60450
|
1 |
(* Title: HOL/Isar_Examples/Structured_Statements.thy
|
|
2 |
Author: Makarius
|
|
3 |
*)
|
|
4 |
|
|
5 |
section \<open>Structured statements within Isar proofs\<close>
|
|
6 |
|
|
7 |
theory Structured_Statements
|
|
8 |
imports Main
|
|
9 |
begin
|
|
10 |
|
60470
|
11 |
subsection \<open>Introduction steps\<close>
|
|
12 |
|
60450
|
13 |
notepad
|
|
14 |
begin
|
60470
|
15 |
fix A B :: bool
|
|
16 |
fix P :: "'a \<Rightarrow> bool"
|
60450
|
17 |
|
60470
|
18 |
have "A \<longrightarrow> B"
|
|
19 |
proof
|
|
20 |
show B if A using that sorry
|
|
21 |
qed
|
|
22 |
|
|
23 |
have "\<not> A"
|
|
24 |
proof
|
|
25 |
show False if A using that sorry
|
|
26 |
qed
|
|
27 |
|
|
28 |
have "\<forall>x. P x"
|
|
29 |
proof
|
|
30 |
show "P x" for x sorry
|
|
31 |
qed
|
|
32 |
end
|
|
33 |
|
|
34 |
|
|
35 |
subsection \<open>If-and-only-if\<close>
|
|
36 |
|
|
37 |
notepad
|
|
38 |
begin
|
|
39 |
fix A B :: bool
|
|
40 |
|
|
41 |
have "A \<longleftrightarrow> B"
|
|
42 |
proof
|
|
43 |
show B if A sorry
|
|
44 |
show A if B sorry
|
|
45 |
qed
|
|
46 |
next
|
60450
|
47 |
fix A B :: bool
|
|
48 |
|
|
49 |
have iff_comm: "(A \<and> B) \<longleftrightarrow> (B \<and> A)"
|
|
50 |
proof
|
|
51 |
show "B \<and> A" if "A \<and> B"
|
|
52 |
proof
|
|
53 |
show B using that ..
|
|
54 |
show A using that ..
|
|
55 |
qed
|
|
56 |
show "A \<and> B" if "B \<and> A"
|
|
57 |
proof
|
|
58 |
show A using that ..
|
|
59 |
show B using that ..
|
|
60 |
qed
|
|
61 |
qed
|
|
62 |
|
|
63 |
text \<open>Alternative proof, avoiding redundant copy of symmetric argument.\<close>
|
|
64 |
have iff_comm: "(A \<and> B) \<longleftrightarrow> (B \<and> A)"
|
|
65 |
proof
|
|
66 |
show "B \<and> A" if "A \<and> B" for A B
|
|
67 |
proof
|
|
68 |
show B using that ..
|
|
69 |
show A using that ..
|
|
70 |
qed
|
|
71 |
then show "A \<and> B" if "B \<and> A"
|
|
72 |
by this (rule that)
|
|
73 |
qed
|
60470
|
74 |
end
|
60450
|
75 |
|
60470
|
76 |
|
|
77 |
subsection \<open>Elimination and cases\<close>
|
|
78 |
|
|
79 |
notepad
|
|
80 |
begin
|
|
81 |
fix A B C D :: bool
|
|
82 |
assume *: "A \<or> B \<or> C \<or> D"
|
|
83 |
|
|
84 |
consider (a) A | (b) B | (c) C | (d) D
|
|
85 |
using * by blast
|
|
86 |
then have something
|
|
87 |
proof cases
|
|
88 |
case a thm \<open>A\<close>
|
|
89 |
then show ?thesis sorry
|
|
90 |
next
|
|
91 |
case b thm \<open>B\<close>
|
|
92 |
then show ?thesis sorry
|
|
93 |
next
|
|
94 |
case c thm \<open>C\<close>
|
|
95 |
then show ?thesis sorry
|
|
96 |
next
|
|
97 |
case d thm \<open>D\<close>
|
|
98 |
then show ?thesis sorry
|
|
99 |
qed
|
|
100 |
next
|
|
101 |
fix A :: "'a \<Rightarrow> bool"
|
|
102 |
fix B :: "'b \<Rightarrow> 'c \<Rightarrow> bool"
|
|
103 |
assume *: "(\<exists>x. A x) \<or> (\<exists>y z. B y z)"
|
|
104 |
|
|
105 |
consider (a) x where "A x" | (b) y z where "B y z"
|
|
106 |
using * by blast
|
|
107 |
then have something
|
|
108 |
proof cases
|
|
109 |
case a thm \<open>A x\<close>
|
|
110 |
then show ?thesis sorry
|
|
111 |
next
|
|
112 |
case b thm \<open>B y z\<close>
|
|
113 |
then show ?thesis sorry
|
|
114 |
qed
|
|
115 |
end
|
|
116 |
|
|
117 |
|
|
118 |
subsection \<open>Induction\<close>
|
|
119 |
|
|
120 |
notepad
|
|
121 |
begin
|
|
122 |
fix P :: "nat \<Rightarrow> bool"
|
|
123 |
fix n :: nat
|
|
124 |
|
|
125 |
have "P n"
|
|
126 |
proof (induct n)
|
|
127 |
show "P 0" sorry
|
|
128 |
show "P (Suc n)" if "P n" for n thm \<open>P n\<close>
|
|
129 |
using that sorry
|
|
130 |
qed
|
60450
|
131 |
end
|
|
132 |
|
|
133 |
end |