| 
12610
 | 
     1  | 
(*  Title:      ZF/Induct/ListN.thy
  | 
| 
12088
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     3  | 
    Copyright   1994  University of Cambridge
  | 
| 
12610
 | 
     4  | 
*)
  | 
| 
12088
 | 
     5  | 
  | 
| 
12610
 | 
     6  | 
header {* Lists of n elements *}
 | 
| 
12088
 | 
     7  | 
  | 
| 
16417
 | 
     8  | 
theory ListN imports Main begin
  | 
| 
12088
 | 
     9  | 
  | 
| 
12610
 | 
    10  | 
text {*
 | 
| 
 | 
    11  | 
  Inductive definition of lists of @{text n} elements; see
 | 
| 
 | 
    12  | 
  \cite{paulin-tlca}.
 | 
| 
 | 
    13  | 
*}
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
consts listn :: "i=>i"
  | 
| 
12088
 | 
    16  | 
inductive
  | 
| 
12610
 | 
    17  | 
  domains "listn(A)" \<subseteq> "nat \<times> list(A)"
  | 
| 
12560
 | 
    18  | 
  intros
  | 
| 
12610
 | 
    19  | 
    NilI: "<0,Nil> \<in> listn(A)"
  | 
| 
12560
 | 
    20  | 
    ConsI: "[| a \<in> A; <n,l> \<in> listn(A) |] ==> <succ(n), Cons(a,l)> \<in> listn(A)"
  | 
| 
12610
 | 
    21  | 
  type_intros nat_typechecks list.intros
  | 
| 
12560
 | 
    22  | 
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma list_into_listn: "l \<in> list(A) ==> <length(l),l> \<in> listn(A)"
  | 
| 
18415
 | 
    25  | 
  by (induct set: list) (simp_all add: listn.intros)
  | 
| 
12560
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma listn_iff: "<n,l> \<in> listn(A) <-> l \<in> list(A) & length(l)=n"
  | 
| 
12610
 | 
    28  | 
  apply (rule iffI)
  | 
| 
 | 
    29  | 
   apply (erule listn.induct)
  | 
| 
 | 
    30  | 
    apply auto
  | 
| 
 | 
    31  | 
  apply (blast intro: list_into_listn)
  | 
| 
 | 
    32  | 
  done
  | 
| 
12560
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma listn_image_eq: "listn(A)``{n} = {l \<in> list(A). length(l)=n}"
 | 
| 
12610
 | 
    35  | 
  apply (rule equality_iffI)
  | 
| 
 | 
    36  | 
  apply (simp add: listn_iff separation image_singleton_iff)
  | 
| 
 | 
    37  | 
  done
  | 
| 
12560
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma listn_mono: "A \<subseteq> B ==> listn(A) \<subseteq> listn(B)"
  | 
| 
12610
 | 
    40  | 
  apply (unfold listn.defs)
  | 
| 
 | 
    41  | 
  apply (rule lfp_mono)
  | 
| 
 | 
    42  | 
    apply (rule listn.bnd_mono)+
  | 
| 
 | 
    43  | 
  apply (assumption | rule univ_mono Sigma_mono list_mono basic_monos)+
  | 
| 
 | 
    44  | 
  done
  | 
| 
12560
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma listn_append:
  | 
| 
12610
 | 
    47  | 
    "[| <n,l> \<in> listn(A); <n',l'> \<in> listn(A) |] ==> <n#+n', l@l'> \<in> listn(A)"
  | 
| 
 | 
    48  | 
  apply (erule listn.induct)
  | 
| 
 | 
    49  | 
   apply (frule listn.dom_subset [THEN subsetD])
  | 
| 
 | 
    50  | 
   apply (simp_all add: listn.intros)
  | 
| 
 | 
    51  | 
  done
  | 
| 
12560
 | 
    52  | 
  | 
| 
12610
 | 
    53  | 
inductive_cases
  | 
| 
 | 
    54  | 
      Nil_listn_case: "<i,Nil> \<in> listn(A)"
  | 
| 
 | 
    55  | 
  and Cons_listn_case: "<i,Cons(x,l)> \<in> listn(A)"
  | 
| 
12560
 | 
    56  | 
  | 
| 
12610
 | 
    57  | 
inductive_cases
  | 
| 
 | 
    58  | 
      zero_listn_case: "<0,l> \<in> listn(A)"
  | 
| 
 | 
    59  | 
  and succ_listn_case: "<succ(i),l> \<in> listn(A)"
  | 
| 
12088
 | 
    60  | 
  | 
| 
 | 
    61  | 
end
  |