subset |
|
37 |
||
38 |
lemmas field_rlist = rlist_type [THEN field_rel_subset] |
|
39 |
||
60770 | 40 |
subsubsection\<open>Linearity\<close> |
13543 | 41 |
|
42 |
lemma rlist_Nil_Cons [intro]: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
43 |
"\<lbrakk>a \<in> A; l \<in> list(A)\<rbrakk> \<Longrightarrow> <[], Cons(a,l)> \<in> rlist(A, r)" |
13692 | 44 |
by (simp add: shorterI) |
13543 | 45 |
|
46 |
lemma linear_rlist: |
|
47085 | 47 |
assumes r: "linear(A,r)" shows "linear(list(A),rlist(A,r))" |
48 |
proof - |
|
49 |
{ fix xs ys |
|
50 |
have "xs \<in> list(A) \<Longrightarrow> ys \<in> list(A) \<Longrightarrow> \<langle>xs,ys\<rangle> \<in> rlist(A,r) \<or> xs = ys \<or> \<langle>ys,xs\<rangle> \<in> rlist(A, r) " |
|
51 |
proof (induct xs arbitrary: ys rule: list.induct) |
|
52 |
case Nil |
|
53 |
thus ?case by (induct ys rule: list.induct) (auto simp add: shorterI) |
|
54 |
next |
|
55 |
case (Cons x xs) |
|
56 |
{ fix y ys |
|
57 |
assume "y \<in> A" and "ys \<in> list(A)" |
|
58 |
with Cons |
|
76214 | 59 |
have "\<langle>Cons(x,xs),Cons(y,ys)\<rangle> \<in> rlist(A,r) \<or> x=y \<and> xs = ys \<or> \<langle>Cons(y,ys), Cons(x,xs)\<rangle> \<in> rlist(A,r)" |
47085 | 60 |
apply (rule_tac i = "length(xs)" and j = "length(ys)" in Ord_linear_lt) |
61 |
apply (simp_all add: shorterI) |
|
62 |
apply (rule linearE [OF r, of x y]) |
|
63 |
apply (auto simp add: diffI intro: sameI) |
|
64 |
done |
|
65 |
} |
|
66 |
note yConsCase = this |
|
60770 | 67 |
show ?case using \<open>ys \<in> list(A)\<close> |
47085 | 68 |
by (cases rule: list.cases) (simp_all add: Cons rlist_Nil_Cons yConsCase) |
69 |
qed |
|
70 |
} |
|
71 |
thus ?thesis by (simp add: linear_def) |
|
72 |
qed |
|
13543 | 73 |
|
74 |
||
60770 | 75 |
subsubsection\<open>Well-foundedness\<close> |
13543 | 76 |
|
60770 | 77 |
text\<open>Nothing preceeds Nil in this ordering.\<close> |
13543 | 78 |
inductive_cases rlist_NilE: " <l,[]> \<in> rlist(A,r)" |
79 |
||
80 |
inductive_cases rlist_ConsE: " <l', Cons(x,l)> \<in> rlist(A,r)" |
|
81 |
||
82 |
lemma not_rlist_Nil [simp]: " <l,[]> \<notin> rlist(A,r)" |
|
83 |
by (blast intro: elim: rlist_NilE) |
|
84 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
85 |
lemma rlist_imp_length_le: "<l',l> \<in> rlist(A,r) \<Longrightarrow> length(l') \<le> length(l)" |
13543 | 86 |
apply (erule rlist.induct) |
13692 | 87 |
apply (simp_all add: leI) |
13543 | 88 |
done |
89 |
||
90 |
lemma wf_on_rlist_n: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
91 |
"\<lbrakk>n \<in> nat; wf[A](r)\<rbrakk> \<Longrightarrow> wf[{l \<in> list(A). length(l) = n}](rlist(A,r))" |
13692 | 92 |
apply (induct_tac n) |
93 |
apply (rule wf_onI2, simp) |
|
94 |
apply (rule wf_onI2, clarify) |
|
95 |
apply (erule_tac a=y in list.cases, clarify) |
|
13543 | 96 |
apply (simp (no_asm_use)) |
13692 | 97 |
apply clarify |
13543 | 98 |
apply (simp (no_asm_use)) |
46823 | 99 |
apply (subgoal_tac "\<forall>l2 \<in> list(A). length(l2) = x \<longrightarrow> Cons(a,l2) \<in> B", blast) |
13543 | 100 |
apply (erule_tac a=a in wf_on_induct, assumption) |
101 |
apply (rule ballI) |
|
13692 | 102 |
apply (rule impI) |
13543 | 103 |
apply (erule_tac a=l2 in wf_on_induct, blast, clarify) |
13692 | 104 |
apply (rename_tac a' l2 l') |
105 |
apply (drule_tac x="Cons(a',l')" in bspec, typecheck) |
|
106 |
apply simp |
|
107 |
apply (erule mp, clarify) |
|
13543 | 108 |
apply (erule rlist_ConsE, auto) |
109 |
done |
|
110 |
||
111 |
lemma list_eq_UN_length: "list(A) = (\<Union>n\<in>nat. {l \<in> list(A). length(l) = n})" |
|
112 |
by (blast intro: length_type) |
|
113 |
||
114 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
115 |
lemma wf_on_rlist: "wf[A](r) \<Longrightarrow> wf[list(A)](rlist(A,r))" |
13692 | 116 |
apply (subst list_eq_UN_length) |
117 |
apply (rule wf_on_Union) |
|
13543 | 118 |
apply (rule wf_imp_wf_on [OF wf_Memrel [of nat]]) |
119 |
apply (simp add: wf_on_rlist_n) |
|
13692 | 120 |
apply (frule rlist_type [THEN subsetD]) |
121 |
apply (simp add: length_type) |
|
13543 | 122 |
apply (drule rlist_imp_length_le) |
13692 | 123 |
apply (erule leE) |
124 |
apply (simp_all add: lt_def) |
|
13543 | 125 |
done |
126 |
||
127 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
128 |
lemma wf_rlist: "wf(r) \<Longrightarrow> wf(rlist(field(r),r))" |
13543 | 129 |
apply (simp add: wf_iff_wf_on_field) |
130 |
apply (rule wf_on_subset_A [OF _ field_rlist]) |
|
13692 | 131 |
apply (blast intro: wf_on_rlist) |
13543 | 132 |
done |
133 |
||
134 |
lemma well_ord_rlist: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
135 |
"well_ord(A,r) \<Longrightarrow> well_ord(list(A), rlist(A,r))" |
13543 | 136 |
apply (rule well_ordI) |
137 |
apply (simp add: well_ord_def wf_on_rlist) |
|
138 |
apply (simp add: well_ord_def tot_ord_def linear_rlist) |
|
139 |
done |
|
140 |
||
141 |
||
60770 | 142 |
subsection\<open>An Injection from Formulas into the Natural Numbers\<close> |
13543 | 143 |
|
69593 | 144 |
text\<open>There is a well-known bijection between \<^term>\<open>nat*nat\<close> and \<^term>\<open>nat\<close> given by the expression f(m,n) = triangle(m+n) + m, where triangle(k) |
13543 | 145 |
enumerates the triangular numbers and can be defined by triangle(0)=0, |
146 |
triangle(succ(k)) = succ(k + triangle(k)). Some small amount of effort is |
|
61798 | 147 |
needed to show that f is a bijection. We already know that such a bijection exists by the theorem \<open>well_ord_InfCard_square_eq\<close>: |
13692 | 148 |
@{thm[display] well_ord_InfCard_square_eq[no_vars]} |
13543 | 149 |
|
13692 | 150 |
However, this result merely states that there is a bijection between the two |
151 |
sets. It provides no means of naming a specific bijection. Therefore, we |
|
152 |
conduct the proofs under the assumption that a bijection exists. The simplest |
|
60770 | 153 |
way to organize this is to use a locale.\<close> |
13692 | 154 |
|
69593 | 155 |
text\<open>Locale for any arbitrary injection between \<^term>\<open>nat*nat\<close> |
156 |
and \<^term>\<open>nat\<close>\<close> |
|
13543 | 157 |
locale Nat_Times_Nat = |
158 |
fixes fn |
|
159 |
assumes fn_inj: "fn \<in> inj(nat*nat, nat)" |
|
160 |
||
161 |
||
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
162 |
consts enum :: "[i,i]\<Rightarrow>i" |
13543 | 163 |
primrec |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
164 |
"enum(f, Member(x,y)) = f ` <0, f ` \<langle>x,y\<rangle>>" |
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
165 |
"enum(f, Equal(x,y)) = f ` <1, f ` \<langle>x,y\<rangle>>" |
13543 | 166 |
"enum(f, Nand(p,q)) = f ` <2, f ` <enum(f,p), enum(f,q)>>" |
167 |
"enum(f, Forall(p)) = f ` <succ(2), enum(f,p)>" |
|
168 |
||
169 |
lemma (in Nat_Times_Nat) fn_type [TC,simp]: |
|
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
170 |
"\<lbrakk>x \<in> nat; y \<in> nat\<rbrakk> \<Longrightarrow> fn`\<langle>x,y\<rangle> \<in> nat" |
13692 | 171 |
by (blast intro: inj_is_fun [OF fn_inj] apply_funtype) |
13543 | 172 |
|
173 |
lemma (in Nat_Times_Nat) fn_iff: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
174 |
"\<lbrakk>x \<in> nat; y \<in> nat; u \<in> nat; v \<in> nat\<rbrakk> |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
175 |
\<Longrightarrow> (fn`\<langle>x,y\<rangle> = fn`\<langle>u,v\<rangle>) \<longleftrightarrow> (x=u \<and> y=v)" |
13692 | 176 |
by (blast dest: inj_apply_equality [OF fn_inj]) |
13543 | 177 |
|
178 |
lemma (in Nat_Times_Nat) enum_type [TC,simp]: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
179 |
"p \<in> formula \<Longrightarrow> enum(fn,p) \<in> nat" |
13692 | 180 |
by (induct_tac p, simp_all) |
13543 | 181 |
|
182 |
lemma (in Nat_Times_Nat) enum_inject [rule_format]: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
183 |
"p \<in> formula \<Longrightarrow> \<forall>q\<in>formula. enum(fn,p) = enum(fn,q) \<longrightarrow> p=q" |
13692 | 184 |
apply (induct_tac p, simp_all) |
185 |
apply (rule ballI) |
|
186 |
apply (erule formula.cases) |
|
187 |
apply (simp_all add: fn_iff) |
|
188 |
apply (rule ballI) |
|
189 |
apply (erule formula.cases) |
|
190 |
apply (simp_all add: fn_iff) |
|
191 |
apply (rule ballI) |
|
192 |
apply (erule_tac a=qa in formula.cases) |
|
193 |
apply (simp_all add: fn_iff) |
|
194 |
apply blast |
|
195 |
apply (rule ballI) |
|
196 |
apply (erule_tac a=q in formula.cases) |
|
197 |
apply (simp_all add: fn_iff, blast) |
|
13543 | 198 |
done |
199 |
||
200 |
lemma (in Nat_Times_Nat) inj_formula_nat: |
|
201 |
"(\<lambda>p \<in> formula. enum(fn,p)) \<in> inj(formula, nat)" |
|
13692 | 202 |
apply (simp add: inj_def lam_type) |
203 |
apply (blast intro: enum_inject) |
|
13543 | 204 |
done |
205 |
||
206 |
lemma (in Nat_Times_Nat) well_ord_formula: |
|
207 |
"well_ord(formula, measure(formula, enum(fn)))" |
|
208 |
apply (rule well_ord_measure, simp) |
|
13692 | 209 |
apply (blast intro: enum_inject) |
13543 | 210 |
done |
211 |
||
212 |
lemmas nat_times_nat_lepoll_nat = |
|
213 |
InfCard_nat [THEN InfCard_square_eqpoll, THEN eqpoll_imp_lepoll] |
|
214 |
||
215 |
||
60770 | 216 |
text\<open>Not needed--but interesting?\<close> |
13543 | 217 |
theorem formula_lepoll_nat: "formula \<lesssim> nat" |
218 |
apply (insert nat_times_nat_lepoll_nat) |
|
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
219 |
unfolding lepoll_def |
13692 | 220 |
apply (blast intro: Nat_Times_Nat.inj_formula_nat Nat_Times_Nat.intro) |
221 |
done |
|
222 |
||
223 |
||
69593 | 224 |
subsection\<open>Defining the Wellordering on \<^term>\<open>DPow(A)\<close>\<close> |
13692 | 225 |
|
69593 | 226 |
text\<open>The objective is to build a wellordering on \<^term>\<open>DPow(A)\<close> from a |
227 |
given one on \<^term>\<open>A\<close>. We first introduce wellorderings for environments, |
|
228 |
which are lists built over \<^term>\<open>A\<close>. We combine it with the enumeration of |
|
13692 | 229 |
formulas. The order type of the resulting wellordering gives us a map from |
69593 | 230 |
(environment, formula) pairs into the ordinals. For each member of \<^term>\<open>DPow(A)\<close>, we take the minimum such ordinal.\<close> |
13692 | 231 |
|
21233 | 232 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
233 |
env_form_r :: "[i,i,i]\<Rightarrow>i" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
234 |
\<comment> \<open>wellordering on (environment, formula) pairs\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
235 |
"env_form_r(f,r,A) \<equiv> |
13692 | 236 |
rmult(list(A), rlist(A, r), |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
237 |
formula, measure(formula, enum(f)))" |
13692 | 238 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
239 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
240 |
env_form_map :: "[i,i,i,i]\<Rightarrow>i" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
241 |
\<comment> \<open>map from (environment, formula) pairs to ordinals\<close> |
13692 | 242 |
"env_form_map(f,r,A,z) |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
243 |
\<equiv> ordermap(list(A) * formula, env_form_r(f,r,A)) ` z" |
13692 | 244 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
245 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
246 |
DPow_ord :: "[i,i,i,i,i]\<Rightarrow>o" where |
69593 | 247 |
\<comment> \<open>predicate that holds if \<^term>\<open>k\<close> is a valid index for \<^term>\<open>X\<close>\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
248 |
"DPow_ord(f,r,A,X,k) \<equiv> |
13692 | 249 |
\<exists>env \<in> list(A). \<exists>p \<in> formula. |
76214 | 250 |
arity(p) \<le> succ(length(env)) \<and> |
251 |
X = {x\<in>A. sats(A, p, Cons(x,env))} \<and> |
|
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
252 |
env_form_map(f,r,A,\<langle>env,p\<rangle>) = k" |
13692 | 253 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
254 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
255 |
DPow_least :: "[i,i,i,i]\<Rightarrow>i" where |
69593 | 256 |
\<comment> \<open>function yielding the smallest index for \<^term>\<open>X\<close>\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
257 |
"DPow_least(f,r,A,X) \<equiv> \<mu> k. DPow_ord(f,r,A,X,k)" |
13692 | 258 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
259 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
260 |
DPow_r :: "[i,i,i]\<Rightarrow>i" where |
69593 | 261 |
\<comment> \<open>a wellordering on \<^term>\<open>DPow(A)\<close>\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
262 |
"DPow_r(f,r,A) \<equiv> measure(DPow(A), DPow_least(f,r,A))" |
13692 | 263 |
|
264 |
||
265 |
lemma (in Nat_Times_Nat) well_ord_env_form_r: |
|
266 |
"well_ord(A,r) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
267 |
\<Longrightarrow> well_ord(list(A) * formula, env_form_r(fn,r,A))" |
13692 | 268 |
by (simp add: env_form_r_def well_ord_rmult well_ord_rlist well_ord_formula) |
269 |
||
270 |
lemma (in Nat_Times_Nat) Ord_env_form_map: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
271 |
"\<lbrakk>well_ord(A,r); z \<in> list(A) * formula\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
272 |
\<Longrightarrow> Ord(env_form_map(fn,r,A,z))" |
13692 | 273 |
by (simp add: env_form_map_def Ord_ordermap well_ord_env_form_r) |
274 |
||
13702 | 275 |
lemma DPow_imp_ex_DPow_ord: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
276 |
"X \<in> DPow(A) \<Longrightarrow> \<exists>k. DPow_ord(fn,r,A,X,k)" |
13702 | 277 |
apply (simp add: DPow_ord_def) |
13692 | 278 |
apply (blast dest!: DPowD) |
279 |
done |
|
280 |
||
13702 | 281 |
lemma (in Nat_Times_Nat) DPow_ord_imp_Ord: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
282 |
"\<lbrakk>DPow_ord(fn,r,A,X,k); well_ord(A,r)\<rbrakk> \<Longrightarrow> Ord(k)" |
13702 | 283 |
apply (simp add: DPow_ord_def, clarify) |
13692 | 284 |
apply (simp add: Ord_env_form_map) |
13543 | 285 |
done |
286 |
||
13702 | 287 |
lemma (in Nat_Times_Nat) DPow_imp_DPow_least: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
288 |
"\<lbrakk>X \<in> DPow(A); well_ord(A,r)\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
289 |
\<Longrightarrow> DPow_ord(fn, r, A, X, DPow_least(fn,r,A,X))" |
13702 | 290 |
apply (simp add: DPow_least_def) |
291 |
apply (blast dest: DPow_imp_ex_DPow_ord intro: DPow_ord_imp_Ord LeastI) |
|
13692 | 292 |
done |
293 |
||
294 |
lemma (in Nat_Times_Nat) env_form_map_inject: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
295 |
"\<lbrakk>env_form_map(fn,r,A,u) = env_form_map(fn,r,A,v); well_ord(A,r); |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
296 |
u \<in> list(A) * formula; v \<in> list(A) * formula\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
297 |
\<Longrightarrow> u=v" |
13692 | 298 |
apply (simp add: env_form_map_def) |
299 |
apply (rule inj_apply_equality [OF bij_is_inj, OF ordermap_bij, |
|
300 |
OF well_ord_env_form_r], assumption+) |
|
301 |
done |
|
302 |
||
13702 | 303 |
lemma (in Nat_Times_Nat) DPow_ord_unique: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
304 |
"\<lbrakk>DPow_ord(fn,r,A,X,k); DPow_ord(fn,r,A,Y,k); well_ord(A,r)\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
305 |
\<Longrightarrow> X=Y" |
13702 | 306 |
apply (simp add: DPow_ord_def, clarify) |
13692 | 307 |
apply (drule env_form_map_inject, auto) |
308 |
done |
|
309 |
||
13702 | 310 |
lemma (in Nat_Times_Nat) well_ord_DPow_r: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
311 |
"well_ord(A,r) \<Longrightarrow> well_ord(DPow(A), DPow_r(fn,r,A))" |
13702 | 312 |
apply (simp add: DPow_r_def) |
13692 | 313 |
apply (rule well_ord_measure) |
71417
89d05db6dd1f
Simplified, generalised version of Constructible due to E. Gunther, M. Pagano and P. Sánchez Terraf
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
314 |
apply (simp add: DPow_least_def) |
13702 | 315 |
apply (drule DPow_imp_DPow_least, assumption)+ |
13692 | 316 |
apply simp |
13702 | 317 |
apply (blast intro: DPow_ord_unique) |
13692 | 318 |
done |
319 |
||
320 |
lemma (in Nat_Times_Nat) DPow_r_type: |
|
13702 | 321 |
"DPow_r(fn,r,A) \<subseteq> DPow(A) * DPow(A)" |
322 |
by (simp add: DPow_r_def measure_def, blast) |
|
13692 | 323 |
|
13543 | 324 |
|
60770 | 325 |
subsection\<open>Limit Construction for Well-Orderings\<close> |
13543 | 326 |
|
60770 | 327 |
text\<open>Now we work towards the transfinite definition of wellorderings for |
69593 | 328 |
\<^term>\<open>Lset(i)\<close>. We assume as an inductive hypothesis that there is a family |
60770 | 329 |
of wellorderings for smaller ordinals.\<close> |
13543 | 330 |
|
21233 | 331 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
332 |
rlimit :: "[i,i\<Rightarrow>i]\<Rightarrow>i" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
333 |
\<comment> \<open>Expresses the wellordering at limit ordinals. The conditional |
69593 | 334 |
lets us remove the premise \<^term>\<open>Limit(i)\<close> from some theorems.\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
335 |
"rlimit(i,r) \<equiv> |
13702 | 336 |
if Limit(i) then |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
337 |
{z: Lset(i) * Lset(i). |
76214 | 338 |
\<exists>x' x. z = <x',x> \<and> |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
339 |
(lrank(x') < lrank(x) | |
76214 | 340 |
(lrank(x') = lrank(x) \<and> <x',x> \<in> r(succ(lrank(x)))))} |
13702 | 341 |
else 0" |
13692 | 342 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
343 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
344 |
Lset_new :: "i\<Rightarrow>i" where |
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
61798
diff
changeset
|
345 |
\<comment> \<open>This constant denotes the set of elements introduced at level |
69593 | 346 |
\<^term>\<open>succ(i)\<close>\<close> |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
347 |
"Lset_new(i) \<equiv> {x \<in> Lset(succ(i)). lrank(x) = i}" |
13543 | 348 |
|
349 |
lemma Limit_Lset_eq2: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
350 |
"Limit(i) \<Longrightarrow> Lset(i) = (\<Union>j\<in>i. Lset_new(j))" |
13692 | 351 |
apply (simp add: Limit_Lset_eq) |
13543 | 352 |
apply (rule equalityI) |
353 |
apply safe |
|
354 |
apply (subgoal_tac "Ord(y)") |
|
355 |
prefer 2 apply (blast intro: Ord_in_Ord Limit_is_Ord) |
|
13692 | 356 |
apply (simp_all add: Limit_is_Ord Lset_iff_lrank_lt Lset_new_def |
357 |
Ord_mem_iff_lt) |
|
358 |
apply (blast intro: lt_trans) |
|
13543 | 359 |
apply (rule_tac x = "succ(lrank(x))" in bexI) |
71417
89d05db6dd1f
Simplified, generalised version of Constructible due to E. Gunther, M. Pagano and P. Sánchez Terraf
paulson <lp15@cam.ac.uk>
parents:
69593
diff
changeset
|
360 |
apply (simp) |
13692 | 361 |
apply (blast intro: Limit_has_succ ltD) |
13543 | 362 |
done |
363 |
||
364 |
lemma wf_on_Lset: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
365 |
"wf[Lset(succ(j))](r(succ(j))) \<Longrightarrow> wf[Lset_new(j)](rlimit(i,r))" |
13692 | 366 |
apply (simp add: wf_on_def Lset_new_def) |
367 |
apply (erule wf_subset) |
|
13702 | 368 |
apply (simp add: rlimit_def, force) |
13543 | 369 |
done |
370 |
||
371 |
lemma wf_on_rlimit: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
372 |
"(\<forall>j<i. wf[Lset(j)](r(j))) \<Longrightarrow> wf[Lset(i)](rlimit(i,r))" |
13702 | 373 |
apply (case_tac "Limit(i)") |
374 |
prefer 2 |
|
375 |
apply (simp add: rlimit_def wf_on_any_0) |
|
13543 | 376 |
apply (simp add: Limit_Lset_eq2) |
377 |
apply (rule wf_on_Union) |
|
13692 | 378 |
apply (rule wf_imp_wf_on [OF wf_Memrel [of i]]) |
379 |
apply (blast intro: wf_on_Lset Limit_has_succ Limit_is_Ord ltI) |
|
13543 | 380 |
apply (force simp add: rlimit_def Limit_is_Ord Lset_iff_lrank_lt Lset_new_def |
381 |
Ord_mem_iff_lt) |
|
382 |
done |
|
383 |
||
384 |
lemma linear_rlimit: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
385 |
"\<lbrakk>Limit(i); \<forall>j<i. linear(Lset(j), r(j))\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
386 |
\<Longrightarrow> linear(Lset(i), rlimit(i,r))" |
13692 | 387 |
apply (frule Limit_is_Ord) |
388 |
apply (simp add: Limit_Lset_eq2 Lset_new_def) |
|
389 |
apply (simp add: linear_def rlimit_def Ball_def lt_Ord Lset_iff_lrank_lt) |
|
390 |
apply (simp add: ltI, clarify) |
|
391 |
apply (rename_tac u v) |
|
392 |
apply (rule_tac i="lrank(u)" and j="lrank(v)" in Ord_linear_lt, simp_all) |
|
46823 | 393 |
apply (drule_tac x="succ(lrank(u) \<union> lrank(v))" in ospec) |
13692 | 394 |
apply (simp add: ltI) |
395 |
apply (drule_tac x=u in spec, simp) |
|
396 |
apply (drule_tac x=v in spec, simp) |
|
13543 | 397 |
done |
398 |
||
399 |
lemma well_ord_rlimit: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
400 |
"\<lbrakk>Limit(i); \<forall>j<i. well_ord(Lset(j), r(j))\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
401 |
\<Longrightarrow> well_ord(Lset(i), rlimit(i,r))" |
13692 | 402 |
by (blast intro: well_ordI wf_on_rlimit well_ord_is_wf |
403 |
linear_rlimit well_ord_is_linear) |
|
13543 | 404 |
|
13702 | 405 |
lemma rlimit_cong: |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
406 |
"(\<And>j. j<i \<Longrightarrow> r'(j) = r(j)) \<Longrightarrow> rlimit(i,r) = rlimit(i,r')" |
13702 | 407 |
apply (simp add: rlimit_def, clarify) |
408 |
apply (rule refl iff_refl Collect_cong ex_cong conj_cong)+ |
|
409 |
apply (simp add: Limit_is_Ord Lset_lrank_lt) |
|
410 |
done |
|
411 |
||
13543 | 412 |
|
69593 | 413 |
subsection\<open>Transfinite Definition of the Wellordering on \<^term>\<open>L\<close>\<close> |
13543 | 414 |
|
21233 | 415 |
definition |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
416 |
L_r :: "[i, i] \<Rightarrow> i" where |
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
417 |
"L_r(f) \<equiv> \<lambda>i. |
13702 | 418 |
transrec3(i, 0, \<lambda>x r. DPow_r(f, r, Lset(x)), |
419 |
\<lambda>x r. rlimit(x, \<lambda>y. r`y))" |
|
13543 | 420 |
|
60770 | 421 |
subsubsection\<open>The Corresponding Recursion Equations\<close> |
13543 | 422 |
lemma [simp]: "L_r(f,0) = 0" |
13702 | 423 |
by (simp add: L_r_def) |
13543 | 424 |
|
13702 | 425 |
lemma [simp]: "L_r(f, succ(i)) = DPow_r(f, L_r(f,i), Lset(i))" |
426 |
by (simp add: L_r_def) |
|
13543 | 427 |
|
60770 | 428 |
text\<open>The limit case is non-trivial because of the distinction between |
429 |
object-level and meta-level abstraction.\<close> |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
430 |
lemma [simp]: "Limit(i) \<Longrightarrow> L_r(f,i) = rlimit(i, L_r(f))" |
13702 | 431 |
by (simp cong: rlimit_cong add: transrec3_Limit L_r_def ltD) |
13543 | 432 |
|
433 |
lemma (in Nat_Times_Nat) L_r_type: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
434 |
"Ord(i) \<Longrightarrow> L_r(fn,i) \<subseteq> Lset(i) * Lset(i)" |
46927 | 435 |
apply (induct i rule: trans_induct3) |
13692 | 436 |
apply (simp_all add: Lset_succ DPow_r_type well_ord_DPow_r rlimit_def |
437 |
Transset_subset_DPow [OF Transset_Lset], blast) |
|
13543 | 438 |
done |
439 |
||
440 |
lemma (in Nat_Times_Nat) well_ord_L_r: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
441 |
"Ord(i) \<Longrightarrow> well_ord(Lset(i), L_r(fn,i))" |
46927 | 442 |
apply (induct i rule: trans_induct3) |
13692 | 443 |
apply (simp_all add: well_ord0 Lset_succ L_r_type well_ord_DPow_r |
444 |
well_ord_rlimit ltD) |
|
13543 | 445 |
done |
446 |
||
447 |
lemma well_ord_L_r: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
71568
diff
changeset
|
448 |
"Ord(i) \<Longrightarrow> \<exists>r. well_ord(Lset(i), r)" |
13543 | 449 |
apply (insert nat_times_nat_lepoll_nat) |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
450 |
unfolding lepoll_def |
13692 | 451 |
apply (blast intro: Nat_Times_Nat.well_ord_L_r Nat_Times_Nat.intro) |
13543 | 452 |
done |
453 |
||
454 |
||
60770 | 455 |
text\<open>Every constructible set is well-ordered! Therefore the Wellordering Theorem and |
76220
cf8f85e2a807
fixed some theory presentation issues (?)
paulson <lp15@cam.ac.uk>
parents:
76216
diff
changeset
|
456 |
the Axiom of Choice hold in \<^term>\<open>L\<close>!\<close> |
47072 | 457 |
theorem L_implies_AC: assumes x: "L(x)" shows "\<exists>r. well_ord(x,r)" |
458 |
using Transset_Lset x |
|
13543 | 459 |
apply (simp add: Transset_def L_def) |
13692 | 460 |
apply (blast dest!: well_ord_L_r intro: well_ord_subset) |
13543 | 461 |
done |
462 |
||
71568
1005c50b2750
prefer strict qualification (default for 'interpretation', see 461ee3e49ad3) as proposed by Pedro Sánchez Terraf;
wenzelm
parents:
71417
diff
changeset
|
463 |
interpretation L: M_basic L by (rule M_basic_L) |
47084 | 464 |
|
465 |
theorem "\<forall>x[L]. \<exists>r. wellordered(L,x,r)" |
|
466 |
proof |
|
467 |
fix x |
|
468 |
assume "L(x)" |
|
469 |
then obtain r where "well_ord(x,r)" |
|
470 |
by (blast dest: L_implies_AC) |
|
471 |
thus "\<exists>r. wellordered(L,x,r)" |
|
71568
1005c50b2750
prefer strict qualification (default for 'interpretation', see 461ee3e49ad3) as proposed by Pedro Sánchez Terraf;
wenzelm
parents:
71417
diff
changeset
|
472 |
by (blast intro: L.well_ord_imp_relativized) |
47084 | 473 |
qed |
474 |
||
69593 | 475 |
text\<open>In order to prove \<^term>\<open> \<exists>r[L]. wellordered(L,x,r)\<close>, it's necessary to know |
476 |
that \<^term>\<open>r\<close> is actually constructible. It follows from the assumption ``\<^term>\<open>V\<close> equals \<^term>\<open>L''\<close>, |
|
60770 | 477 |
but this reasoning doesn't appear to work in Isabelle.\<close> |
47072 | 478 |
|
13543 | 479 |
end |