| 
0
 | 
     1  | 
(*  Title: 	FOLP/ex/nat.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Examples for the manual "Introduction to Isabelle"
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Proofs about the natural numbers
  | 
| 
 | 
     9  | 
  | 
| 
 | 
    10  | 
To generate similar output to manual, execute these commands:
  | 
| 
 | 
    11  | 
    Pretty.setmargin 72; print_depth 0;
  | 
| 
 | 
    12  | 
*)
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
open Nat;
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
goal Nat.thy "?p : ~ (Suc(k) = k)";
  | 
| 
 | 
    17  | 
by (res_inst_tac [("n","k")] induct 1);
 | 
| 
 | 
    18  | 
by (rtac notI 1);
  | 
| 
 | 
    19  | 
by (etac Suc_neq_0 1);
  | 
| 
 | 
    20  | 
by (rtac notI 1);
  | 
| 
 | 
    21  | 
by (etac notE 1);
  | 
| 
 | 
    22  | 
by (etac Suc_inject 1);
  | 
| 
 | 
    23  | 
val Suc_n_not_n = result();
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
goal Nat.thy "?p : (k+m)+n = k+(m+n)";
  | 
| 
 | 
    27  | 
prths ([induct] RL [topthm()]);  (*prints all 14 next states!*)
  | 
| 
 | 
    28  | 
by (rtac induct 1);
  | 
| 
 | 
    29  | 
back();
  | 
| 
 | 
    30  | 
back();
  | 
| 
 | 
    31  | 
back();
  | 
| 
 | 
    32  | 
back();
  | 
| 
 | 
    33  | 
back();
  | 
| 
 | 
    34  | 
back();
  | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
goalw Nat.thy [add_def] "?p : 0+n = n";
  | 
| 
 | 
    37  | 
by (rtac rec_0 1);
  | 
| 
 | 
    38  | 
val add_0 = result();
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
goalw Nat.thy [add_def] "?p : Suc(m)+n = Suc(m+n)";
  | 
| 
 | 
    41  | 
by (rtac rec_Suc 1);
  | 
| 
 | 
    42  | 
val add_Suc = result();
  | 
| 
 | 
    43  | 
  | 
| 
 | 
    44  | 
(*
  | 
| 
 | 
    45  | 
val nat_congs = mk_congs Nat.thy ["Suc", "op +"];
  | 
| 
 | 
    46  | 
prths nat_congs;
  | 
| 
 | 
    47  | 
*)
  | 
| 
 | 
    48  | 
val prems = goal Nat.thy "p: x=y ==> ?p : Suc(x) = Suc(y)";
  | 
| 
 | 
    49  | 
by (resolve_tac (prems RL [subst]) 1);
  | 
| 
 | 
    50  | 
by (rtac refl 1);
  | 
| 
 | 
    51  | 
val Suc_cong = result();
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
val prems = goal Nat.thy "[| p : a=x;  q: b=y |] ==> ?p : a+b=x+y";
  | 
| 
 | 
    54  | 
by (resolve_tac (prems RL [subst]) 1 THEN resolve_tac (prems RL [subst]) 1 THEN 
  | 
| 
 | 
    55  | 
    rtac refl 1);
  | 
| 
 | 
    56  | 
val Plus_cong = result();
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
val nat_congs = [Suc_cong,Plus_cong];
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
val add_ss = FOLP_ss  addcongs nat_congs  
  | 
| 
 | 
    62  | 
	             addrews  [add_0, add_Suc];
  | 
| 
 | 
    63  | 
  | 
| 
 | 
    64  | 
goal Nat.thy "?p : (k+m)+n = k+(m+n)";
  | 
| 
 | 
    65  | 
by (res_inst_tac [("n","k")] induct 1);
 | 
| 
 | 
    66  | 
by (SIMP_TAC add_ss 1);
  | 
| 
 | 
    67  | 
by (ASM_SIMP_TAC add_ss 1);
  | 
| 
 | 
    68  | 
val add_assoc = result();
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
goal Nat.thy "?p : m+0 = m";
  | 
| 
 | 
    71  | 
by (res_inst_tac [("n","m")] induct 1);
 | 
| 
 | 
    72  | 
by (SIMP_TAC add_ss 1);
  | 
| 
 | 
    73  | 
by (ASM_SIMP_TAC add_ss 1);
  | 
| 
 | 
    74  | 
val add_0_right = result();
  | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
goal Nat.thy "?p : m+Suc(n) = Suc(m+n)";
  | 
| 
 | 
    77  | 
by (res_inst_tac [("n","m")] induct 1);
 | 
| 
 | 
    78  | 
by (ALLGOALS (ASM_SIMP_TAC add_ss));
  | 
| 
 | 
    79  | 
val add_Suc_right = result();
  | 
| 
 | 
    80  | 
  | 
| 
 | 
    81  | 
(*mk_typed_congs appears not to work with FOLP's version of subst*)
  | 
| 
 | 
    82  | 
  |