| author | wenzelm | 
| Sat, 17 Jan 2015 23:33:21 +0100 | |
| changeset 59387 | d15a96149703 | 
| parent 59106 | af691e67f71f | 
| child 59452 | 2538b2c51769 | 
| permissions | -rw-r--r-- | 
| 52265 | 1 | (* Title: HOL/Topological_Spaces.thy | 
| 51471 | 2 | Author: Brian Huffman | 
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 58889 | 6 | section {* Topological Spaces *}
 | 
| 51471 | 7 | |
| 8 | theory Topological_Spaces | |
| 51773 | 9 | imports Main Conditionally_Complete_Lattices | 
| 51471 | 10 | begin | 
| 11 | ||
| 57953 | 12 | named_theorems continuous_intros "structural introduction rules for continuity" | 
| 13 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 14 | |
| 51471 | 15 | subsection {* Topological space *}
 | 
| 16 | ||
| 17 | class "open" = | |
| 18 | fixes "open" :: "'a set \<Rightarrow> bool" | |
| 19 | ||
| 20 | class topological_space = "open" + | |
| 21 | assumes open_UNIV [simp, intro]: "open UNIV" | |
| 22 | assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" | |
| 23 | assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)" | |
| 24 | begin | |
| 25 | ||
| 26 | definition | |
| 27 | closed :: "'a set \<Rightarrow> bool" where | |
| 28 | "closed S \<longleftrightarrow> open (- S)" | |
| 29 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 30 | lemma open_empty [continuous_intros, intro, simp]: "open {}"
 | 
| 51471 | 31 |   using open_Union [of "{}"] by simp
 | 
| 32 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 33 | lemma open_Un [continuous_intros, intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)" | 
| 51471 | 34 |   using open_Union [of "{S, T}"] by simp
 | 
| 35 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 36 | lemma open_UN [continuous_intros, intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)" | 
| 56166 | 37 | using open_Union [of "B ` A"] by simp | 
| 51471 | 38 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 39 | lemma open_Inter [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)" | 
| 51471 | 40 | by (induct set: finite) auto | 
| 41 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 42 | lemma open_INT [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)" | 
| 56166 | 43 | using open_Inter [of "B ` A"] by simp | 
| 51471 | 44 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 45 | lemma openI: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 46 | assumes "\<And>x. x \<in> S \<Longrightarrow> \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 47 | shows "open S" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 48 | proof - | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 49 |   have "open (\<Union>{T. open T \<and> T \<subseteq> S})" by auto
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 50 |   moreover have "\<Union>{T. open T \<and> T \<subseteq> S} = S" by (auto dest!: assms)
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 51 | ultimately show "open S" by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 52 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 53 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 54 | lemma closed_empty [continuous_intros, intro, simp]:  "closed {}"
 | 
| 51471 | 55 | unfolding closed_def by simp | 
| 56 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 57 | lemma closed_Un [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)" | 
| 51471 | 58 | unfolding closed_def by auto | 
| 59 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 60 | lemma closed_UNIV [continuous_intros, intro, simp]: "closed UNIV" | 
| 51471 | 61 | unfolding closed_def by simp | 
| 62 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 63 | lemma closed_Int [continuous_intros, intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)" | 
| 51471 | 64 | unfolding closed_def by auto | 
| 65 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 66 | lemma closed_INT [continuous_intros, intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)" | 
| 51471 | 67 | unfolding closed_def by auto | 
| 68 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 69 | lemma closed_Inter [continuous_intros, intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)" | 
| 51471 | 70 | unfolding closed_def uminus_Inf by auto | 
| 71 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 72 | lemma closed_Union [continuous_intros, intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)" | 
| 51471 | 73 | by (induct set: finite) auto | 
| 74 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 75 | lemma closed_UN [continuous_intros, intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)" | 
| 56166 | 76 | using closed_Union [of "B ` A"] by simp | 
| 51471 | 77 | |
| 78 | lemma open_closed: "open S \<longleftrightarrow> closed (- S)" | |
| 79 | unfolding closed_def by simp | |
| 80 | ||
| 81 | lemma closed_open: "closed S \<longleftrightarrow> open (- S)" | |
| 82 | unfolding closed_def by simp | |
| 83 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 84 | lemma open_Diff [continuous_intros, intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)" | 
| 51471 | 85 | unfolding closed_open Diff_eq by (rule open_Int) | 
| 86 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 87 | lemma closed_Diff [continuous_intros, intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)" | 
| 51471 | 88 | unfolding open_closed Diff_eq by (rule closed_Int) | 
| 89 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 90 | lemma open_Compl [continuous_intros, intro]: "closed S \<Longrightarrow> open (- S)" | 
| 51471 | 91 | unfolding closed_open . | 
| 92 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 93 | lemma closed_Compl [continuous_intros, intro]: "open S \<Longrightarrow> closed (- S)" | 
| 51471 | 94 | unfolding open_closed . | 
| 95 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 96 | lemma open_Collect_neg: "closed {x. P x} \<Longrightarrow> open {x. \<not> P x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 97 | unfolding Collect_neg_eq by (rule open_Compl) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 98 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 99 | lemma open_Collect_conj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<and> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 100 | using open_Int[OF assms] by (simp add: Int_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 101 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 102 | lemma open_Collect_disj: assumes "open {x. P x}" "open {x. Q x}" shows "open {x. P x \<or> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 103 | using open_Un[OF assms] by (simp add: Un_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 104 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 105 | lemma open_Collect_ex: "(\<And>i. open {x. P i x}) \<Longrightarrow> open {x. \<exists>i. P i x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 106 |   using open_UN[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_ex_eq by simp 
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 107 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 108 | lemma open_Collect_imp: "closed {x. P x} \<Longrightarrow> open {x. Q x} \<Longrightarrow> open {x. P x \<longrightarrow> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 109 | unfolding imp_conv_disj by (intro open_Collect_disj open_Collect_neg) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 110 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 111 | lemma open_Collect_const: "open {x. P}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 112 | by (cases P) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 113 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 114 | lemma closed_Collect_neg: "open {x. P x} \<Longrightarrow> closed {x. \<not> P x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 115 | unfolding Collect_neg_eq by (rule closed_Compl) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 116 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 117 | lemma closed_Collect_conj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<and> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 118 | using closed_Int[OF assms] by (simp add: Int_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 119 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 120 | lemma closed_Collect_disj: assumes "closed {x. P x}" "closed {x. Q x}" shows "closed {x. P x \<or> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 121 | using closed_Un[OF assms] by (simp add: Un_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 122 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 123 | lemma closed_Collect_all: "(\<And>i. closed {x. P i x}) \<Longrightarrow> closed {x. \<forall>i. P i x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 124 |   using closed_INT[of UNIV "\<lambda>i. {x. P i x}"] unfolding Collect_all_eq by simp 
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 125 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 126 | lemma closed_Collect_imp: "open {x. P x} \<Longrightarrow> closed {x. Q x} \<Longrightarrow> closed {x. P x \<longrightarrow> Q x}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 127 | unfolding imp_conv_disj by (intro closed_Collect_disj closed_Collect_neg) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 128 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 129 | lemma closed_Collect_const: "closed {x. P}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 130 | by (cases P) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 131 | |
| 51471 | 132 | end | 
| 133 | ||
| 134 | subsection{* Hausdorff and other separation properties *}
 | |
| 135 | ||
| 136 | class t0_space = topological_space + | |
| 137 | assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)" | |
| 138 | ||
| 139 | class t1_space = topological_space + | |
| 140 | assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U" | |
| 141 | ||
| 142 | instance t1_space \<subseteq> t0_space | |
| 143 | proof qed (fast dest: t1_space) | |
| 144 | ||
| 145 | lemma separation_t1: | |
| 146 | fixes x y :: "'a::t1_space" | |
| 147 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)" | |
| 148 | using t1_space[of x y] by blast | |
| 149 | ||
| 150 | lemma closed_singleton: | |
| 151 | fixes a :: "'a::t1_space" | |
| 152 |   shows "closed {a}"
 | |
| 153 | proof - | |
| 154 |   let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
 | |
| 155 | have "open ?T" by (simp add: open_Union) | |
| 156 |   also have "?T = - {a}"
 | |
| 157 | by (simp add: set_eq_iff separation_t1, auto) | |
| 158 |   finally show "closed {a}" unfolding closed_def .
 | |
| 159 | qed | |
| 160 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 161 | lemma closed_insert [continuous_intros, simp]: | 
| 51471 | 162 | fixes a :: "'a::t1_space" | 
| 163 | assumes "closed S" shows "closed (insert a S)" | |
| 164 | proof - | |
| 165 | from closed_singleton assms | |
| 166 |   have "closed ({a} \<union> S)" by (rule closed_Un)
 | |
| 167 | thus "closed (insert a S)" by simp | |
| 168 | qed | |
| 169 | ||
| 170 | lemma finite_imp_closed: | |
| 171 | fixes S :: "'a::t1_space set" | |
| 172 | shows "finite S \<Longrightarrow> closed S" | |
| 173 | by (induct set: finite, simp_all) | |
| 174 | ||
| 175 | text {* T2 spaces are also known as Hausdorff spaces. *}
 | |
| 176 | ||
| 177 | class t2_space = topological_space + | |
| 178 |   assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 179 | ||
| 180 | instance t2_space \<subseteq> t1_space | |
| 181 | proof qed (fast dest: hausdorff) | |
| 182 | ||
| 183 | lemma separation_t2: | |
| 184 | fixes x y :: "'a::t2_space" | |
| 185 |   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
 | |
| 186 | using hausdorff[of x y] by blast | |
| 187 | ||
| 188 | lemma separation_t0: | |
| 189 | fixes x y :: "'a::t0_space" | |
| 190 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))" | |
| 191 | using t0_space[of x y] by blast | |
| 192 | ||
| 193 | text {* A perfect space is a topological space with no isolated points. *}
 | |
| 194 | ||
| 195 | class perfect_space = topological_space + | |
| 196 |   assumes not_open_singleton: "\<not> open {x}"
 | |
| 197 | ||
| 198 | ||
| 199 | subsection {* Generators for toplogies *}
 | |
| 200 | ||
| 201 | inductive generate_topology for S where | |
| 202 | UNIV: "generate_topology S UNIV" | |
| 203 | | Int: "generate_topology S a \<Longrightarrow> generate_topology S b \<Longrightarrow> generate_topology S (a \<inter> b)" | |
| 204 | | UN: "(\<And>k. k \<in> K \<Longrightarrow> generate_topology S k) \<Longrightarrow> generate_topology S (\<Union>K)" | |
| 205 | | Basis: "s \<in> S \<Longrightarrow> generate_topology S s" | |
| 206 | ||
| 207 | hide_fact (open) UNIV Int UN Basis | |
| 208 | ||
| 209 | lemma generate_topology_Union: | |
| 210 | "(\<And>k. k \<in> I \<Longrightarrow> generate_topology S (K k)) \<Longrightarrow> generate_topology S (\<Union>k\<in>I. K k)" | |
| 56166 | 211 | using generate_topology.UN [of "K ` I"] by auto | 
| 51471 | 212 | |
| 213 | lemma topological_space_generate_topology: | |
| 214 | "class.topological_space (generate_topology S)" | |
| 215 | by default (auto intro: generate_topology.intros) | |
| 216 | ||
| 217 | subsection {* Order topologies *}
 | |
| 218 | ||
| 219 | class order_topology = order + "open" + | |
| 220 |   assumes open_generated_order: "open = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 221 | begin | |
| 222 | ||
| 223 | subclass topological_space | |
| 224 | unfolding open_generated_order | |
| 225 | by (rule topological_space_generate_topology) | |
| 226 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 227 | lemma open_greaterThan [continuous_intros, simp]: "open {a <..}"
 | 
| 51471 | 228 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | 
| 229 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 230 | lemma open_lessThan [continuous_intros, simp]: "open {..< a}"
 | 
| 51471 | 231 | unfolding open_generated_order by (auto intro: generate_topology.Basis) | 
| 232 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 233 | lemma open_greaterThanLessThan [continuous_intros, simp]: "open {a <..< b}"
 | 
| 51471 | 234 | unfolding greaterThanLessThan_eq by (simp add: open_Int) | 
| 235 | ||
| 236 | end | |
| 237 | ||
| 238 | class linorder_topology = linorder + order_topology | |
| 239 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 240 | lemma closed_atMost [continuous_intros, simp]: "closed {.. a::'a::linorder_topology}"
 | 
| 51471 | 241 | by (simp add: closed_open) | 
| 242 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 243 | lemma closed_atLeast [continuous_intros, simp]: "closed {a::'a::linorder_topology ..}"
 | 
| 51471 | 244 | by (simp add: closed_open) | 
| 245 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 246 | lemma closed_atLeastAtMost [continuous_intros, simp]: "closed {a::'a::linorder_topology .. b}"
 | 
| 51471 | 247 | proof - | 
| 248 |   have "{a .. b} = {a ..} \<inter> {.. b}"
 | |
| 249 | by auto | |
| 250 | then show ?thesis | |
| 251 | by (simp add: closed_Int) | |
| 252 | qed | |
| 253 | ||
| 254 | lemma (in linorder) less_separate: | |
| 255 | assumes "x < y" | |
| 256 |   shows "\<exists>a b. x \<in> {..< a} \<and> y \<in> {b <..} \<and> {..< a} \<inter> {b <..} = {}"
 | |
| 53381 | 257 | proof (cases "\<exists>z. x < z \<and> z < y") | 
| 258 | case True | |
| 259 | then obtain z where "x < z \<and> z < y" .. | |
| 51471 | 260 |   then have "x \<in> {..< z} \<and> y \<in> {z <..} \<and> {z <..} \<inter> {..< z} = {}"
 | 
| 261 | by auto | |
| 262 | then show ?thesis by blast | |
| 263 | next | |
| 53381 | 264 | case False | 
| 51471 | 265 |   with `x < y` have "x \<in> {..< y} \<and> y \<in> {x <..} \<and> {x <..} \<inter> {..< y} = {}"
 | 
| 266 | by auto | |
| 267 | then show ?thesis by blast | |
| 268 | qed | |
| 269 | ||
| 270 | instance linorder_topology \<subseteq> t2_space | |
| 271 | proof | |
| 272 | fix x y :: 'a | |
| 273 | from less_separate[of x y] less_separate[of y x] | |
| 274 |   show "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 275 | by (elim neqE) (metis open_lessThan open_greaterThan Int_commute)+ | |
| 276 | qed | |
| 277 | ||
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 278 | lemma (in linorder_topology) open_right: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 279 |   assumes "open S" "x \<in> S" and gt_ex: "x < y" shows "\<exists>b>x. {x ..< b} \<subseteq> S"
 | 
| 51471 | 280 | using assms unfolding open_generated_order | 
| 281 | proof induction | |
| 282 | case (Int A B) | |
| 283 |   then obtain a b where "a > x" "{x ..< a} \<subseteq> A"  "b > x" "{x ..< b} \<subseteq> B" by auto
 | |
| 284 | then show ?case by (auto intro!: exI[of _ "min a b"]) | |
| 285 | next | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 286 | case (Basis S) then show ?case by (fastforce intro: exI[of _ y] gt_ex) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 287 | qed blast+ | 
| 51471 | 288 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 289 | lemma (in linorder_topology) open_left: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 290 |   assumes "open S" "x \<in> S" and lt_ex: "y < x" shows "\<exists>b<x. {b <.. x} \<subseteq> S"
 | 
| 51471 | 291 | using assms unfolding open_generated_order | 
| 292 | proof induction | |
| 293 | case (Int A B) | |
| 294 |   then obtain a b where "a < x" "{a <.. x} \<subseteq> A"  "b < x" "{b <.. x} \<subseteq> B" by auto
 | |
| 295 | then show ?case by (auto intro!: exI[of _ "max a b"]) | |
| 296 | next | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 297 | case (Basis S) then show ?case by (fastforce intro: exI[of _ y] lt_ex) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 298 | qed blast+ | 
| 51471 | 299 | |
| 59106 | 300 | subsubsection {* Boolean is an order topology *}
 | 
| 301 | ||
| 302 | text {* It also is a discrete topology, but don't have a type class for it (yet). *}
 | |
| 303 | ||
| 304 | instantiation bool :: order_topology | |
| 305 | begin | |
| 306 | ||
| 307 | definition open_bool :: "bool set \<Rightarrow> bool" where | |
| 308 |   "open_bool = generate_topology (range (\<lambda>a. {..< a}) \<union> range (\<lambda>a. {a <..}))"
 | |
| 309 | ||
| 310 | instance | |
| 311 | proof qed (rule open_bool_def) | |
| 312 | ||
| 313 | end | |
| 314 | ||
| 315 | lemma open_bool[simp, intro!]: "open (A::bool set)" | |
| 316 | proof - | |
| 317 |   have *: "{False <..} = {True}" "{..< True} = {False}"
 | |
| 318 | by auto | |
| 319 |   have "A = UNIV \<or> A = {} \<or> A = {False <..} \<or> A = {..< True}"
 | |
| 320 | using subset_UNIV[of A] unfolding UNIV_bool * by auto | |
| 321 | then show "open A" | |
| 322 | by auto | |
| 323 | qed | |
| 324 | ||
| 51471 | 325 | subsection {* Filters *}
 | 
| 326 | ||
| 327 | text {*
 | |
| 328 | This definition also allows non-proper filters. | |
| 329 | *} | |
| 330 | ||
| 331 | locale is_filter = | |
| 332 |   fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | |
| 333 | assumes True: "F (\<lambda>x. True)" | |
| 334 | assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)" | |
| 335 | assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)" | |
| 336 | ||
| 337 | typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
 | |
| 338 | proof | |
| 339 | show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro) | |
| 340 | qed | |
| 341 | ||
| 342 | lemma is_filter_Rep_filter: "is_filter (Rep_filter F)" | |
| 343 | using Rep_filter [of F] by simp | |
| 344 | ||
| 345 | lemma Abs_filter_inverse': | |
| 346 | assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F" | |
| 347 | using assms by (simp add: Abs_filter_inverse) | |
| 348 | ||
| 349 | ||
| 350 | subsubsection {* Eventually *}
 | |
| 351 | ||
| 352 | definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | |
| 353 | where "eventually P F \<longleftrightarrow> Rep_filter F P" | |
| 354 | ||
| 355 | lemma eventually_Abs_filter: | |
| 356 | assumes "is_filter F" shows "eventually P (Abs_filter F) = F P" | |
| 357 | unfolding eventually_def using assms by (simp add: Abs_filter_inverse) | |
| 358 | ||
| 359 | lemma filter_eq_iff: | |
| 360 | shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')" | |
| 361 | unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def .. | |
| 362 | ||
| 363 | lemma eventually_True [simp]: "eventually (\<lambda>x. True) F" | |
| 364 | unfolding eventually_def | |
| 365 | by (rule is_filter.True [OF is_filter_Rep_filter]) | |
| 366 | ||
| 367 | lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F" | |
| 368 | proof - | |
| 369 | assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext) | |
| 370 | thus "eventually P F" by simp | |
| 371 | qed | |
| 372 | ||
| 373 | lemma eventually_mono: | |
| 374 | "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> eventually P F \<Longrightarrow> eventually Q F" | |
| 375 | unfolding eventually_def | |
| 376 | by (rule is_filter.mono [OF is_filter_Rep_filter]) | |
| 377 | ||
| 378 | lemma eventually_conj: | |
| 379 | assumes P: "eventually (\<lambda>x. P x) F" | |
| 380 | assumes Q: "eventually (\<lambda>x. Q x) F" | |
| 381 | shows "eventually (\<lambda>x. P x \<and> Q x) F" | |
| 382 | using assms unfolding eventually_def | |
| 383 | by (rule is_filter.conj [OF is_filter_Rep_filter]) | |
| 384 | ||
| 385 | lemma eventually_Ball_finite: | |
| 386 | assumes "finite A" and "\<forall>y\<in>A. eventually (\<lambda>x. P x y) net" | |
| 387 | shows "eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" | |
| 388 | using assms by (induct set: finite, simp, simp add: eventually_conj) | |
| 389 | ||
| 390 | lemma eventually_all_finite: | |
| 391 | fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" | |
| 392 | assumes "\<And>y. eventually (\<lambda>x. P x y) net" | |
| 393 | shows "eventually (\<lambda>x. \<forall>y. P x y) net" | |
| 394 | using eventually_Ball_finite [of UNIV P] assms by simp | |
| 395 | ||
| 396 | lemma eventually_mp: | |
| 397 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 398 | assumes "eventually (\<lambda>x. P x) F" | |
| 399 | shows "eventually (\<lambda>x. Q x) F" | |
| 400 | proof (rule eventually_mono) | |
| 401 | show "\<forall>x. (P x \<longrightarrow> Q x) \<and> P x \<longrightarrow> Q x" by simp | |
| 402 | show "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F" | |
| 403 | using assms by (rule eventually_conj) | |
| 404 | qed | |
| 405 | ||
| 406 | lemma eventually_rev_mp: | |
| 407 | assumes "eventually (\<lambda>x. P x) F" | |
| 408 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 409 | shows "eventually (\<lambda>x. Q x) F" | |
| 410 | using assms(2) assms(1) by (rule eventually_mp) | |
| 411 | ||
| 412 | lemma eventually_conj_iff: | |
| 413 | "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F" | |
| 414 | by (auto intro: eventually_conj elim: eventually_rev_mp) | |
| 415 | ||
| 416 | lemma eventually_elim1: | |
| 417 | assumes "eventually (\<lambda>i. P i) F" | |
| 418 | assumes "\<And>i. P i \<Longrightarrow> Q i" | |
| 419 | shows "eventually (\<lambda>i. Q i) F" | |
| 420 | using assms by (auto elim!: eventually_rev_mp) | |
| 421 | ||
| 422 | lemma eventually_elim2: | |
| 423 | assumes "eventually (\<lambda>i. P i) F" | |
| 424 | assumes "eventually (\<lambda>i. Q i) F" | |
| 425 | assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i" | |
| 426 | shows "eventually (\<lambda>i. R i) F" | |
| 427 | using assms by (auto elim!: eventually_rev_mp) | |
| 428 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 429 | lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 430 | by (auto intro: eventually_mp) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 431 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 432 | lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 433 | by (metis always_eventually) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 434 | |
| 51471 | 435 | lemma eventually_subst: | 
| 436 | assumes "eventually (\<lambda>n. P n = Q n) F" | |
| 437 | shows "eventually P F = eventually Q F" (is "?L = ?R") | |
| 438 | proof - | |
| 439 | from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 440 | and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F" | |
| 441 | by (auto elim: eventually_elim1) | |
| 442 | then show ?thesis by (auto elim: eventually_elim2) | |
| 443 | qed | |
| 444 | ||
| 445 | ML {*
 | |
| 56231 
b98813774a63
enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
 wenzelm parents: 
56166diff
changeset | 446 | fun eventually_elim_tac ctxt thms = SUBGOAL_CASES (fn (_, _, st) => | 
| 51471 | 447 | let | 
| 448 | val thy = Proof_Context.theory_of ctxt | |
| 449 |       val mp_thms = thms RL [@{thm eventually_rev_mp}]
 | |
| 450 | val raw_elim_thm = | |
| 451 |         (@{thm allI} RS @{thm always_eventually})
 | |
| 452 | |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms | |
| 453 |         |> fold (fn _ => fn thm => @{thm impI} RS thm) thms
 | |
| 56231 
b98813774a63
enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
 wenzelm parents: 
56166diff
changeset | 454 | val cases_prop = prop_of (raw_elim_thm RS st) | 
| 51471 | 455 |       val cases = (Rule_Cases.make_common (thy, cases_prop) [(("elim", []), [])])
 | 
| 456 | in | |
| 56231 
b98813774a63
enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
 wenzelm parents: 
56166diff
changeset | 457 | CASES cases (rtac raw_elim_thm 1) | 
| 
b98813774a63
enforce subgoal boundaries via SUBGOAL/SUBGOAL_CASES -- clean tactical failure if out-of-range;
 wenzelm parents: 
56166diff
changeset | 458 | end) 1 | 
| 51471 | 459 | *} | 
| 460 | ||
| 461 | method_setup eventually_elim = {*
 | |
| 462 | Scan.succeed (fn ctxt => METHOD_CASES (eventually_elim_tac ctxt)) | |
| 463 | *} "elimination of eventually quantifiers" | |
| 464 | ||
| 465 | ||
| 466 | subsubsection {* Finer-than relation *}
 | |
| 467 | ||
| 468 | text {* @{term "F \<le> F'"} means that filter @{term F} is finer than
 | |
| 469 | filter @{term F'}. *}
 | |
| 470 | ||
| 471 | instantiation filter :: (type) complete_lattice | |
| 472 | begin | |
| 473 | ||
| 474 | definition le_filter_def: | |
| 475 | "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)" | |
| 476 | ||
| 477 | definition | |
| 478 | "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F" | |
| 479 | ||
| 480 | definition | |
| 481 | "top = Abs_filter (\<lambda>P. \<forall>x. P x)" | |
| 482 | ||
| 483 | definition | |
| 484 | "bot = Abs_filter (\<lambda>P. True)" | |
| 485 | ||
| 486 | definition | |
| 487 | "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')" | |
| 488 | ||
| 489 | definition | |
| 490 | "inf F F' = Abs_filter | |
| 491 | (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 492 | ||
| 493 | definition | |
| 494 | "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)" | |
| 495 | ||
| 496 | definition | |
| 497 |   "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
 | |
| 498 | ||
| 499 | lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)" | |
| 500 | unfolding top_filter_def | |
| 501 | by (rule eventually_Abs_filter, rule is_filter.intro, auto) | |
| 502 | ||
| 503 | lemma eventually_bot [simp]: "eventually P bot" | |
| 504 | unfolding bot_filter_def | |
| 505 | by (subst eventually_Abs_filter, rule is_filter.intro, auto) | |
| 506 | ||
| 507 | lemma eventually_sup: | |
| 508 | "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'" | |
| 509 | unfolding sup_filter_def | |
| 510 | by (rule eventually_Abs_filter, rule is_filter.intro) | |
| 511 | (auto elim!: eventually_rev_mp) | |
| 512 | ||
| 513 | lemma eventually_inf: | |
| 514 | "eventually P (inf F F') \<longleftrightarrow> | |
| 515 | (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 516 | unfolding inf_filter_def | |
| 517 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 518 | apply (fast intro: eventually_True) | |
| 519 | apply clarify | |
| 520 | apply (intro exI conjI) | |
| 521 | apply (erule (1) eventually_conj) | |
| 522 | apply (erule (1) eventually_conj) | |
| 523 | apply simp | |
| 524 | apply auto | |
| 525 | done | |
| 526 | ||
| 527 | lemma eventually_Sup: | |
| 528 | "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)" | |
| 529 | unfolding Sup_filter_def | |
| 530 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 531 | apply (auto intro: eventually_conj elim!: eventually_rev_mp) | |
| 532 | done | |
| 533 | ||
| 534 | instance proof | |
| 535 | fix F F' F'' :: "'a filter" and S :: "'a filter set" | |
| 536 |   { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
 | |
| 537 | by (rule less_filter_def) } | |
| 538 |   { show "F \<le> F"
 | |
| 539 | unfolding le_filter_def by simp } | |
| 540 |   { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
 | |
| 541 | unfolding le_filter_def by simp } | |
| 542 |   { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
 | |
| 543 | unfolding le_filter_def filter_eq_iff by fast } | |
| 544 |   { show "inf F F' \<le> F" and "inf F F' \<le> F'"
 | |
| 545 | unfolding le_filter_def eventually_inf by (auto intro: eventually_True) } | |
| 546 |   { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
 | |
| 547 | unfolding le_filter_def eventually_inf | |
| 548 | by (auto elim!: eventually_mono intro: eventually_conj) } | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 549 |   { show "F \<le> sup F F'" and "F' \<le> sup F F'"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 550 | unfolding le_filter_def eventually_sup by simp_all } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 551 |   { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 552 | unfolding le_filter_def eventually_sup by simp } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 553 |   { assume "F'' \<in> S" thus "Inf S \<le> F''"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 554 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 555 |   { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 556 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | 
| 51471 | 557 |   { assume "F \<in> S" thus "F \<le> Sup S"
 | 
| 558 | unfolding le_filter_def eventually_Sup by simp } | |
| 559 |   { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
 | |
| 560 | unfolding le_filter_def eventually_Sup by simp } | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 561 |   { show "Inf {} = (top::'a filter)"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 562 | by (auto simp: top_filter_def Inf_filter_def Sup_filter_def) | 
| 53859 | 563 | (metis (full_types) top_filter_def always_eventually eventually_top) } | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 564 |   { show "Sup {} = (bot::'a filter)"
 | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52265diff
changeset | 565 | by (auto simp: bot_filter_def Sup_filter_def) } | 
| 51471 | 566 | qed | 
| 567 | ||
| 568 | end | |
| 569 | ||
| 570 | lemma filter_leD: | |
| 571 | "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F" | |
| 572 | unfolding le_filter_def by simp | |
| 573 | ||
| 574 | lemma filter_leI: | |
| 575 | "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'" | |
| 576 | unfolding le_filter_def by simp | |
| 577 | ||
| 578 | lemma eventually_False: | |
| 579 | "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot" | |
| 580 | unfolding filter_eq_iff by (auto elim: eventually_rev_mp) | |
| 581 | ||
| 582 | abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool" | |
| 583 | where "trivial_limit F \<equiv> F = bot" | |
| 584 | ||
| 585 | lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F" | |
| 586 | by (rule eventually_False [symmetric]) | |
| 587 | ||
| 588 | lemma eventually_const: "\<not> trivial_limit net \<Longrightarrow> eventually (\<lambda>x. P) net \<longleftrightarrow> P" | |
| 589 | by (cases P) (simp_all add: eventually_False) | |
| 590 | ||
| 57276 | 591 | lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))" | 
| 592 | proof - | |
| 593 | let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)" | |
| 594 | ||
| 595 |   { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
 | |
| 596 | proof (rule eventually_Abs_filter is_filter.intro)+ | |
| 597 | show "?F (\<lambda>x. True)" | |
| 598 |         by (rule exI[of _ "{}"]) (simp add: le_fun_def)
 | |
| 599 | next | |
| 600 | fix P Q | |
| 601 | assume "?F P" then guess X .. | |
| 602 | moreover | |
| 603 | assume "?F Q" then guess Y .. | |
| 604 | ultimately show "?F (\<lambda>x. P x \<and> Q x)" | |
| 605 | by (intro exI[of _ "X \<union> Y"]) | |
| 606 | (auto simp: Inf_union_distrib eventually_inf) | |
| 607 | next | |
| 608 | fix P Q | |
| 609 | assume "?F P" then guess X .. | |
| 610 | moreover assume "\<forall>x. P x \<longrightarrow> Q x" | |
| 611 | ultimately show "?F Q" | |
| 612 | by (intro exI[of _ X]) (auto elim: eventually_elim1) | |
| 613 | qed } | |
| 614 | note eventually_F = this | |
| 615 | ||
| 616 | have "Inf B = Abs_filter ?F" | |
| 617 | proof (intro antisym Inf_greatest) | |
| 618 | show "Inf B \<le> Abs_filter ?F" | |
| 619 | by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono) | |
| 620 | next | |
| 621 | fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F" | |
| 622 |       by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
 | |
| 623 | qed | |
| 624 | then show ?thesis | |
| 625 | by (simp add: eventually_F) | |
| 626 | qed | |
| 627 | ||
| 628 | lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))" | |
| 629 | unfolding INF_def[of B] eventually_Inf[of P "F`B"] | |
| 630 | by (metis Inf_image_eq finite_imageI image_mono finite_subset_image) | |
| 631 | ||
| 632 | lemma Inf_filter_not_bot: | |
| 633 | fixes B :: "'a filter set" | |
| 634 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot" | |
| 635 | unfolding trivial_limit_def eventually_Inf[of _ B] | |
| 636 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | |
| 637 | ||
| 638 | lemma INF_filter_not_bot: | |
| 639 | fixes F :: "'i \<Rightarrow> 'a filter" | |
| 640 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot" | |
| 641 | unfolding trivial_limit_def eventually_INF[of _ B] | |
| 642 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | |
| 643 | ||
| 644 | lemma eventually_Inf_base: | |
| 645 |   assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
 | |
| 646 | shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)" | |
| 647 | proof (subst eventually_Inf, safe) | |
| 648 | fix X assume "finite X" "X \<subseteq> B" | |
| 649 | then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x" | |
| 650 | proof induct | |
| 651 | case empty then show ?case | |
| 652 |       using `B \<noteq> {}` by auto
 | |
| 653 | next | |
| 654 | case (insert x X) | |
| 655 | then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x" | |
| 656 | by auto | |
| 657 | with `insert x X \<subseteq> B` base[of b x] show ?case | |
| 658 | by (auto intro: order_trans) | |
| 659 | qed | |
| 660 | then obtain b where "b \<in> B" "b \<le> Inf X" | |
| 661 | by (auto simp: le_Inf_iff) | |
| 662 | then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)" | |
| 663 | by (intro bexI[of _ b]) (auto simp: le_filter_def) | |
| 664 | qed (auto intro!: exI[of _ "{x}" for x])
 | |
| 665 | ||
| 666 | lemma eventually_INF_base: | |
| 667 |   "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
 | |
| 668 | eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))" | |
| 669 | unfolding INF_def by (subst eventually_Inf_base) auto | |
| 670 | ||
| 51471 | 671 | |
| 672 | subsubsection {* Map function for filters *}
 | |
| 673 | ||
| 674 | definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
 | |
| 675 | where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)" | |
| 676 | ||
| 677 | lemma eventually_filtermap: | |
| 678 | "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F" | |
| 679 | unfolding filtermap_def | |
| 680 | apply (rule eventually_Abs_filter) | |
| 681 | apply (rule is_filter.intro) | |
| 682 | apply (auto elim!: eventually_rev_mp) | |
| 683 | done | |
| 684 | ||
| 685 | lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F" | |
| 686 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 687 | ||
| 688 | lemma filtermap_filtermap: | |
| 689 | "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F" | |
| 690 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 691 | ||
| 692 | lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'" | |
| 693 | unfolding le_filter_def eventually_filtermap by simp | |
| 694 | ||
| 695 | lemma filtermap_bot [simp]: "filtermap f bot = bot" | |
| 696 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 697 | ||
| 698 | lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)" | |
| 699 | by (auto simp: filter_eq_iff eventually_filtermap eventually_sup) | |
| 700 | ||
| 57276 | 701 | lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)" | 
| 702 | by (auto simp: le_filter_def eventually_filtermap eventually_inf) | |
| 703 | ||
| 704 | lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))" | |
| 705 | proof - | |
| 706 |   { fix X :: "'c set" assume "finite X"
 | |
| 707 | then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))" | |
| 708 | proof induct | |
| 709 | case (insert x X) | |
| 710 | have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))" | |
| 711 | by (rule order_trans[OF _ filtermap_inf]) simp | |
| 712 | also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))" | |
| 713 | by (intro inf_mono insert order_refl) | |
| 714 | finally show ?case | |
| 715 | by simp | |
| 716 | qed simp } | |
| 717 | then show ?thesis | |
| 718 | unfolding le_filter_def eventually_filtermap | |
| 719 | by (subst (1 2) eventually_INF) auto | |
| 51471 | 720 | qed | 
| 721 | subsubsection {* Standard filters *}
 | |
| 722 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 723 | definition principal :: "'a set \<Rightarrow> 'a filter" where | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 724 | "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 725 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 726 | lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 727 | unfolding principal_def | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 728 | by (rule eventually_Abs_filter, rule is_filter.intro) auto | 
| 51471 | 729 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 730 | lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 731 | unfolding eventually_inf eventually_principal by (auto elim: eventually_elim1) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 732 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 733 | lemma principal_UNIV[simp]: "principal UNIV = top" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 734 | by (auto simp: filter_eq_iff eventually_principal) | 
| 51471 | 735 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 736 | lemma principal_empty[simp]: "principal {} = bot"
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 737 | by (auto simp: filter_eq_iff eventually_principal) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 738 | |
| 57276 | 739 | lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
 | 
| 740 | by (auto simp add: filter_eq_iff eventually_principal) | |
| 741 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 742 | lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 743 | by (auto simp: le_filter_def eventually_principal) | 
| 51471 | 744 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 745 | lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 746 | unfolding le_filter_def eventually_principal | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 747 | apply safe | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 748 | apply (erule_tac x="\<lambda>x. x \<in> A" in allE) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 749 | apply (auto elim: eventually_elim1) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 750 | done | 
| 51471 | 751 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 752 | lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 753 | unfolding eq_iff by simp | 
| 51471 | 754 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 755 | lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 756 | unfolding filter_eq_iff eventually_sup eventually_principal by auto | 
| 51471 | 757 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 758 | lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 759 | unfolding filter_eq_iff eventually_inf eventually_principal | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 760 | by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | 
| 51471 | 761 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 762 | lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 763 | unfolding filter_eq_iff eventually_Sup SUP_def by (auto simp: eventually_principal) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 764 | |
| 57276 | 765 | lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)" | 
| 766 | by (induct X rule: finite_induct) auto | |
| 767 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 768 | lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 769 | unfolding filter_eq_iff eventually_filtermap eventually_principal by simp | 
| 51471 | 770 | |
| 57276 | 771 | subsubsection {* Order filters *}
 | 
| 772 | ||
| 773 | definition at_top :: "('a::order) filter"
 | |
| 774 |   where "at_top = (INF k. principal {k ..})"
 | |
| 775 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 776 | lemma at_top_sub: "at_top = (INF k:{c::'a::linorder..}. principal {k ..})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 777 | by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 778 | |
| 57276 | 779 | lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)" | 
| 780 | unfolding at_top_def | |
| 781 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 782 | ||
| 783 | lemma eventually_ge_at_top: | |
| 784 | "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top" | |
| 785 | unfolding eventually_at_top_linorder by auto | |
| 786 | ||
| 787 | lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
 | |
| 788 | proof - | |
| 789 |   have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
 | |
| 790 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 791 |   also have "(INF k. principal {k::'a <..}) = at_top"
 | |
| 792 | unfolding at_top_def | |
| 793 | by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex) | |
| 794 | finally show ?thesis . | |
| 795 | qed | |
| 796 | ||
| 797 | lemma eventually_gt_at_top: | |
| 798 | "eventually (\<lambda>x. (c::_::unbounded_dense_linorder) < x) at_top" | |
| 799 | unfolding eventually_at_top_dense by auto | |
| 800 | ||
| 801 | definition at_bot :: "('a::order) filter"
 | |
| 802 |   where "at_bot = (INF k. principal {.. k})"
 | |
| 803 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 804 | lemma at_bot_sub: "at_bot = (INF k:{.. c::'a::linorder}. principal {.. k})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 805 | by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 806 | |
| 57276 | 807 | lemma eventually_at_bot_linorder: | 
| 808 | fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)" | |
| 809 | unfolding at_bot_def | |
| 810 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 811 | ||
| 812 | lemma eventually_le_at_bot: | |
| 813 | "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot" | |
| 814 | unfolding eventually_at_bot_linorder by auto | |
| 815 | ||
| 816 | lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
 | |
| 817 | proof - | |
| 818 |   have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
 | |
| 819 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 820 |   also have "(INF k. principal {..< k::'a}) = at_bot"
 | |
| 821 | unfolding at_bot_def | |
| 822 | by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex) | |
| 823 | finally show ?thesis . | |
| 824 | qed | |
| 825 | ||
| 826 | lemma eventually_gt_at_bot: | |
| 827 | "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot" | |
| 828 | unfolding eventually_at_bot_dense by auto | |
| 829 | ||
| 830 | lemma trivial_limit_at_bot_linorder: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
 | |
| 831 | unfolding trivial_limit_def | |
| 832 | by (metis eventually_at_bot_linorder order_refl) | |
| 833 | ||
| 834 | lemma trivial_limit_at_top_linorder: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
 | |
| 835 | unfolding trivial_limit_def | |
| 836 | by (metis eventually_at_top_linorder order_refl) | |
| 837 | ||
| 838 | subsection {* Sequentially *}
 | |
| 839 | ||
| 840 | abbreviation sequentially :: "nat filter" | |
| 841 | where "sequentially \<equiv> at_top" | |
| 842 | ||
| 843 | lemma eventually_sequentially: | |
| 844 | "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)" | |
| 845 | by (rule eventually_at_top_linorder) | |
| 846 | ||
| 847 | lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot" | |
| 848 | unfolding filter_eq_iff eventually_sequentially by auto | |
| 849 | ||
| 850 | lemmas trivial_limit_sequentially = sequentially_bot | |
| 851 | ||
| 852 | lemma eventually_False_sequentially [simp]: | |
| 853 | "\<not> eventually (\<lambda>n. False) sequentially" | |
| 854 | by (simp add: eventually_False) | |
| 855 | ||
| 856 | lemma le_sequentially: | |
| 857 | "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)" | |
| 858 | by (simp add: at_top_def le_INF_iff le_principal) | |
| 859 | ||
| 860 | lemma eventually_sequentiallyI: | |
| 861 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | |
| 862 | shows "eventually P sequentially" | |
| 863 | using assms by (auto simp: eventually_sequentially) | |
| 864 | ||
| 865 | lemma eventually_sequentially_seg: | |
| 866 | "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially" | |
| 867 | unfolding eventually_sequentially | |
| 868 | apply safe | |
| 869 | apply (rule_tac x="N + k" in exI) | |
| 870 | apply rule | |
| 871 | apply (erule_tac x="n - k" in allE) | |
| 872 | apply auto [] | |
| 873 | apply (rule_tac x=N in exI) | |
| 874 | apply auto [] | |
| 875 | done | |
| 876 | ||
| 51471 | 877 | subsubsection {* Topological filters *}
 | 
| 878 | ||
| 879 | definition (in topological_space) nhds :: "'a \<Rightarrow> 'a filter" | |
| 57276 | 880 |   where "nhds a = (INF S:{S. open S \<and> a \<in> S}. principal S)"
 | 
| 51471 | 881 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 882 | definition (in topological_space) at_within :: "'a \<Rightarrow> 'a set \<Rightarrow> 'a filter" ("at (_) within (_)" [1000, 60] 60)
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 883 |   where "at a within s = inf (nhds a) (principal (s - {a}))"
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 884 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 885 | abbreviation (in topological_space) at :: "'a \<Rightarrow> 'a filter" ("at") where
 | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 886 | "at x \<equiv> at x within (CONST UNIV)" | 
| 51471 | 887 | |
| 51473 | 888 | abbreviation (in order_topology) at_right :: "'a \<Rightarrow> 'a filter" where | 
| 51471 | 889 |   "at_right x \<equiv> at x within {x <..}"
 | 
| 890 | ||
| 51473 | 891 | abbreviation (in order_topology) at_left :: "'a \<Rightarrow> 'a filter" where | 
| 51471 | 892 |   "at_left x \<equiv> at x within {..< x}"
 | 
| 893 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 894 | lemma (in topological_space) nhds_generated_topology: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 895 |   "open = generate_topology T \<Longrightarrow> nhds x = (INF S:{S\<in>T. x \<in> S}. principal S)"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 896 | unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 897 | proof (safe intro!: antisym INF_greatest) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 898 | fix S assume "generate_topology T S" "x \<in> S" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 899 |   then show "(INF S:{S \<in> T. x \<in> S}. principal S) \<le> principal S"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 900 | by induction | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 901 | (auto intro: INF_lower order_trans simp add: inf_principal[symmetric] simp del: inf_principal) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 902 | qed (auto intro!: INF_lower intro: generate_topology.intros) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 903 | |
| 51473 | 904 | lemma (in topological_space) eventually_nhds: | 
| 51471 | 905 | "eventually P (nhds a) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. P x))" | 
| 57276 | 906 | unfolding nhds_def by (subst eventually_INF_base) (auto simp: eventually_principal) | 
| 51471 | 907 | |
| 908 | lemma nhds_neq_bot [simp]: "nhds a \<noteq> bot" | |
| 909 | unfolding trivial_limit_def eventually_nhds by simp | |
| 910 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 911 | lemma at_within_eq: "at x within s = (INF S:{S. open S \<and> x \<in> S}. principal (S \<inter> s - {x}))"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 912 | unfolding nhds_def at_within_def by (subst INF_inf_const2[symmetric]) (auto simp add: Diff_Int_distrib) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 913 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 914 | lemma eventually_at_filter: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 915 | "eventually P (at a within s) \<longleftrightarrow> eventually (\<lambda>x. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x) (nhds a)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 916 | unfolding at_within_def eventually_inf_principal by (simp add: imp_conjL[symmetric] conj_commute) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 917 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 918 | lemma at_le: "s \<subseteq> t \<Longrightarrow> at x within s \<le> at x within t" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 919 | unfolding at_within_def by (intro inf_mono) auto | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 920 | |
| 51471 | 921 | lemma eventually_at_topological: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 922 | "eventually P (at a within s) \<longleftrightarrow> (\<exists>S. open S \<and> a \<in> S \<and> (\<forall>x\<in>S. x \<noteq> a \<longrightarrow> x \<in> s \<longrightarrow> P x))" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 923 | unfolding eventually_nhds eventually_at_filter by simp | 
| 51471 | 924 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 925 | lemma at_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> at a within S = at a" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 926 | unfolding filter_eq_iff eventually_at_topological by (metis open_Int Int_iff UNIV_I) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 927 | |
| 53859 | 928 | lemma at_within_empty [simp]: "at a within {} = bot"
 | 
| 929 | unfolding at_within_def by simp | |
| 930 | ||
| 53860 | 931 | lemma at_within_union: "at x within (S \<union> T) = sup (at x within S) (at x within T)" | 
| 932 | unfolding filter_eq_iff eventually_sup eventually_at_filter | |
| 933 | by (auto elim!: eventually_rev_mp) | |
| 934 | ||
| 51471 | 935 | lemma at_eq_bot_iff: "at a = bot \<longleftrightarrow> open {a}"
 | 
| 936 | unfolding trivial_limit_def eventually_at_topological | |
| 937 |   by (safe, case_tac "S = {a}", simp, fast, fast)
 | |
| 938 | ||
| 939 | lemma at_neq_bot [simp]: "at (a::'a::perfect_space) \<noteq> bot" | |
| 940 | by (simp add: at_eq_bot_iff not_open_singleton) | |
| 941 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 942 | lemma (in order_topology) nhds_order: "nhds x = | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 943 |   inf (INF a:{x <..}. principal {..< a}) (INF a:{..< x}. principal {a <..})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 944 | proof - | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 945 |   have 1: "{S \<in> range lessThan \<union> range greaterThan. x \<in> S} = 
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 946 |       (\<lambda>a. {..< a}) ` {x <..} \<union> (\<lambda>a. {a <..}) ` {..< x}"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 947 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 948 | show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 949 | unfolding nhds_generated_topology[OF open_generated_order] INF_union 1 INF_image comp_def .. | 
| 51471 | 950 | qed | 
| 951 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 952 | lemma (in linorder_topology) at_within_order: "UNIV \<noteq> {x} \<Longrightarrow> 
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 953 |   at x within s = inf (INF a:{x <..}. principal ({..< a} \<inter> s - {x}))
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 954 |                       (INF a:{..< x}. principal ({a <..} \<inter> s - {x}))"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 955 | proof (cases "{x <..} = {}" "{..< x} = {}" rule: case_split[case_product case_split])
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 956 |   assume "UNIV \<noteq> {x}" "{x<..} = {}" "{..< x} = {}"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 957 |   moreover have "UNIV = {..< x} \<union> {x} \<union> {x <..}"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 958 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 959 | ultimately show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 960 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 961 | qed (auto simp: at_within_def nhds_order Int_Diff inf_principal[symmetric] INF_inf_const2 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 962 | inf_sup_aci[where 'a="'a filter"] | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 963 | simp del: inf_principal) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 964 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 965 | lemma (in linorder_topology) at_left_eq: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 966 |   "y < x \<Longrightarrow> at_left x = (INF a:{..< x}. principal {a <..< x})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 967 | by (subst at_within_order) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 968 | (auto simp: greaterThan_Int_greaterThan greaterThanLessThan_eq[symmetric] min.absorb2 INF_constant | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 969 | intro!: INF_lower2 inf_absorb2) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 970 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 971 | lemma (in linorder_topology) eventually_at_left: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 972 | "y < x \<Longrightarrow> eventually P (at_left x) \<longleftrightarrow> (\<exists>b<x. \<forall>y>b. y < x \<longrightarrow> P y)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 973 | unfolding at_left_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 974 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 975 | lemma (in linorder_topology) at_right_eq: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 976 |   "x < y \<Longrightarrow> at_right x = (INF a:{x <..}. principal {x <..< a})"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 977 | by (subst at_within_order) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 978 | (auto simp: lessThan_Int_lessThan greaterThanLessThan_eq[symmetric] max.absorb2 INF_constant Int_commute | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 979 | intro!: INF_lower2 inf_absorb1) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 980 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 981 | lemma (in linorder_topology) eventually_at_right: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 982 | "x < y \<Longrightarrow> eventually P (at_right x) \<longleftrightarrow> (\<exists>b>x. \<forall>y>x. y < b \<longrightarrow> P y)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 983 | unfolding at_right_eq by (subst eventually_INF_base) (auto simp: eventually_principal Ball_def) | 
| 51471 | 984 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 985 | lemma trivial_limit_at_right_top: "at_right (top::_::{order_top, linorder_topology}) = bot"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 986 | unfolding filter_eq_iff eventually_at_topological by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 987 | |
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 988 | lemma trivial_limit_at_left_bot: "at_left (bot::_::{order_bot, linorder_topology}) = bot"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 989 | unfolding filter_eq_iff eventually_at_topological by auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 990 | |
| 51471 | 991 | lemma trivial_limit_at_left_real [simp]: | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 992 |   "\<not> trivial_limit (at_left (x::'a::{no_bot, dense_order, linorder_topology}))"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 993 | using lt_ex[of x] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 994 | by safe (auto simp add: trivial_limit_def eventually_at_left dest: dense) | 
| 51471 | 995 | |
| 996 | lemma trivial_limit_at_right_real [simp]: | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 997 |   "\<not> trivial_limit (at_right (x::'a::{no_top, dense_order, linorder_topology}))"
 | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 998 | using gt_ex[of x] | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 999 | by safe (auto simp add: trivial_limit_def eventually_at_right dest: dense) | 
| 51471 | 1000 | |
| 1001 | lemma at_eq_sup_left_right: "at (x::'a::linorder_topology) = sup (at_left x) (at_right x)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1002 | by (auto simp: eventually_at_filter filter_eq_iff eventually_sup | 
| 51471 | 1003 | elim: eventually_elim2 eventually_elim1) | 
| 1004 | ||
| 1005 | lemma eventually_at_split: | |
| 1006 | "eventually P (at (x::'a::linorder_topology)) \<longleftrightarrow> eventually P (at_left x) \<and> eventually P (at_right x)" | |
| 1007 | by (subst at_eq_sup_left_right) (simp add: eventually_sup) | |
| 1008 | ||
| 1009 | subsection {* Limits *}
 | |
| 1010 | ||
| 1011 | definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
 | |
| 1012 | "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" | |
| 1013 | ||
| 1014 | syntax | |
| 1015 |   "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
 | |
| 1016 | ||
| 1017 | translations | |
| 1018 | "LIM x F1. f :> F2" == "CONST filterlim (%x. f) F2 F1" | |
| 1019 | ||
| 1020 | lemma filterlim_iff: | |
| 1021 | "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)" | |
| 1022 | unfolding filterlim_def le_filter_def eventually_filtermap .. | |
| 1023 | ||
| 1024 | lemma filterlim_compose: | |
| 1025 | "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1" | |
| 1026 | unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans) | |
| 1027 | ||
| 1028 | lemma filterlim_mono: | |
| 1029 | "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'" | |
| 1030 | unfolding filterlim_def by (metis filtermap_mono order_trans) | |
| 1031 | ||
| 1032 | lemma filterlim_ident: "LIM x F. x :> F" | |
| 1033 | by (simp add: filterlim_def filtermap_ident) | |
| 1034 | ||
| 1035 | lemma filterlim_cong: | |
| 1036 | "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'" | |
| 1037 | by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2) | |
| 1038 | ||
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1039 | lemma filterlim_mono_eventually: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1040 | assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1041 | assumes eq: "eventually (\<lambda>x. f x = f' x) G'" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1042 | shows "filterlim f' F' G'" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1043 | apply (rule filterlim_cong[OF refl refl eq, THEN iffD1]) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1044 | apply (rule filterlim_mono[OF _ ord]) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1045 | apply fact | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1046 | done | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1047 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1048 | lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1049 | apply (auto intro!: filtermap_mono) [] | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1050 | apply (auto simp: le_filter_def eventually_filtermap) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1051 | apply (erule_tac x="\<lambda>x. P (inv f x)" in allE) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1052 | apply auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1053 | done | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1054 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1055 | lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1056 | by (simp add: filtermap_mono_strong eq_iff) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1057 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1058 | lemma filterlim_principal: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1059 | "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1060 | unfolding filterlim_def eventually_filtermap le_principal .. | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1061 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1062 | lemma filterlim_inf: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1063 | "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1064 | unfolding filterlim_def by simp | 
| 51471 | 1065 | |
| 57276 | 1066 | lemma filterlim_INF: | 
| 1067 | "(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)" | |
| 1068 | unfolding filterlim_def le_INF_iff .. | |
| 1069 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1070 | lemma filterlim_INF_INF: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1071 | "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (INF i:I. F i). f x :> (INF j:J. G j)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1072 | unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono]) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1073 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1074 | lemma filterlim_base: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1075 | "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1076 | LIM x (INF i:I. principal (F i)). f x :> (INF j:J. principal (G j))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1077 | by (force intro!: filterlim_INF_INF simp: image_subset_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1078 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1079 | lemma filterlim_base_iff: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1080 |   assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1081 | shows "(LIM x (INF i:I. principal (F i)). f x :> INF j:J. principal (G j)) \<longleftrightarrow> | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1082 | (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1083 | unfolding filterlim_INF filterlim_principal | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1084 | proof (subst eventually_INF_base) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1085 | fix i j assume "i \<in> I" "j \<in> I" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1086 | with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1087 | by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1088 | qed (auto simp: eventually_principal `I \<noteq> {}`)
 | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1089 | |
| 51471 | 1090 | lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2" | 
| 1091 | unfolding filterlim_def filtermap_filtermap .. | |
| 1092 | ||
| 1093 | lemma filterlim_sup: | |
| 1094 | "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)" | |
| 1095 | unfolding filterlim_def filtermap_sup by auto | |
| 1096 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1097 | lemma eventually_sequentially_Suc: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1098 | unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1099 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1100 | lemma filterlim_sequentially_Suc: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1101 | "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1102 | unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1103 | |
| 51471 | 1104 | lemma filterlim_Suc: "filterlim Suc sequentially sequentially" | 
| 1105 | by (simp add: filterlim_iff eventually_sequentially) (metis le_Suc_eq) | |
| 1106 | ||
| 1107 | subsubsection {* Tendsto *}
 | |
| 1108 | ||
| 1109 | abbreviation (in topological_space) | |
| 1110 |   tendsto :: "('b \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'b filter \<Rightarrow> bool" (infixr "--->" 55) where
 | |
| 1111 | "(f ---> l) F \<equiv> filterlim f (nhds l) F" | |
| 1112 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1113 | definition (in t2_space) Lim :: "'f filter \<Rightarrow> ('f \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1114 | "Lim A f = (THE l. (f ---> l) A)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1115 | |
| 51471 | 1116 | lemma tendsto_eq_rhs: "(f ---> x) F \<Longrightarrow> x = y \<Longrightarrow> (f ---> y) F" | 
| 1117 | by simp | |
| 1118 | ||
| 57953 | 1119 | named_theorems tendsto_intros "introduction rules for tendsto" | 
| 51471 | 1120 | setup {*
 | 
| 1121 |   Global_Theory.add_thms_dynamic (@{binding tendsto_eq_intros},
 | |
| 57953 | 1122 | fn context => | 
| 1123 |       Named_Theorems.get (Context.proof_of context) @{named_theorems tendsto_intros}
 | |
| 1124 |       |> map_filter (try (fn thm => @{thm tendsto_eq_rhs} OF [thm])))
 | |
| 51471 | 1125 | *} | 
| 1126 | ||
| 51473 | 1127 | lemma (in topological_space) tendsto_def: | 
| 1128 | "(f ---> l) F \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F)" | |
| 57276 | 1129 | unfolding nhds_def filterlim_INF filterlim_principal by auto | 
| 51471 | 1130 | |
| 1131 | lemma tendsto_mono: "F \<le> F' \<Longrightarrow> (f ---> l) F' \<Longrightarrow> (f ---> l) F" | |
| 1132 | unfolding tendsto_def le_filter_def by fast | |
| 1133 | ||
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1134 | lemma tendsto_within_subset: "(f ---> l) (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> (f ---> l) (at x within T)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1135 | by (blast intro: tendsto_mono at_le) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1136 | |
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1137 | lemma filterlim_at: | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1138 | "(LIM x F. f x :> at b within s) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> s \<and> f x \<noteq> b) F \<and> (f ---> b) F)" | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1139 | by (simp add: at_within_def filterlim_inf filterlim_principal conj_commute) | 
| 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1140 | |
| 51473 | 1141 | lemma (in topological_space) topological_tendstoI: | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1142 | "(\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F) \<Longrightarrow> (f ---> l) F" | 
| 51471 | 1143 | unfolding tendsto_def by auto | 
| 1144 | ||
| 51473 | 1145 | lemma (in topological_space) topological_tendstoD: | 
| 51471 | 1146 | "(f ---> l) F \<Longrightarrow> open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | 
| 1147 | unfolding tendsto_def by auto | |
| 1148 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1149 | lemma (in order_topology) order_tendsto_iff: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1150 | "(f ---> x) F \<longleftrightarrow> (\<forall>l<x. eventually (\<lambda>x. l < f x) F) \<and> (\<forall>u>x. eventually (\<lambda>x. f x < u) F)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1151 | unfolding nhds_order filterlim_inf filterlim_INF filterlim_principal by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1152 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1153 | lemma (in order_topology) order_tendstoI: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1154 | "(\<And>a. a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F) \<Longrightarrow> (\<And>a. y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F) \<Longrightarrow> | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1155 | (f ---> y) F" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1156 | unfolding order_tendsto_iff by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1157 | |
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1158 | lemma (in order_topology) order_tendstoD: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1159 | assumes "(f ---> y) F" | 
| 51471 | 1160 | shows "a < y \<Longrightarrow> eventually (\<lambda>x. a < f x) F" | 
| 1161 | and "y < a \<Longrightarrow> eventually (\<lambda>x. f x < a) F" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1162 | using assms unfolding order_tendsto_iff by auto | 
| 51471 | 1163 | |
| 1164 | lemma tendsto_bot [simp]: "(f ---> a) bot" | |
| 1165 | unfolding tendsto_def by simp | |
| 1166 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1167 | lemma (in linorder_topology) tendsto_max: | 
| 56949 | 1168 | assumes X: "(X ---> x) net" | 
| 1169 | assumes Y: "(Y ---> y) net" | |
| 1170 | shows "((\<lambda>x. max (X x) (Y x)) ---> max x y) net" | |
| 1171 | proof (rule order_tendstoI) | |
| 1172 | fix a assume "a < max x y" | |
| 1173 | then show "eventually (\<lambda>x. a < max (X x) (Y x)) net" | |
| 1174 | using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a] | |
| 1175 | by (auto simp: less_max_iff_disj elim: eventually_elim1) | |
| 1176 | next | |
| 1177 | fix a assume "max x y < a" | |
| 1178 | then show "eventually (\<lambda>x. max (X x) (Y x) < a) net" | |
| 1179 | using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a] | |
| 1180 | by (auto simp: eventually_conj_iff) | |
| 1181 | qed | |
| 1182 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1183 | lemma (in linorder_topology) tendsto_min: | 
| 56949 | 1184 | assumes X: "(X ---> x) net" | 
| 1185 | assumes Y: "(Y ---> y) net" | |
| 1186 | shows "((\<lambda>x. min (X x) (Y x)) ---> min x y) net" | |
| 1187 | proof (rule order_tendstoI) | |
| 1188 | fix a assume "a < min x y" | |
| 1189 | then show "eventually (\<lambda>x. a < min (X x) (Y x)) net" | |
| 1190 | using order_tendstoD(1)[OF X, of a] order_tendstoD(1)[OF Y, of a] | |
| 1191 | by (auto simp: eventually_conj_iff) | |
| 1192 | next | |
| 1193 | fix a assume "min x y < a" | |
| 1194 | then show "eventually (\<lambda>x. min (X x) (Y x) < a) net" | |
| 1195 | using order_tendstoD(2)[OF X, of a] order_tendstoD(2)[OF Y, of a] | |
| 1196 | by (auto simp: min_less_iff_disj elim: eventually_elim1) | |
| 1197 | qed | |
| 1198 | ||
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1199 | lemma tendsto_ident_at [tendsto_intros, simp, intro]: "((\<lambda>x. x) ---> a) (at a within s)" | 
| 51471 | 1200 | unfolding tendsto_def eventually_at_topological by auto | 
| 1201 | ||
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1202 | lemma (in topological_space) tendsto_const [tendsto_intros, simp, intro]: "((\<lambda>x. k) ---> k) F" | 
| 51471 | 1203 | by (simp add: tendsto_def) | 
| 1204 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1205 | lemma (in t2_space) tendsto_unique: | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1206 | assumes "F \<noteq> bot" and "(f ---> a) F" and "(f ---> b) F" | 
| 51471 | 1207 | shows "a = b" | 
| 1208 | proof (rule ccontr) | |
| 1209 | assume "a \<noteq> b" | |
| 1210 |   obtain U V where "open U" "open V" "a \<in> U" "b \<in> V" "U \<inter> V = {}"
 | |
| 1211 | using hausdorff [OF `a \<noteq> b`] by fast | |
| 1212 | have "eventually (\<lambda>x. f x \<in> U) F" | |
| 1213 | using `(f ---> a) F` `open U` `a \<in> U` by (rule topological_tendstoD) | |
| 1214 | moreover | |
| 1215 | have "eventually (\<lambda>x. f x \<in> V) F" | |
| 1216 | using `(f ---> b) F` `open V` `b \<in> V` by (rule topological_tendstoD) | |
| 1217 | ultimately | |
| 1218 | have "eventually (\<lambda>x. False) F" | |
| 1219 | proof eventually_elim | |
| 1220 | case (elim x) | |
| 1221 | hence "f x \<in> U \<inter> V" by simp | |
| 1222 |     with `U \<inter> V = {}` show ?case by simp
 | |
| 1223 | qed | |
| 1224 | with `\<not> trivial_limit F` show "False" | |
| 1225 | by (simp add: trivial_limit_def) | |
| 1226 | qed | |
| 1227 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1228 | lemma (in t2_space) tendsto_const_iff: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1229 | assumes "\<not> trivial_limit F" shows "((\<lambda>x. a :: 'a) ---> b) F \<longleftrightarrow> a = b" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1230 | by (auto intro!: tendsto_unique [OF assms tendsto_const]) | 
| 51471 | 1231 | |
| 1232 | lemma increasing_tendsto: | |
| 1233 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 1234 | assumes bdd: "eventually (\<lambda>n. f n \<le> l) F" | |
| 1235 | and en: "\<And>x. x < l \<Longrightarrow> eventually (\<lambda>n. x < f n) F" | |
| 1236 | shows "(f ---> l) F" | |
| 1237 | using assms by (intro order_tendstoI) (auto elim!: eventually_elim1) | |
| 1238 | ||
| 1239 | lemma decreasing_tendsto: | |
| 1240 | fixes f :: "_ \<Rightarrow> 'a::order_topology" | |
| 1241 | assumes bdd: "eventually (\<lambda>n. l \<le> f n) F" | |
| 1242 | and en: "\<And>x. l < x \<Longrightarrow> eventually (\<lambda>n. f n < x) F" | |
| 1243 | shows "(f ---> l) F" | |
| 1244 | using assms by (intro order_tendstoI) (auto elim!: eventually_elim1) | |
| 1245 | ||
| 1246 | lemma tendsto_sandwich: | |
| 1247 | fixes f g h :: "'a \<Rightarrow> 'b::order_topology" | |
| 1248 | assumes ev: "eventually (\<lambda>n. f n \<le> g n) net" "eventually (\<lambda>n. g n \<le> h n) net" | |
| 1249 | assumes lim: "(f ---> c) net" "(h ---> c) net" | |
| 1250 | shows "(g ---> c) net" | |
| 1251 | proof (rule order_tendstoI) | |
| 1252 | fix a show "a < c \<Longrightarrow> eventually (\<lambda>x. a < g x) net" | |
| 1253 | using order_tendstoD[OF lim(1), of a] ev by (auto elim: eventually_elim2) | |
| 1254 | next | |
| 1255 | fix a show "c < a \<Longrightarrow> eventually (\<lambda>x. g x < a) net" | |
| 1256 | using order_tendstoD[OF lim(2), of a] ev by (auto elim: eventually_elim2) | |
| 1257 | qed | |
| 1258 | ||
| 1259 | lemma tendsto_le: | |
| 1260 | fixes f g :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 1261 | assumes F: "\<not> trivial_limit F" | |
| 1262 | assumes x: "(f ---> x) F" and y: "(g ---> y) F" | |
| 1263 | assumes ev: "eventually (\<lambda>x. g x \<le> f x) F" | |
| 1264 | shows "y \<le> x" | |
| 1265 | proof (rule ccontr) | |
| 1266 | assume "\<not> y \<le> x" | |
| 1267 |   with less_separate[of x y] obtain a b where xy: "x < a" "b < y" "{..<a} \<inter> {b<..} = {}"
 | |
| 1268 | by (auto simp: not_le) | |
| 1269 | then have "eventually (\<lambda>x. f x < a) F" "eventually (\<lambda>x. b < g x) F" | |
| 1270 | using x y by (auto intro: order_tendstoD) | |
| 1271 | with ev have "eventually (\<lambda>x. False) F" | |
| 1272 | by eventually_elim (insert xy, fastforce) | |
| 1273 | with F show False | |
| 1274 | by (simp add: eventually_False) | |
| 1275 | qed | |
| 1276 | ||
| 1277 | lemma tendsto_le_const: | |
| 1278 | fixes f :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 1279 | assumes F: "\<not> trivial_limit F" | |
| 56289 | 1280 | assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<le> f i) F" | 
| 51471 | 1281 | shows "a \<le> x" | 
| 1282 | using F x tendsto_const a by (rule tendsto_le) | |
| 1283 | ||
| 56289 | 1284 | lemma tendsto_ge_const: | 
| 1285 | fixes f :: "'a \<Rightarrow> 'b::linorder_topology" | |
| 1286 | assumes F: "\<not> trivial_limit F" | |
| 1287 | assumes x: "(f ---> x) F" and a: "eventually (\<lambda>i. a \<ge> f i) F" | |
| 1288 | shows "a \<ge> x" | |
| 1289 | by (rule tendsto_le [OF F tendsto_const x a]) | |
| 1290 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1291 | subsubsection {* Rules about @{const Lim} *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1292 | |
| 57276 | 1293 | lemma tendsto_Lim: | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1294 | "\<not>(trivial_limit net) \<Longrightarrow> (f ---> l) net \<Longrightarrow> Lim net f = l" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1295 | unfolding Lim_def using tendsto_unique[of net f] by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1296 | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1297 | lemma Lim_ident_at: "\<not> trivial_limit (at x within s) \<Longrightarrow> Lim (at x within s) (\<lambda>x. x) = x" | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1298 | by (rule tendsto_Lim[OF _ tendsto_ident_at]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1299 | |
| 51471 | 1300 | subsection {* Limits to @{const at_top} and @{const at_bot} *}
 | 
| 1301 | ||
| 1302 | lemma filterlim_at_top: | |
| 1303 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1304 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1305 | by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_elim1) | |
| 1306 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1307 | lemma filterlim_at_top_mono: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1308 | "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow> | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1309 | LIM x F. g x :> at_top" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1310 | by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1311 | |
| 51471 | 1312 | lemma filterlim_at_top_dense: | 
| 53215 
5e47c31c6f7c
renamed typeclass dense_linorder to unbounded_dense_linorder
 hoelzl parents: 
52729diff
changeset | 1313 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
 | 
| 51471 | 1314 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)" | 
| 1315 | by (metis eventually_elim1[of _ F] eventually_gt_at_top order_less_imp_le | |
| 1316 | filterlim_at_top[of f F] filterlim_iff[of f at_top F]) | |
| 1317 | ||
| 1318 | lemma filterlim_at_top_ge: | |
| 1319 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1320 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1321 | unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal) | 
| 51471 | 1322 | |
| 1323 | lemma filterlim_at_top_at_top: | |
| 1324 | fixes f :: "'a::linorder \<Rightarrow> 'b::linorder" | |
| 1325 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1326 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1327 | assumes Q: "eventually Q at_top" | |
| 1328 | assumes P: "eventually P at_top" | |
| 1329 | shows "filterlim f at_top at_top" | |
| 1330 | proof - | |
| 1331 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1332 | unfolding eventually_at_top_linorder by auto | |
| 1333 | show ?thesis | |
| 1334 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1335 | fix z assume "x \<le> z" | |
| 1336 | with x have "P z" by auto | |
| 1337 | have "eventually (\<lambda>x. g z \<le> x) at_top" | |
| 1338 | by (rule eventually_ge_at_top) | |
| 1339 | with Q show "eventually (\<lambda>x. z \<le> f x) at_top" | |
| 1340 | by eventually_elim (metis mono bij `P z`) | |
| 1341 | qed | |
| 1342 | qed | |
| 1343 | ||
| 1344 | lemma filterlim_at_top_gt: | |
| 53215 
5e47c31c6f7c
renamed typeclass dense_linorder to unbounded_dense_linorder
 hoelzl parents: 
52729diff
changeset | 1345 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | 
| 51471 | 1346 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)" | 
| 1347 | by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) | |
| 1348 | ||
| 1349 | lemma filterlim_at_bot: | |
| 1350 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1351 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)" | |
| 1352 | by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_elim1) | |
| 1353 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1354 | lemma filterlim_at_bot_dense: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1355 |   fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1356 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1357 | proof (auto simp add: filterlim_at_bot[of f F]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1358 | fix Z :: 'b | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1359 | from lt_ex [of Z] obtain Z' where 1: "Z' < Z" .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1360 | assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1361 | hence "eventually (\<lambda>x. f x \<le> Z') F" by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1362 | thus "eventually (\<lambda>x. f x < Z) F" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1363 | apply (rule eventually_mono[rotated]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1364 | using 1 by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1365 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1366 | fix Z :: 'b | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1367 | show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1368 | by (drule spec [of _ Z], erule eventually_mono[rotated], auto simp add: less_imp_le) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1369 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1370 | |
| 51471 | 1371 | lemma filterlim_at_bot_le: | 
| 1372 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1373 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1374 | unfolding filterlim_at_bot | |
| 1375 | proof safe | |
| 1376 | fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1377 | with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1378 | by (auto elim!: eventually_elim1) | |
| 1379 | qed simp | |
| 1380 | ||
| 1381 | lemma filterlim_at_bot_lt: | |
| 53215 
5e47c31c6f7c
renamed typeclass dense_linorder to unbounded_dense_linorder
 hoelzl parents: 
52729diff
changeset | 1382 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | 
| 51471 | 1383 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)" | 
| 1384 | by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) | |
| 1385 | ||
| 1386 | lemma filterlim_at_bot_at_right: | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1387 | fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder" | 
| 51471 | 1388 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1389 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1390 | assumes Q: "eventually Q (at_right a)" and bound: "\<And>b. Q b \<Longrightarrow> a < b" | |
| 1391 | assumes P: "eventually P at_bot" | |
| 1392 | shows "filterlim f at_bot (at_right a)" | |
| 1393 | proof - | |
| 1394 | from P obtain x where x: "\<And>y. y \<le> x \<Longrightarrow> P y" | |
| 1395 | unfolding eventually_at_bot_linorder by auto | |
| 1396 | show ?thesis | |
| 1397 | proof (intro filterlim_at_bot_le[THEN iffD2] allI impI) | |
| 1398 | fix z assume "z \<le> x" | |
| 1399 | with x have "P z" by auto | |
| 1400 | have "eventually (\<lambda>x. x \<le> g z) (at_right a)" | |
| 1401 | using bound[OF bij(2)[OF `P z`]] | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1402 | unfolding eventually_at_right[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"]) | 
| 51471 | 1403 | with Q show "eventually (\<lambda>x. f x \<le> z) (at_right a)" | 
| 1404 | by eventually_elim (metis bij `P z` mono) | |
| 1405 | qed | |
| 1406 | qed | |
| 1407 | ||
| 1408 | lemma filterlim_at_top_at_left: | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1409 | fixes f :: "'a::linorder_topology \<Rightarrow> 'b::linorder" | 
| 51471 | 1410 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1411 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1412 | assumes Q: "eventually Q (at_left a)" and bound: "\<And>b. Q b \<Longrightarrow> b < a" | |
| 1413 | assumes P: "eventually P at_top" | |
| 1414 | shows "filterlim f at_top (at_left a)" | |
| 1415 | proof - | |
| 1416 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1417 | unfolding eventually_at_top_linorder by auto | |
| 1418 | show ?thesis | |
| 1419 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1420 | fix z assume "x \<le> z" | |
| 1421 | with x have "P z" by auto | |
| 1422 | have "eventually (\<lambda>x. g z \<le> x) (at_left a)" | |
| 1423 | using bound[OF bij(2)[OF `P z`]] | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57025diff
changeset | 1424 | unfolding eventually_at_left[OF bound[OF bij(2)[OF `P z`]]] by (auto intro!: exI[of _ "g z"]) | 
| 51471 | 1425 | with Q show "eventually (\<lambda>x. z \<le> f x) (at_left a)" | 
| 1426 | by eventually_elim (metis bij `P z` mono) | |
| 1427 | qed | |
| 1428 | qed | |
| 1429 | ||
| 1430 | lemma filterlim_split_at: | |
| 1431 | "filterlim f F (at_left x) \<Longrightarrow> filterlim f F (at_right x) \<Longrightarrow> filterlim f F (at (x::'a::linorder_topology))" | |
| 1432 | by (subst at_eq_sup_left_right) (rule filterlim_sup) | |
| 1433 | ||
| 1434 | lemma filterlim_at_split: | |
| 1435 | "filterlim f F (at (x::'a::linorder_topology)) \<longleftrightarrow> filterlim f F (at_left x) \<and> filterlim f F (at_right x)" | |
| 1436 | by (subst at_eq_sup_left_right) (simp add: filterlim_def filtermap_sup) | |
| 1437 | ||
| 57025 | 1438 | lemma eventually_nhds_top: | 
| 1439 |   fixes P :: "'a :: {order_top, linorder_topology} \<Rightarrow> bool"
 | |
| 1440 | assumes "(b::'a) < top" | |
| 1441 | shows "eventually P (nhds top) \<longleftrightarrow> (\<exists>b<top. (\<forall>z. b < z \<longrightarrow> P z))" | |
| 1442 | unfolding eventually_nhds | |
| 1443 | proof safe | |
| 1444 | fix S :: "'a set" assume "open S" "top \<in> S" | |
| 1445 | note open_left[OF this `b < top`] | |
| 1446 | moreover assume "\<forall>s\<in>S. P s" | |
| 1447 | ultimately show "\<exists>b<top. \<forall>z>b. P z" | |
| 1448 | by (auto simp: subset_eq Ball_def) | |
| 1449 | next | |
| 1450 | fix b assume "b < top" "\<forall>z>b. P z" | |
| 1451 | then show "\<exists>S. open S \<and> top \<in> S \<and> (\<forall>xa\<in>S. P xa)" | |
| 1452 |     by (intro exI[of _ "{b <..}"]) auto
 | |
| 1453 | qed | |
| 51471 | 1454 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1455 | lemma tendsto_at_within_iff_tendsto_nhds: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1456 | "(g ---> g l) (at l within S) \<longleftrightarrow> (g ---> g l) (inf (nhds l) (principal S))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1457 | unfolding tendsto_def eventually_at_filter eventually_inf_principal | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1458 | by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1459 | |
| 51471 | 1460 | subsection {* Limits on sequences *}
 | 
| 1461 | ||
| 1462 | abbreviation (in topological_space) | |
| 1463 | LIMSEQ :: "[nat \<Rightarrow> 'a, 'a] \<Rightarrow> bool" | |
| 1464 |     ("((_)/ ----> (_))" [60, 60] 60) where
 | |
| 1465 | "X ----> L \<equiv> (X ---> L) sequentially" | |
| 1466 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1467 | abbreviation (in t2_space) lim :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a" where | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1468 | "lim X \<equiv> Lim sequentially X" | 
| 51471 | 1469 | |
| 1470 | definition (in topological_space) convergent :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where | |
| 1471 | "convergent X = (\<exists>L. X ----> L)" | |
| 1472 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1473 | lemma lim_def: "lim X = (THE L. X ----> L)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1474 | unfolding Lim_def .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 1475 | |
| 51471 | 1476 | subsubsection {* Monotone sequences and subsequences *}
 | 
| 1477 | ||
| 1478 | definition | |
| 1479 | monoseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | |
| 1480 |     --{*Definition of monotonicity.
 | |
| 1481 | The use of disjunction here complicates proofs considerably. | |
| 1482 | One alternative is to add a Boolean argument to indicate the direction. | |
| 1483 | Another is to develop the notions of increasing and decreasing first.*} | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1484 | "monoseq X = ((\<forall>m. \<forall>n\<ge>m. X m \<le> X n) \<or> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m))" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1485 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1486 | abbreviation incseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1487 | "incseq X \<equiv> mono X" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1488 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1489 | lemma incseq_def: "incseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<ge> X m)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1490 | unfolding mono_def .. | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1491 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1492 | abbreviation decseq :: "(nat \<Rightarrow> 'a::order) \<Rightarrow> bool" where | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1493 | "decseq X \<equiv> antimono X" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1494 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1495 | lemma decseq_def: "decseq X \<longleftrightarrow> (\<forall>m. \<forall>n\<ge>m. X n \<le> X m)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55945diff
changeset | 1496 | unfolding antimono_def .. | 
| 51471 | 1497 | |
| 1498 | definition | |
| 1499 | subseq :: "(nat \<Rightarrow> nat) \<Rightarrow> bool" where | |
| 1500 |     --{*Definition of subsequence*}
 | |
| 1501 | "subseq f \<longleftrightarrow> (\<forall>m. \<forall>n>m. f m < f n)" | |
| 1502 | ||
| 1503 | lemma incseq_SucI: | |
| 1504 | "(\<And>n. X n \<le> X (Suc n)) \<Longrightarrow> incseq X" | |
| 1505 | using lift_Suc_mono_le[of X] | |
| 1506 | by (auto simp: incseq_def) | |
| 1507 | ||
| 1508 | lemma incseqD: "\<And>i j. incseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f i \<le> f j" | |
| 1509 | by (auto simp: incseq_def) | |
| 1510 | ||
| 1511 | lemma incseq_SucD: "incseq A \<Longrightarrow> A i \<le> A (Suc i)" | |
| 1512 | using incseqD[of A i "Suc i"] by auto | |
| 1513 | ||
| 1514 | lemma incseq_Suc_iff: "incseq f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" | |
| 1515 | by (auto intro: incseq_SucI dest: incseq_SucD) | |
| 1516 | ||
| 1517 | lemma incseq_const[simp, intro]: "incseq (\<lambda>x. k)" | |
| 1518 | unfolding incseq_def by auto | |
| 1519 | ||
| 1520 | lemma decseq_SucI: | |
| 1521 | "(\<And>n. X (Suc n) \<le> X n) \<Longrightarrow> decseq X" | |
| 1522 | using order.lift_Suc_mono_le[OF dual_order, of X] | |
| 1523 | by (auto simp: decseq_def) | |
| 1524 | ||
| 1525 | lemma decseqD: "\<And>i j. decseq f \<Longrightarrow> i \<le> j \<Longrightarrow> f j \<le> f i" | |
| 1526 | by (auto simp: decseq_def) | |
| 1527 | ||
| 1528 | lemma decseq_SucD: "decseq A \<Longrightarrow> A (Suc i) \<le> A i" | |
| 1529 | using decseqD[of A i "Suc i"] by auto | |
| 1530 | ||
| 1531 | lemma decseq_Suc_iff: "decseq f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" | |
| 1532 | by (auto intro: decseq_SucI dest: decseq_SucD) | |
| 1533 | ||
| 1534 | lemma decseq_const[simp, intro]: "decseq (\<lambda>x. k)" | |
| 1535 | unfolding decseq_def by auto | |
| 1536 | ||
| 1537 | lemma monoseq_iff: "monoseq X \<longleftrightarrow> incseq X \<or> decseq X" | |
| 1538 | unfolding monoseq_def incseq_def decseq_def .. | |
| 1539 | ||
| 1540 | lemma monoseq_Suc: | |
| 1541 | "monoseq X \<longleftrightarrow> (\<forall>n. X n \<le> X (Suc n)) \<or> (\<forall>n. X (Suc n) \<le> X n)" | |
| 1542 | unfolding monoseq_iff incseq_Suc_iff decseq_Suc_iff .. | |
| 1543 | ||
| 1544 | lemma monoI1: "\<forall>m. \<forall> n \<ge> m. X m \<le> X n ==> monoseq X" | |
| 1545 | by (simp add: monoseq_def) | |
| 1546 | ||
| 1547 | lemma monoI2: "\<forall>m. \<forall> n \<ge> m. X n \<le> X m ==> monoseq X" | |
| 1548 | by (simp add: monoseq_def) | |
| 1549 | ||
| 1550 | lemma mono_SucI1: "\<forall>n. X n \<le> X (Suc n) ==> monoseq X" | |
| 1551 | by (simp add: monoseq_Suc) | |
| 1552 | ||
| 1553 | lemma mono_SucI2: "\<forall>n. X (Suc n) \<le> X n ==> monoseq X" | |
| 1554 | by (simp add: monoseq_Suc) | |
| 1555 | ||
| 1556 | lemma monoseq_minus: | |
| 1557 | fixes a :: "nat \<Rightarrow> 'a::ordered_ab_group_add" | |
| 1558 | assumes "monoseq a" | |
| 1559 | shows "monoseq (\<lambda> n. - a n)" | |
| 1560 | proof (cases "\<forall> m. \<forall> n \<ge> m. a m \<le> a n") | |
| 1561 | case True | |
| 1562 | hence "\<forall> m. \<forall> n \<ge> m. - a n \<le> - a m" by auto | |
| 1563 | thus ?thesis by (rule monoI2) | |
| 1564 | next | |
| 1565 | case False | |
| 1566 | hence "\<forall> m. \<forall> n \<ge> m. - a m \<le> - a n" using `monoseq a`[unfolded monoseq_def] by auto | |
| 1567 | thus ?thesis by (rule monoI1) | |
| 1568 | qed | |
| 1569 | ||
| 1570 | text{*Subsequence (alternative definition, (e.g. Hoskins)*}
 | |
| 1571 | ||
| 1572 | lemma subseq_Suc_iff: "subseq f = (\<forall>n. (f n) < (f (Suc n)))" | |
| 1573 | apply (simp add: subseq_def) | |
| 1574 | apply (auto dest!: less_imp_Suc_add) | |
| 1575 | apply (induct_tac k) | |
| 1576 | apply (auto intro: less_trans) | |
| 1577 | done | |
| 1578 | ||
| 1579 | text{* for any sequence, there is a monotonic subsequence *}
 | |
| 1580 | lemma seq_monosub: | |
| 1581 | fixes s :: "nat => 'a::linorder" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1582 | shows "\<exists>f. subseq f \<and> monoseq (\<lambda>n. (s (f n)))" | 
| 51471 | 1583 | proof cases | 
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1584 | assume "\<forall>n. \<exists>p>n. \<forall>m\<ge>p. s m \<le> s p" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1585 | then have "\<exists>f. \<forall>n. (\<forall>m\<ge>f n. s m \<le> s (f n)) \<and> f n < f (Suc n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1586 | by (intro dependent_nat_choice) (auto simp: conj_commute) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1587 | then obtain f where "subseq f" and mono: "\<And>n m. f n \<le> m \<Longrightarrow> s m \<le> s (f n)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1588 | by (auto simp: subseq_Suc_iff) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1589 | moreover | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1590 | then have "incseq f" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1591 | unfolding subseq_Suc_iff incseq_Suc_iff by (auto intro: less_imp_le) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1592 | then have "monoseq (\<lambda>n. s (f n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1593 | by (auto simp add: incseq_def intro!: mono monoI2) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1594 | ultimately show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1595 | by auto | 
| 51471 | 1596 | next | 
| 1597 | assume "\<not> (\<forall>n. \<exists>p>n. (\<forall>m\<ge>p. s m \<le> s p))" | |
| 1598 | then obtain N where N: "\<And>p. p > N \<Longrightarrow> \<exists>m>p. s p < s m" by (force simp: not_le le_less) | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1599 | have "\<exists>f. \<forall>n. N < f n \<and> f n < f (Suc n) \<and> s (f n) \<le> s (f (Suc n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1600 | proof (intro dependent_nat_choice) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1601 | fix x assume "N < x" with N[of x] show "\<exists>y>N. x < y \<and> s x \<le> s y" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1602 | by (auto intro: less_trans) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1603 | qed auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1604 | then show ?thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1605 | by (auto simp: monoseq_iff incseq_Suc_iff subseq_Suc_iff) | 
| 51471 | 1606 | qed | 
| 1607 | ||
| 1608 | lemma seq_suble: assumes sf: "subseq f" shows "n \<le> f n" | |
| 1609 | proof(induct n) | |
| 1610 | case 0 thus ?case by simp | |
| 1611 | next | |
| 1612 | case (Suc n) | |
| 1613 | from sf[unfolded subseq_Suc_iff, rule_format, of n] Suc.hyps | |
| 1614 | have "n < f (Suc n)" by arith | |
| 1615 | thus ?case by arith | |
| 1616 | qed | |
| 1617 | ||
| 1618 | lemma eventually_subseq: | |
| 1619 | "subseq r \<Longrightarrow> eventually P sequentially \<Longrightarrow> eventually (\<lambda>n. P (r n)) sequentially" | |
| 1620 | unfolding eventually_sequentially by (metis seq_suble le_trans) | |
| 1621 | ||
| 51473 | 1622 | lemma not_eventually_sequentiallyD: | 
| 1623 | assumes P: "\<not> eventually P sequentially" | |
| 1624 | shows "\<exists>r. subseq r \<and> (\<forall>n. \<not> P (r n))" | |
| 1625 | proof - | |
| 1626 | from P have "\<forall>n. \<exists>m\<ge>n. \<not> P m" | |
| 1627 | unfolding eventually_sequentially by (simp add: not_less) | |
| 1628 | then obtain r where "\<And>n. r n \<ge> n" "\<And>n. \<not> P (r n)" | |
| 1629 | by (auto simp: choice_iff) | |
| 1630 | then show ?thesis | |
| 1631 | by (auto intro!: exI[of _ "\<lambda>n. r (((Suc \<circ> r) ^^ Suc n) 0)"] | |
| 1632 | simp: less_eq_Suc_le subseq_Suc_iff) | |
| 1633 | qed | |
| 1634 | ||
| 51471 | 1635 | lemma filterlim_subseq: "subseq f \<Longrightarrow> filterlim f sequentially sequentially" | 
| 1636 | unfolding filterlim_iff by (metis eventually_subseq) | |
| 1637 | ||
| 1638 | lemma subseq_o: "subseq r \<Longrightarrow> subseq s \<Longrightarrow> subseq (r \<circ> s)" | |
| 1639 | unfolding subseq_def by simp | |
| 1640 | ||
| 1641 | lemma subseq_mono: assumes "subseq r" "m < n" shows "r m < r n" | |
| 1642 | using assms by (auto simp: subseq_def) | |
| 1643 | ||
| 1644 | lemma incseq_imp_monoseq: "incseq X \<Longrightarrow> monoseq X" | |
| 1645 | by (simp add: incseq_def monoseq_def) | |
| 1646 | ||
| 1647 | lemma decseq_imp_monoseq: "decseq X \<Longrightarrow> monoseq X" | |
| 1648 | by (simp add: decseq_def monoseq_def) | |
| 1649 | ||
| 1650 | lemma decseq_eq_incseq: | |
| 1651 | fixes X :: "nat \<Rightarrow> 'a::ordered_ab_group_add" shows "decseq X = incseq (\<lambda>n. - X n)" | |
| 1652 | by (simp add: decseq_def incseq_def) | |
| 1653 | ||
| 1654 | lemma INT_decseq_offset: | |
| 1655 | assumes "decseq F" | |
| 1656 |   shows "(\<Inter>i. F i) = (\<Inter>i\<in>{n..}. F i)"
 | |
| 1657 | proof safe | |
| 1658 |   fix x i assume x: "x \<in> (\<Inter>i\<in>{n..}. F i)"
 | |
| 1659 | show "x \<in> F i" | |
| 1660 | proof cases | |
| 1661 | from x have "x \<in> F n" by auto | |
| 1662 | also assume "i \<le> n" with `decseq F` have "F n \<subseteq> F i" | |
| 1663 | unfolding decseq_def by simp | |
| 1664 | finally show ?thesis . | |
| 1665 | qed (insert x, simp) | |
| 1666 | qed auto | |
| 1667 | ||
| 1668 | lemma LIMSEQ_const_iff: | |
| 1669 | fixes k l :: "'a::t2_space" | |
| 1670 | shows "(\<lambda>n. k) ----> l \<longleftrightarrow> k = l" | |
| 1671 | using trivial_limit_sequentially by (rule tendsto_const_iff) | |
| 1672 | ||
| 1673 | lemma LIMSEQ_SUP: | |
| 1674 |   "incseq X \<Longrightarrow> X ----> (SUP i. X i :: 'a :: {complete_linorder, linorder_topology})"
 | |
| 1675 | by (intro increasing_tendsto) | |
| 1676 | (auto simp: SUP_upper less_SUP_iff incseq_def eventually_sequentially intro: less_le_trans) | |
| 1677 | ||
| 1678 | lemma LIMSEQ_INF: | |
| 1679 |   "decseq X \<Longrightarrow> X ----> (INF i. X i :: 'a :: {complete_linorder, linorder_topology})"
 | |
| 1680 | by (intro decreasing_tendsto) | |
| 1681 | (auto simp: INF_lower INF_less_iff decseq_def eventually_sequentially intro: le_less_trans) | |
| 1682 | ||
| 1683 | lemma LIMSEQ_ignore_initial_segment: | |
| 1684 | "f ----> a \<Longrightarrow> (\<lambda>n. f (n + k)) ----> a" | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1685 | unfolding tendsto_def | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1686 | by (subst eventually_sequentially_seg[where k=k]) | 
| 51471 | 1687 | |
| 1688 | lemma LIMSEQ_offset: | |
| 1689 | "(\<lambda>n. f (n + k)) ----> a \<Longrightarrow> f ----> a" | |
| 51474 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1690 | unfolding tendsto_def | 
| 
1e9e68247ad1
generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
 hoelzl parents: 
51473diff
changeset | 1691 | by (subst (asm) eventually_sequentially_seg[where k=k]) | 
| 51471 | 1692 | |
| 1693 | lemma LIMSEQ_Suc: "f ----> l \<Longrightarrow> (\<lambda>n. f (Suc n)) ----> l" | |
| 1694 | by (drule_tac k="Suc 0" in LIMSEQ_ignore_initial_segment, simp) | |
| 1695 | ||
| 1696 | lemma LIMSEQ_imp_Suc: "(\<lambda>n. f (Suc n)) ----> l \<Longrightarrow> f ----> l" | |
| 1697 | by (rule_tac k="Suc 0" in LIMSEQ_offset, simp) | |
| 1698 | ||
| 1699 | lemma LIMSEQ_Suc_iff: "(\<lambda>n. f (Suc n)) ----> l = f ----> l" | |
| 1700 | by (blast intro: LIMSEQ_imp_Suc LIMSEQ_Suc) | |
| 1701 | ||
| 1702 | lemma LIMSEQ_unique: | |
| 1703 | fixes a b :: "'a::t2_space" | |
| 1704 | shows "\<lbrakk>X ----> a; X ----> b\<rbrakk> \<Longrightarrow> a = b" | |
| 1705 | using trivial_limit_sequentially by (rule tendsto_unique) | |
| 1706 | ||
| 1707 | lemma LIMSEQ_le_const: | |
| 1708 | "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. a \<le> X n\<rbrakk> \<Longrightarrow> a \<le> x" | |
| 1709 | using tendsto_le_const[of sequentially X x a] by (simp add: eventually_sequentially) | |
| 1710 | ||
| 1711 | lemma LIMSEQ_le: | |
| 1712 | "\<lbrakk>X ----> x; Y ----> y; \<exists>N. \<forall>n\<ge>N. X n \<le> Y n\<rbrakk> \<Longrightarrow> x \<le> (y::'a::linorder_topology)" | |
| 1713 | using tendsto_le[of sequentially Y y X x] by (simp add: eventually_sequentially) | |
| 1714 | ||
| 1715 | lemma LIMSEQ_le_const2: | |
| 1716 | "\<lbrakk>X ----> (x::'a::linorder_topology); \<exists>N. \<forall>n\<ge>N. X n \<le> a\<rbrakk> \<Longrightarrow> x \<le> a" | |
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 1717 | by (rule LIMSEQ_le[of X x "\<lambda>n. a"]) auto | 
| 51471 | 1718 | |
| 1719 | lemma convergentD: "convergent X ==> \<exists>L. (X ----> L)" | |
| 1720 | by (simp add: convergent_def) | |
| 1721 | ||
| 1722 | lemma convergentI: "(X ----> L) ==> convergent X" | |
| 1723 | by (auto simp add: convergent_def) | |
| 1724 | ||
| 1725 | lemma convergent_LIMSEQ_iff: "convergent X = (X ----> lim X)" | |
| 1726 | by (auto intro: theI LIMSEQ_unique simp add: convergent_def lim_def) | |
| 1727 | ||
| 1728 | lemma convergent_const: "convergent (\<lambda>n. c)" | |
| 1729 | by (rule convergentI, rule tendsto_const) | |
| 1730 | ||
| 1731 | lemma monoseq_le: | |
| 1732 | "monoseq a \<Longrightarrow> a ----> (x::'a::linorder_topology) \<Longrightarrow> | |
| 1733 | ((\<forall> n. a n \<le> x) \<and> (\<forall>m. \<forall>n\<ge>m. a m \<le> a n)) \<or> ((\<forall> n. x \<le> a n) \<and> (\<forall>m. \<forall>n\<ge>m. a n \<le> a m))" | |
| 1734 | by (metis LIMSEQ_le_const LIMSEQ_le_const2 decseq_def incseq_def monoseq_iff) | |
| 1735 | ||
| 1736 | lemma LIMSEQ_subseq_LIMSEQ: | |
| 1737 | "\<lbrakk> X ----> L; subseq f \<rbrakk> \<Longrightarrow> (X o f) ----> L" | |
| 1738 | unfolding comp_def by (rule filterlim_compose[of X, OF _ filterlim_subseq]) | |
| 1739 | ||
| 1740 | lemma convergent_subseq_convergent: | |
| 1741 | "\<lbrakk>convergent X; subseq f\<rbrakk> \<Longrightarrow> convergent (X o f)" | |
| 1742 | unfolding convergent_def by (auto intro: LIMSEQ_subseq_LIMSEQ) | |
| 1743 | ||
| 1744 | lemma limI: "X ----> L ==> lim X = L" | |
| 57276 | 1745 | by (rule tendsto_Lim) (rule trivial_limit_sequentially) | 
| 51471 | 1746 | |
| 1747 | lemma lim_le: "convergent f \<Longrightarrow> (\<And>n. f n \<le> (x::'a::linorder_topology)) \<Longrightarrow> lim f \<le> x" | |
| 1748 | using LIMSEQ_le_const2[of f "lim f" x] by (simp add: convergent_LIMSEQ_iff) | |
| 1749 | ||
| 1750 | subsubsection{*Increasing and Decreasing Series*}
 | |
| 1751 | ||
| 1752 | lemma incseq_le: "incseq X \<Longrightarrow> X ----> L \<Longrightarrow> X n \<le> (L::'a::linorder_topology)" | |
| 1753 | by (metis incseq_def LIMSEQ_le_const) | |
| 1754 | ||
| 1755 | lemma decseq_le: "decseq X \<Longrightarrow> X ----> L \<Longrightarrow> (L::'a::linorder_topology) \<le> X n" | |
| 1756 | by (metis decseq_def LIMSEQ_le_const2) | |
| 1757 | ||
| 51473 | 1758 | subsection {* First countable topologies *}
 | 
| 1759 | ||
| 1760 | class first_countable_topology = topological_space + | |
| 1761 | assumes first_countable_basis: | |
| 1762 | "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))" | |
| 1763 | ||
| 1764 | lemma (in first_countable_topology) countable_basis_at_decseq: | |
| 1765 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1766 | "\<And>i. open (A i)" "\<And>i. x \<in> (A i)" | |
| 1767 | "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially" | |
| 1768 | proof atomize_elim | |
| 1769 | from first_countable_basis[of x] obtain A :: "nat \<Rightarrow> 'a set" where | |
| 1770 | nhds: "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 1771 | and incl: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" by auto | |
| 1772 | def F \<equiv> "\<lambda>n. \<Inter>i\<le>n. A i" | |
| 1773 | show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> | |
| 1774 | (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially)" | |
| 1775 | proof (safe intro!: exI[of _ F]) | |
| 1776 | fix i | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 1777 | show "open (F i)" using nhds(1) by (auto simp: F_def) | 
| 51473 | 1778 | show "x \<in> F i" using nhds(2) by (auto simp: F_def) | 
| 1779 | next | |
| 1780 | fix S assume "open S" "x \<in> S" | |
| 1781 | from incl[OF this] obtain i where "F i \<subseteq> S" unfolding F_def by auto | |
| 1782 | moreover have "\<And>j. i \<le> j \<Longrightarrow> F j \<subseteq> F i" | |
| 1783 | by (auto simp: F_def) | |
| 1784 | ultimately show "eventually (\<lambda>i. F i \<subseteq> S) sequentially" | |
| 1785 | by (auto simp: eventually_sequentially) | |
| 1786 | qed | |
| 1787 | qed | |
| 1788 | ||
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1789 | lemma (in first_countable_topology) nhds_countable: | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1790 | obtains X :: "nat \<Rightarrow> 'a set" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1791 | where "decseq X" "\<And>n. open (X n)" "\<And>n. x \<in> X n" "nhds x = (INF n. principal (X n))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1792 | proof - | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1793 | from first_countable_basis obtain A :: "nat \<Rightarrow> 'a set" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1794 | where A: "\<And>n. x \<in> A n" "\<And>n. open (A n)" "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>i. A i \<subseteq> S" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1795 | by metis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1796 | show thesis | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1797 | proof | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1798 | show "decseq (\<lambda>n. \<Inter>i\<le>n. A i)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1799 | by (auto simp: decseq_def) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1800 | show "\<And>n. x \<in> (\<Inter>i\<le>n. A i)" "\<And>n. open (\<Inter>i\<le>n. A i)" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1801 | using A by auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1802 | show "nhds x = (INF n. principal (\<Inter> i\<le>n. A i))" | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1803 | using A unfolding nhds_def | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1804 | apply (intro INF_eq) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1805 | apply simp_all | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1806 | apply force | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1807 | apply (intro exI[of _ "\<Inter> i\<le>n. A i" for n] conjI open_INT) | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1808 | apply auto | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1809 | done | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1810 | qed | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1811 | qed | 
| 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57447diff
changeset | 1812 | |
| 51473 | 1813 | lemma (in first_countable_topology) countable_basis: | 
| 1814 | obtains A :: "nat \<Rightarrow> 'a set" where | |
| 1815 | "\<And>i. open (A i)" "\<And>i. x \<in> A i" | |
| 1816 | "\<And>F. (\<forall>n. F n \<in> A n) \<Longrightarrow> F ----> x" | |
| 1817 | proof atomize_elim | |
| 53381 | 1818 | obtain A :: "nat \<Rightarrow> 'a set" where A: | 
| 1819 | "\<And>i. open (A i)" | |
| 1820 | "\<And>i. x \<in> A i" | |
| 1821 | "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially" | |
| 1822 | by (rule countable_basis_at_decseq) blast | |
| 1823 |   {
 | |
| 1824 | fix F S assume "\<forall>n. F n \<in> A n" "open S" "x \<in> S" | |
| 51473 | 1825 | with A(3)[of S] have "eventually (\<lambda>n. F n \<in> S) sequentially" | 
| 53381 | 1826 | by (auto elim: eventually_elim1 simp: subset_eq) | 
| 1827 | } | |
| 51473 | 1828 | with A show "\<exists>A. (\<forall>i. open (A i)) \<and> (\<forall>i. x \<in> A i) \<and> (\<forall>F. (\<forall>n. F n \<in> A n) \<longrightarrow> F ----> x)" | 
| 1829 | by (intro exI[of _ A]) (auto simp: tendsto_def) | |
| 1830 | qed | |
| 1831 | ||
| 1832 | lemma (in first_countable_topology) sequentially_imp_eventually_nhds_within: | |
| 1833 | assumes "\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1834 | shows "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1835 | proof (rule ccontr) | 
| 53381 | 1836 | obtain A :: "nat \<Rightarrow> 'a set" where A: | 
| 1837 | "\<And>i. open (A i)" | |
| 1838 | "\<And>i. a \<in> A i" | |
| 1839 | "\<And>F. \<forall>n. F n \<in> A n \<Longrightarrow> F ----> a" | |
| 1840 | by (rule countable_basis) blast | |
| 1841 | assume "\<not> ?thesis" | |
| 51473 | 1842 | with A have P: "\<exists>F. \<forall>n. F n \<in> s \<and> F n \<in> A n \<and> \<not> P (F n)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1843 | unfolding eventually_inf_principal eventually_nhds by (intro choice) fastforce | 
| 53381 | 1844 | then obtain F where F0: "\<forall>n. F n \<in> s" and F2: "\<forall>n. F n \<in> A n" and F3: "\<forall>n. \<not> P (F n)" | 
| 1845 | by blast | |
| 51473 | 1846 | with A have "F ----> a" by auto | 
| 1847 | hence "eventually (\<lambda>n. P (F n)) sequentially" | |
| 1848 | using assms F0 by simp | |
| 1849 | thus "False" by (simp add: F3) | |
| 1850 | qed | |
| 1851 | ||
| 1852 | lemma (in first_countable_topology) eventually_nhds_within_iff_sequentially: | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1853 | "eventually P (inf (nhds a) (principal s)) \<longleftrightarrow> | 
| 51473 | 1854 | (\<forall>f. (\<forall>n. f n \<in> s) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | 
| 1855 | proof (safe intro!: sequentially_imp_eventually_nhds_within) | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1856 | assume "eventually P (inf (nhds a) (principal s))" | 
| 51473 | 1857 | then obtain S where "open S" "a \<in> S" "\<forall>x\<in>S. x \<in> s \<longrightarrow> P x" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1858 | by (auto simp: eventually_inf_principal eventually_nhds) | 
| 51473 | 1859 | moreover fix f assume "\<forall>n. f n \<in> s" "f ----> a" | 
| 1860 | ultimately show "eventually (\<lambda>n. P (f n)) sequentially" | |
| 1861 | by (auto dest!: topological_tendstoD elim: eventually_elim1) | |
| 1862 | qed | |
| 1863 | ||
| 1864 | lemma (in first_countable_topology) eventually_nhds_iff_sequentially: | |
| 1865 | "eventually P (nhds a) \<longleftrightarrow> (\<forall>f. f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially)" | |
| 1866 | using eventually_nhds_within_iff_sequentially[of P a UNIV] by simp | |
| 1867 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1868 | lemma tendsto_at_iff_sequentially: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1869 | fixes f :: "'a :: first_countable_topology \<Rightarrow> _" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1870 |   shows "(f ---> a) (at x within s) \<longleftrightarrow> (\<forall>X. (\<forall>i. X i \<in> s - {x}) \<longrightarrow> X ----> x \<longrightarrow> ((f \<circ> X) ----> a))"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1871 | unfolding filterlim_def[of _ "nhds a"] le_filter_def eventually_filtermap at_within_def eventually_nhds_within_iff_sequentially comp_def | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1872 | by metis | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1873 | |
| 51471 | 1874 | subsection {* Function limit at a point *}
 | 
| 1875 | ||
| 1876 | abbreviation | |
| 1877 |   LIM :: "('a::topological_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | |
| 1878 |         ("((_)/ -- (_)/ --> (_))" [60, 0, 60] 60) where
 | |
| 1879 | "f -- a --> L \<equiv> (f ---> L) (at a)" | |
| 1880 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1881 | lemma tendsto_within_open: "a \<in> S \<Longrightarrow> open S \<Longrightarrow> (f ---> l) (at a within S) \<longleftrightarrow> (f -- a --> l)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1882 | unfolding tendsto_def by (simp add: at_within_open[where S=S]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 1883 | |
| 51471 | 1884 | lemma LIM_const_not_eq[tendsto_intros]: | 
| 1885 | fixes a :: "'a::perfect_space" | |
| 1886 | fixes k L :: "'b::t2_space" | |
| 1887 | shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) -- a --> L" | |
| 1888 | by (simp add: tendsto_const_iff) | |
| 1889 | ||
| 1890 | lemmas LIM_not_zero = LIM_const_not_eq [where L = 0] | |
| 1891 | ||
| 1892 | lemma LIM_const_eq: | |
| 1893 | fixes a :: "'a::perfect_space" | |
| 1894 | fixes k L :: "'b::t2_space" | |
| 1895 | shows "(\<lambda>x. k) -- a --> L \<Longrightarrow> k = L" | |
| 1896 | by (simp add: tendsto_const_iff) | |
| 1897 | ||
| 1898 | lemma LIM_unique: | |
| 1899 | fixes a :: "'a::perfect_space" and L M :: "'b::t2_space" | |
| 1900 | shows "f -- a --> L \<Longrightarrow> f -- a --> M \<Longrightarrow> L = M" | |
| 1901 | using at_neq_bot by (rule tendsto_unique) | |
| 1902 | ||
| 1903 | text {* Limits are equal for functions equal except at limit point *}
 | |
| 1904 | ||
| 1905 | lemma LIM_equal: "\<forall>x. x \<noteq> a --> (f x = g x) \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- a --> l)" | |
| 1906 | unfolding tendsto_def eventually_at_topological by simp | |
| 1907 | ||
| 1908 | lemma LIM_cong: "a = b \<Longrightarrow> (\<And>x. x \<noteq> b \<Longrightarrow> f x = g x) \<Longrightarrow> l = m \<Longrightarrow> (f -- a --> l) \<longleftrightarrow> (g -- b --> m)" | |
| 1909 | by (simp add: LIM_equal) | |
| 1910 | ||
| 1911 | lemma LIM_cong_limit: "f -- x --> L \<Longrightarrow> K = L \<Longrightarrow> f -- x --> K" | |
| 1912 | by simp | |
| 1913 | ||
| 1914 | lemma tendsto_at_iff_tendsto_nhds: | |
| 1915 | "g -- l --> g l \<longleftrightarrow> (g ---> g l) (nhds l)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1916 | unfolding tendsto_def eventually_at_filter | 
| 51471 | 1917 | by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1) | 
| 1918 | ||
| 1919 | lemma tendsto_compose: | |
| 1920 | "g -- l --> g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F" | |
| 1921 | unfolding tendsto_at_iff_tendsto_nhds by (rule filterlim_compose[of g]) | |
| 1922 | ||
| 1923 | lemma LIM_o: "\<lbrakk>g -- l --> g l; f -- a --> l\<rbrakk> \<Longrightarrow> (g \<circ> f) -- a --> g l" | |
| 1924 | unfolding o_def by (rule tendsto_compose) | |
| 1925 | ||
| 1926 | lemma tendsto_compose_eventually: | |
| 1927 | "g -- l --> m \<Longrightarrow> (f ---> l) F \<Longrightarrow> eventually (\<lambda>x. f x \<noteq> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> m) F" | |
| 1928 | by (rule filterlim_compose[of g _ "at l"]) (auto simp add: filterlim_at) | |
| 1929 | ||
| 1930 | lemma LIM_compose_eventually: | |
| 1931 | assumes f: "f -- a --> b" | |
| 1932 | assumes g: "g -- b --> c" | |
| 1933 | assumes inj: "eventually (\<lambda>x. f x \<noteq> b) (at a)" | |
| 1934 | shows "(\<lambda>x. g (f x)) -- a --> c" | |
| 1935 | using g f inj by (rule tendsto_compose_eventually) | |
| 1936 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1937 | lemma tendsto_compose_filtermap: "((g \<circ> f) ---> T) F \<longleftrightarrow> (g ---> T) (filtermap f F)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1938 | by (simp add: filterlim_def filtermap_filtermap comp_def) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1939 | |
| 51473 | 1940 | subsubsection {* Relation of LIM and LIMSEQ *}
 | 
| 1941 | ||
| 1942 | lemma (in first_countable_topology) sequentially_imp_eventually_within: | |
| 1943 | "(\<forall>f. (\<forall>n. f n \<in> s \<and> f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> | |
| 1944 | eventually P (at a within s)" | |
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 1945 | unfolding at_within_def | 
| 51473 | 1946 | by (intro sequentially_imp_eventually_nhds_within) auto | 
| 1947 | ||
| 1948 | lemma (in first_countable_topology) sequentially_imp_eventually_at: | |
| 1949 | "(\<forall>f. (\<forall>n. f n \<noteq> a) \<and> f ----> a \<longrightarrow> eventually (\<lambda>n. P (f n)) sequentially) \<Longrightarrow> eventually P (at a)" | |
| 1950 | using assms sequentially_imp_eventually_within [where s=UNIV] by simp | |
| 1951 | ||
| 1952 | lemma LIMSEQ_SEQ_conv1: | |
| 1953 | fixes f :: "'a::topological_space \<Rightarrow> 'b::topological_space" | |
| 1954 | assumes f: "f -- a --> l" | |
| 1955 | shows "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l" | |
| 1956 | using tendsto_compose_eventually [OF f, where F=sequentially] by simp | |
| 1957 | ||
| 1958 | lemma LIMSEQ_SEQ_conv2: | |
| 1959 | fixes f :: "'a::first_countable_topology \<Rightarrow> 'b::topological_space" | |
| 1960 | assumes "\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> a \<longrightarrow> (\<lambda>n. f (S n)) ----> l" | |
| 1961 | shows "f -- a --> l" | |
| 1962 | using assms unfolding tendsto_def [where l=l] by (simp add: sequentially_imp_eventually_at) | |
| 1963 | ||
| 1964 | lemma LIMSEQ_SEQ_conv: | |
| 1965 | "(\<forall>S. (\<forall>n. S n \<noteq> a) \<and> S ----> (a::'a::first_countable_topology) \<longrightarrow> (\<lambda>n. X (S n)) ----> L) = | |
| 1966 | (X -- a --> (L::'b::topological_space))" | |
| 1967 | using LIMSEQ_SEQ_conv2 LIMSEQ_SEQ_conv1 .. | |
| 1968 | ||
| 57025 | 1969 | lemma sequentially_imp_eventually_at_left: | 
| 1970 |   fixes a :: "'a :: {dense_linorder, linorder_topology, first_countable_topology}"
 | |
| 1971 | assumes b[simp]: "b < a" | |
| 1972 | assumes *: "\<And>f. (\<And>n. b < f n) \<Longrightarrow> (\<And>n. f n < a) \<Longrightarrow> incseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially" | |
| 1973 | shows "eventually P (at_left a)" | |
| 1974 | proof (safe intro!: sequentially_imp_eventually_within) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1975 |   fix X assume X: "\<forall>n. X n \<in> {..< a} \<and> X n \<noteq> a" "X ----> a"
 | 
| 57025 | 1976 | show "eventually (\<lambda>n. P (X n)) sequentially" | 
| 1977 | proof (rule ccontr) | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1978 | assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1979 | have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> b < X (s n)) \<and> (X (s n) \<le> X (s (Suc n)) \<and> Suc (s n) \<le> s (Suc n))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1980 | proof (rule dependent_nat_choice) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1981 | have "\<not> eventually (\<lambda>n. b < X n \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1982 | by (intro not_eventually_impI neg order_tendstoD(1) [OF X(2) b]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1983 | then show "\<exists>x. \<not> P (X x) \<and> b < X x" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1984 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1985 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1986 | fix x n | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1987 | have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> b < X n \<longrightarrow> X x < X n \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1988 | using X by (intro not_eventually_impI order_tendstoD(1)[OF X(2)] eventually_ge_at_top neg) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1989 | then show "\<exists>n. (\<not> P (X n) \<and> b < X n) \<and> (X x \<le> X n \<and> Suc x \<le> n)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1990 | by (auto dest!: not_eventuallyD) | 
| 57025 | 1991 | qed | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1992 | then guess s .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1993 | then have "\<And>n. b < X (s n)" "\<And>n. X (s n) < a" "incseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1994 | using X by (auto simp: subseq_Suc_iff Suc_le_eq incseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF `X ----> a`, unfolded comp_def]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 1995 | from *[OF this(1,2,3,4)] this(5) show False by auto | 
| 57025 | 1996 | qed | 
| 1997 | qed | |
| 1998 | ||
| 1999 | lemma tendsto_at_left_sequentially: | |
| 2000 |   fixes a :: "_ :: {dense_linorder, linorder_topology, first_countable_topology}"
 | |
| 2001 | assumes "b < a" | |
| 2002 | assumes *: "\<And>S. (\<And>n. S n < a) \<Longrightarrow> (\<And>n. b < S n) \<Longrightarrow> incseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L" | |
| 2003 | shows "(X ---> L) (at_left a)" | |
| 2004 | using assms unfolding tendsto_def [where l=L] | |
| 2005 | by (simp add: sequentially_imp_eventually_at_left) | |
| 2006 | ||
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2007 | lemma sequentially_imp_eventually_at_right: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2008 |   fixes a :: "'a :: {dense_linorder, linorder_topology, first_countable_topology}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2009 | assumes b[simp]: "a < b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2010 | assumes *: "\<And>f. (\<And>n. a < f n) \<Longrightarrow> (\<And>n. f n < b) \<Longrightarrow> decseq f \<Longrightarrow> f ----> a \<Longrightarrow> eventually (\<lambda>n. P (f n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2011 | shows "eventually P (at_right a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2012 | proof (safe intro!: sequentially_imp_eventually_within) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2013 |   fix X assume X: "\<forall>n. X n \<in> {a <..} \<and> X n \<noteq> a" "X ----> a"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2014 | show "eventually (\<lambda>n. P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2015 | proof (rule ccontr) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2016 | assume neg: "\<not> eventually (\<lambda>n. P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2017 | have "\<exists>s. \<forall>n. (\<not> P (X (s n)) \<and> X (s n) < b) \<and> (X (s (Suc n)) \<le> X (s n) \<and> Suc (s n) \<le> s (Suc n))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2018 | proof (rule dependent_nat_choice) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2019 | have "\<not> eventually (\<lambda>n. X n < b \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2020 | by (intro not_eventually_impI neg order_tendstoD(2) [OF X(2) b]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2021 | then show "\<exists>x. \<not> P (X x) \<and> X x < b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2022 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2023 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2024 | fix x n | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2025 | have "\<not> eventually (\<lambda>n. Suc x \<le> n \<longrightarrow> X n < b \<longrightarrow> X n < X x \<longrightarrow> P (X n)) sequentially" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2026 | using X by (intro not_eventually_impI order_tendstoD(2)[OF X(2)] eventually_ge_at_top neg) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2027 | then show "\<exists>n. (\<not> P (X n) \<and> X n < b) \<and> (X n \<le> X x \<and> Suc x \<le> n)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2028 | by (auto dest!: not_eventuallyD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2029 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2030 | then guess s .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2031 | then have "\<And>n. a < X (s n)" "\<And>n. X (s n) < b" "decseq (\<lambda>n. X (s n))" "(\<lambda>n. X (s n)) ----> a" "\<And>n. \<not> P (X (s n))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2032 | using X by (auto simp: subseq_Suc_iff Suc_le_eq decseq_Suc_iff intro!: LIMSEQ_subseq_LIMSEQ[OF `X ----> a`, unfolded comp_def]) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2033 | from *[OF this(1,2,3,4)] this(5) show False by auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2034 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2035 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2036 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2037 | lemma tendsto_at_right_sequentially: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2038 |   fixes a :: "_ :: {dense_linorder, linorder_topology, first_countable_topology}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2039 | assumes "a < b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2040 | assumes *: "\<And>S. (\<And>n. a < S n) \<Longrightarrow> (\<And>n. S n < b) \<Longrightarrow> decseq S \<Longrightarrow> S ----> a \<Longrightarrow> (\<lambda>n. X (S n)) ----> L" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2041 | shows "(X ---> L) (at_right a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2042 | using assms unfolding tendsto_def [where l=L] | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2043 | by (simp add: sequentially_imp_eventually_at_right) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2044 | |
| 51471 | 2045 | subsection {* Continuity *}
 | 
| 2046 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2047 | subsubsection {* Continuity on a set *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2048 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2049 | definition continuous_on :: "'a set \<Rightarrow> ('a :: topological_space \<Rightarrow> 'b :: topological_space) \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2050 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. (f ---> f x) (at x within s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2051 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2052 | lemma continuous_on_cong [cong]: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2053 | "s = t \<Longrightarrow> (\<And>x. x \<in> t \<Longrightarrow> f x = g x) \<Longrightarrow> continuous_on s f \<longleftrightarrow> continuous_on t g" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2054 | unfolding continuous_on_def by (intro ball_cong filterlim_cong) (auto simp: eventually_at_filter) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2055 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2056 | lemma continuous_on_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2057 | "continuous_on s f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2058 | (\<forall>x\<in>s. \<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2059 | unfolding continuous_on_def tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2060 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2061 | lemma continuous_on_open_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2062 | "continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2063 | proof safe | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2064 | fix B :: "'b set" assume "continuous_on s f" "open B" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2065 | then have "\<forall>x\<in>f -` B \<inter> s. (\<exists>A. open A \<and> x \<in> A \<and> s \<inter> A \<subseteq> f -` B)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2066 | by (auto simp: continuous_on_topological subset_eq Ball_def imp_conjL) | 
| 53381 | 2067 | then obtain A where "\<forall>x\<in>f -` B \<inter> s. open (A x) \<and> x \<in> A x \<and> s \<inter> A x \<subseteq> f -` B" | 
| 2068 | unfolding bchoice_iff .. | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2069 | then show "\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2070 | by (intro exI[of _ "\<Union>x\<in>f -` B \<inter> s. A x"]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2071 | next | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2072 | assume B: "\<forall>B. open B \<longrightarrow> (\<exists>A. open A \<and> A \<inter> s = f -` B \<inter> s)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2073 | show "continuous_on s f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2074 | unfolding continuous_on_topological | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2075 | proof safe | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2076 | fix x B assume "x \<in> s" "open B" "f x \<in> B" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2077 | with B obtain A where A: "open A" "A \<inter> s = f -` B \<inter> s" by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2078 | with `x \<in> s` `f x \<in> B` show "\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2079 | by (intro exI[of _ A]) auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2080 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2081 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2082 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2083 | lemma continuous_on_open_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2084 | "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. open B \<longrightarrow> open (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2085 | unfolding continuous_on_open_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2086 | by (metis open_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2087 | |
| 55734 | 2088 | corollary continuous_imp_open_vimage: | 
| 2089 | assumes "continuous_on s f" "open s" "open B" "f -` B \<subseteq> s" | |
| 2090 | shows "open (f -` B)" | |
| 2091 | by (metis assms continuous_on_open_vimage le_iff_inf) | |
| 2092 | ||
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2093 | corollary open_vimage[continuous_intros]: | 
| 55775 | 2094 | assumes "open s" and "continuous_on UNIV f" | 
| 2095 | shows "open (f -` s)" | |
| 2096 | using assms unfolding continuous_on_open_vimage [OF open_UNIV] | |
| 2097 | by simp | |
| 2098 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2099 | lemma continuous_on_closed_invariant: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2100 | "continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> (\<exists>A. closed A \<and> A \<inter> s = f -` B \<inter> s))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2101 | proof - | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2102 | have *: "\<And>P Q::'b set\<Rightarrow>bool. (\<And>A. P A \<longleftrightarrow> Q (- A)) \<Longrightarrow> (\<forall>A. P A) \<longleftrightarrow> (\<forall>A. Q A)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2103 | by (metis double_compl) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2104 | show ?thesis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2105 | unfolding continuous_on_open_invariant by (intro *) (auto simp: open_closed[symmetric]) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2106 | qed | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2107 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2108 | lemma continuous_on_closed_vimage: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2109 | "closed s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>B. closed B \<longrightarrow> closed (f -` B \<inter> s))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2110 | unfolding continuous_on_closed_invariant | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2111 | by (metis closed_Int Int_absorb Int_commute[of s] Int_assoc[of _ _ s]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2112 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2113 | corollary closed_vimage[continuous_intros]: | 
| 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2114 | assumes "closed s" and "continuous_on UNIV f" | 
| 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2115 | shows "closed (f -` s)" | 
| 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2116 | using assms unfolding continuous_on_closed_vimage [OF closed_UNIV] | 
| 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2117 | by simp | 
| 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2118 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2119 | lemma continuous_on_open_Union: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2120 | "(\<And>s. s \<in> S \<Longrightarrow> open s) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on s f) \<Longrightarrow> continuous_on (\<Union>S) f" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2121 | unfolding continuous_on_def by safe (metis open_Union at_within_open UnionI) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2122 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2123 | lemma continuous_on_open_UN: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2124 | "(\<And>s. s \<in> S \<Longrightarrow> open (A s)) \<Longrightarrow> (\<And>s. s \<in> S \<Longrightarrow> continuous_on (A s) f) \<Longrightarrow> continuous_on (\<Union>s\<in>S. A s) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2125 | unfolding Union_image_eq[symmetric] by (rule continuous_on_open_Union) auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2126 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2127 | lemma continuous_on_closed_Un: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2128 | "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t f \<Longrightarrow> continuous_on (s \<union> t) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2129 | by (auto simp add: continuous_on_closed_vimage closed_Un Int_Un_distrib) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2130 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2131 | lemma continuous_on_If: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2132 | assumes closed: "closed s" "closed t" and cont: "continuous_on s f" "continuous_on t g" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2133 | and P: "\<And>x. x \<in> s \<Longrightarrow> \<not> P x \<Longrightarrow> f x = g x" "\<And>x. x \<in> t \<Longrightarrow> P x \<Longrightarrow> f x = g x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2134 | shows "continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)" (is "continuous_on _ ?h") | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2135 | proof- | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2136 | from P have "\<forall>x\<in>s. f x = ?h x" "\<forall>x\<in>t. g x = ?h x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2137 | by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2138 | with cont have "continuous_on s ?h" "continuous_on t ?h" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2139 | by simp_all | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2140 | with closed show ?thesis | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2141 | by (rule continuous_on_closed_Un) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2142 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2143 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2144 | lemma continuous_on_id[continuous_intros]: "continuous_on s (\<lambda>x. x)" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 2145 | unfolding continuous_on_def by fast | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2146 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2147 | lemma continuous_on_const[continuous_intros]: "continuous_on s (\<lambda>x. c)" | 
| 58729 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 hoelzl parents: 
57953diff
changeset | 2148 | unfolding continuous_on_def by auto | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2149 | |
| 56371 
fb9ae0727548
extend continuous_intros; remove continuous_on_intros and isCont_intros
 hoelzl parents: 
56329diff
changeset | 2150 | lemma continuous_on_compose[continuous_intros]: | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2151 | "continuous_on s f \<Longrightarrow> continuous_on (f ` s) g \<Longrightarrow> continuous_on s (g o f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2152 | unfolding continuous_on_topological by simp metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2153 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2154 | lemma continuous_on_compose2: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2155 | "continuous_on t g \<Longrightarrow> continuous_on s f \<Longrightarrow> t = f ` s \<Longrightarrow> continuous_on s (\<lambda>x. g (f x))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2156 | using continuous_on_compose[of s f g] by (simp add: comp_def) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2157 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2158 | subsubsection {* Continuity at a point *}
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2159 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2160 | definition continuous :: "'a::t2_space filter \<Rightarrow> ('a \<Rightarrow> 'b::topological_space) \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2161 | "continuous F f \<longleftrightarrow> (f ---> f (Lim F (\<lambda>x. x))) F" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2162 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2163 | lemma continuous_bot[continuous_intros, simp]: "continuous bot f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2164 | unfolding continuous_def by auto | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2165 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2166 | lemma continuous_trivial_limit: "trivial_limit net \<Longrightarrow> continuous net f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2167 | by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2168 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2169 | lemma continuous_within: "continuous (at x within s) f \<longleftrightarrow> (f ---> f x) (at x within s)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2170 | by (cases "trivial_limit (at x within s)") (auto simp add: Lim_ident_at continuous_def) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2171 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2172 | lemma continuous_within_topological: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2173 | "continuous (at x within s) f \<longleftrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2174 | (\<forall>B. open B \<longrightarrow> f x \<in> B \<longrightarrow> (\<exists>A. open A \<and> x \<in> A \<and> (\<forall>y\<in>s. y \<in> A \<longrightarrow> f y \<in> B)))" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2175 | unfolding continuous_within tendsto_def eventually_at_topological by metis | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2176 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2177 | lemma continuous_within_compose[continuous_intros]: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2178 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2179 | continuous (at x within s) (g o f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2180 | by (simp add: continuous_within_topological) metis | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2181 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2182 | lemma continuous_within_compose2: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2183 | "continuous (at x within s) f \<Longrightarrow> continuous (at (f x) within f ` s) g \<Longrightarrow> | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2184 | continuous (at x within s) (\<lambda>x. g (f x))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2185 | using continuous_within_compose[of x s f g] by (simp add: comp_def) | 
| 51471 | 2186 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2187 | lemma continuous_at: "continuous (at x) f \<longleftrightarrow> f -- x --> f x" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2188 | using continuous_within[of x UNIV f] by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2189 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2190 | lemma continuous_ident[continuous_intros, simp]: "continuous (at x within S) (\<lambda>x. x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2191 | unfolding continuous_within by (rule tendsto_ident_at) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2192 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2193 | lemma continuous_const[continuous_intros, simp]: "continuous F (\<lambda>x. c)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2194 | unfolding continuous_def by (rule tendsto_const) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2195 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2196 | lemma continuous_on_eq_continuous_within: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2197 | "continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. continuous (at x within s) f)" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2198 | unfolding continuous_on_def continuous_within .. | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2199 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2200 | abbreviation isCont :: "('a::t2_space \<Rightarrow> 'b::topological_space) \<Rightarrow> 'a \<Rightarrow> bool" where
 | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2201 | "isCont f a \<equiv> continuous (at a) f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2202 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2203 | lemma isCont_def: "isCont f a \<longleftrightarrow> f -- a --> f a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2204 | by (rule continuous_at) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2205 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2206 | lemma continuous_at_within: "isCont f x \<Longrightarrow> continuous (at x within s) f" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2207 | by (auto intro: tendsto_mono at_le simp: continuous_at continuous_within) | 
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2208 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2209 | lemma continuous_on_eq_continuous_at: "open s \<Longrightarrow> continuous_on s f \<longleftrightarrow> (\<forall>x\<in>s. isCont f x)" | 
| 51641 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 hoelzl parents: 
51518diff
changeset | 2210 | by (simp add: continuous_on_def continuous_at at_within_open[of _ s]) | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2211 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2212 | lemma continuous_on_subset: "continuous_on s f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous_on t f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2213 | unfolding continuous_on_def by (metis subset_eq tendsto_within_subset) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2214 | |
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2215 | lemma continuous_at_imp_continuous_on: "\<forall>x\<in>s. isCont f x \<Longrightarrow> continuous_on s f" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2216 | by (auto intro: continuous_at_within simp: continuous_on_eq_continuous_within) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2217 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2218 | lemma isContI_continuous: "continuous (at x within UNIV) f \<Longrightarrow> isCont f x" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2219 | by simp | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2220 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2221 | lemma isCont_ident[continuous_intros, simp]: "isCont (\<lambda>x. x) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2222 | using continuous_ident by (rule isContI_continuous) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2223 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2224 | lemmas isCont_const = continuous_const | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2225 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2226 | lemma isCont_o2: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (\<lambda>x. g (f x)) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2227 | unfolding isCont_def by (rule tendsto_compose) | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2228 | |
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2229 | lemma isCont_o[continuous_intros]: "isCont f a \<Longrightarrow> isCont g (f a) \<Longrightarrow> isCont (g \<circ> f) a" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2230 | unfolding o_def by (rule isCont_o2) | 
| 51471 | 2231 | |
| 2232 | lemma isCont_tendsto_compose: "isCont g l \<Longrightarrow> (f ---> l) F \<Longrightarrow> ((\<lambda>x. g (f x)) ---> g l) F" | |
| 2233 | unfolding isCont_def by (rule tendsto_compose) | |
| 2234 | ||
| 51478 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2235 | lemma continuous_within_compose3: | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2236 | "isCont g (f x) \<Longrightarrow> continuous (at x within s) f \<Longrightarrow> continuous (at x within s) (\<lambda>x. g (f x))" | 
| 
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
 hoelzl parents: 
51474diff
changeset | 2237 | using continuous_within_compose2[of x s f g] by (simp add: continuous_at_within) | 
| 51471 | 2238 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2239 | lemma filtermap_nhds_open_map: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2240 | assumes cont: "isCont f a" and open_map: "\<And>S. open S \<Longrightarrow> open (f`S)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2241 | shows "filtermap f (nhds a) = nhds (f a)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2242 | unfolding filter_eq_iff | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2243 | proof safe | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2244 | fix P assume "eventually P (filtermap f (nhds a))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2245 | then guess S unfolding eventually_filtermap eventually_nhds .. | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2246 | then show "eventually P (nhds (f a))" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2247 | unfolding eventually_nhds by (intro exI[of _ "f`S"]) (auto intro!: open_map) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2248 | qed (metis filterlim_iff tendsto_at_iff_tendsto_nhds isCont_def eventually_filtermap cont) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2249 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2250 | lemma continuous_at_split: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2251 | "continuous (at (x::'a::linorder_topology)) f = (continuous (at_left x) f \<and> continuous (at_right x) f)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2252 | by (simp add: continuous_within filterlim_at_split) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57276diff
changeset | 2253 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2254 | subsubsection{* Open-cover compactness *}
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2255 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2256 | context topological_space | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2257 | begin | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2258 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2259 | definition compact :: "'a set \<Rightarrow> bool" where | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2260 | compact_eq_heine_borel: -- "This name is used for backwards compatibility" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2261 | "compact S \<longleftrightarrow> (\<forall>C. (\<forall>c\<in>C. open c) \<and> S \<subseteq> \<Union>C \<longrightarrow> (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2262 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2263 | lemma compactI: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2264 | assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union> C \<Longrightarrow> \<exists>C'. C' \<subseteq> C \<and> finite C' \<and> s \<subseteq> \<Union> C'" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2265 | shows "compact s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2266 | unfolding compact_eq_heine_borel using assms by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2267 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2268 | lemma compact_empty[simp]: "compact {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2269 | by (auto intro!: compactI) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2270 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2271 | lemma compactE: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2272 | assumes "compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2273 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2274 | using assms unfolding compact_eq_heine_borel by metis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2275 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2276 | lemma compactE_image: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2277 | assumes "compact s" and "\<forall>t\<in>C. open (f t)" and "s \<subseteq> (\<Union>c\<in>C. f c)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2278 | obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> (\<Union>c\<in>C'. f c)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2279 | using assms unfolding ball_simps[symmetric] SUP_def | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2280 | by (metis (lifting) finite_subset_image compact_eq_heine_borel[of s]) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2281 | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2282 | lemma compact_inter_closed [intro]: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2283 | assumes "compact s" and "closed t" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2284 | shows "compact (s \<inter> t)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2285 | proof (rule compactI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2286 | fix C assume C: "\<forall>c\<in>C. open c" and cover: "s \<inter> t \<subseteq> \<Union>C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2287 |   from C `closed t` have "\<forall>c\<in>C \<union> {-t}. open c" by auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2288 |   moreover from cover have "s \<subseteq> \<Union>(C \<union> {-t})" by auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2289 |   ultimately have "\<exists>D\<subseteq>C \<union> {-t}. finite D \<and> s \<subseteq> \<Union>D"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2290 | using `compact s` unfolding compact_eq_heine_borel by auto | 
| 53381 | 2291 |   then obtain D where "D \<subseteq> C \<union> {- t} \<and> finite D \<and> s \<subseteq> \<Union>D" ..
 | 
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2292 | then show "\<exists>D\<subseteq>C. finite D \<and> s \<inter> t \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2293 |     by (intro exI[of _ "D - {-t}"]) auto
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2294 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2295 | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2296 | lemma inj_setminus: "inj_on uminus (A::'a set set)" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2297 | by (auto simp: inj_on_def) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2298 | |
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2299 | lemma compact_fip: | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2300 | "compact U \<longleftrightarrow> | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2301 |     (\<forall>A. (\<forall>a\<in>A. closed a) \<longrightarrow> (\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}) \<longrightarrow> U \<inter> \<Inter>A \<noteq> {})"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2302 | (is "_ \<longleftrightarrow> ?R") | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2303 | proof (safe intro!: compact_eq_heine_borel[THEN iffD2]) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2304 | fix A | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2305 | assume "compact U" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2306 |     and A: "\<forall>a\<in>A. closed a" "U \<inter> \<Inter>A = {}"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2307 |     and fi: "\<forall>B \<subseteq> A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2308 | from A have "(\<forall>a\<in>uminus`A. open a) \<and> U \<subseteq> \<Union>(uminus`A)" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2309 | by auto | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2310 | with `compact U` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<subseteq> \<Union>(uminus`B)" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2311 | unfolding compact_eq_heine_borel by (metis subset_image_iff) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2312 | with fi[THEN spec, of B] show False | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2313 | by (auto dest: finite_imageD intro: inj_setminus) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2314 | next | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2315 | fix A | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2316 | assume ?R | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2317 | assume "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2318 |   then have "U \<inter> \<Inter>(uminus`A) = {}" "\<forall>a\<in>uminus`A. closed a"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2319 | by auto | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2320 |   with `?R` obtain B where "B \<subseteq> A" "finite (uminus`B)" "U \<inter> \<Inter>(uminus`B) = {}"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2321 | by (metis subset_image_iff) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2322 | then show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T" | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2323 | by (auto intro!: exI[of _ B] inj_setminus dest: finite_imageD) | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2324 | qed | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2325 | |
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2326 | lemma compact_imp_fip: | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2327 |   "compact s \<Longrightarrow> \<forall>t \<in> f. closed t \<Longrightarrow> \<forall>f'. finite f' \<and> f' \<subseteq> f \<longrightarrow> (s \<inter> (\<Inter> f') \<noteq> {}) \<Longrightarrow>
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2328 |     s \<inter> (\<Inter> f) \<noteq> {}"
 | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2329 | unfolding compact_fip by auto | 
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2330 | |
| 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2331 | lemma compact_imp_fip_image: | 
| 56166 | 2332 | assumes "compact s" | 
| 2333 | and P: "\<And>i. i \<in> I \<Longrightarrow> closed (f i)" | |
| 2334 |     and Q: "\<And>I'. finite I' \<Longrightarrow> I' \<subseteq> I \<Longrightarrow> (s \<inter> (\<Inter>i\<in>I'. f i) \<noteq> {})"
 | |
| 2335 |   shows "s \<inter> (\<Inter>i\<in>I. f i) \<noteq> {}"
 | |
| 2336 | proof - | |
| 2337 | note `compact s` | |
| 2338 | moreover from P have "\<forall>i \<in> f ` I. closed i" by blast | |
| 2339 |   moreover have "\<forall>A. finite A \<and> A \<subseteq> f ` I \<longrightarrow> (s \<inter> (\<Inter>A) \<noteq> {})"
 | |
| 2340 | proof (rule, rule, erule conjE) | |
| 2341 | fix A :: "'a set set" | |
| 2342 | assume "finite A" | |
| 2343 | moreover assume "A \<subseteq> f ` I" | |
| 2344 | ultimately obtain B where "B \<subseteq> I" and "finite B" and "A = f ` B" | |
| 2345 | using finite_subset_image [of A f I] by blast | |
| 2346 |     with Q [of B] show "s \<inter> \<Inter>A \<noteq> {}" by simp
 | |
| 2347 | qed | |
| 2348 |   ultimately have "s \<inter> (\<Inter>(f ` I)) \<noteq> {}" by (rule compact_imp_fip)
 | |
| 2349 | then show ?thesis by simp | |
| 2350 | qed | |
| 54797 
be020ec8560c
modernized ContNotDenum: use Set_Interval, and finite intersection property to show the nested interval property
 hoelzl parents: 
54258diff
changeset | 2351 | |
| 51471 | 2352 | end | 
| 2353 | ||
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2354 | lemma (in t2_space) compact_imp_closed: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2355 | assumes "compact s" shows "closed s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2356 | unfolding closed_def | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2357 | proof (rule openI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2358 | fix y assume "y \<in> - s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2359 |   let ?C = "\<Union>x\<in>s. {u. open u \<and> x \<in> u \<and> eventually (\<lambda>y. y \<notin> u) (nhds y)}"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2360 | note `compact s` | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2361 | moreover have "\<forall>u\<in>?C. open u" by simp | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2362 | moreover have "s \<subseteq> \<Union>?C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2363 | proof | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2364 | fix x assume "x \<in> s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2365 | with `y \<in> - s` have "x \<noteq> y" by clarsimp | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2366 |     hence "\<exists>u v. open u \<and> open v \<and> x \<in> u \<and> y \<in> v \<and> u \<inter> v = {}"
 | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2367 | by (rule hausdorff) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2368 | with `x \<in> s` show "x \<in> \<Union>?C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2369 | unfolding eventually_nhds by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2370 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2371 | ultimately obtain D where "D \<subseteq> ?C" and "finite D" and "s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2372 | by (rule compactE) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2373 | from `D \<subseteq> ?C` have "\<forall>x\<in>D. eventually (\<lambda>y. y \<notin> x) (nhds y)" by auto | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2374 | with `finite D` have "eventually (\<lambda>y. y \<notin> \<Union>D) (nhds y)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2375 | by (simp add: eventually_Ball_finite) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2376 | with `s \<subseteq> \<Union>D` have "eventually (\<lambda>y. y \<notin> s) (nhds y)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2377 | by (auto elim!: eventually_mono [rotated]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2378 | thus "\<exists>t. open t \<and> y \<in> t \<and> t \<subseteq> - s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2379 | by (simp add: eventually_nhds subset_eq) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2380 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2381 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2382 | lemma compact_continuous_image: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2383 | assumes f: "continuous_on s f" and s: "compact s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2384 | shows "compact (f ` s)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2385 | proof (rule compactI) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2386 | fix C assume "\<forall>c\<in>C. open c" and cover: "f`s \<subseteq> \<Union>C" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2387 | with f have "\<forall>c\<in>C. \<exists>A. open A \<and> A \<inter> s = f -` c \<inter> s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2388 | unfolding continuous_on_open_invariant by blast | 
| 53381 | 2389 | then obtain A where A: "\<forall>c\<in>C. open (A c) \<and> A c \<inter> s = f -` c \<inter> s" | 
| 2390 | unfolding bchoice_iff .. | |
| 51481 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2391 | with cover have "\<forall>c\<in>C. open (A c)" "s \<subseteq> (\<Union>c\<in>C. A c)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2392 | by (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2393 | from compactE_image[OF s this] obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> (\<Union>c\<in>D. A c)" . | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2394 | with A show "\<exists>D \<subseteq> C. finite D \<and> f`s \<subseteq> \<Union>D" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2395 | by (intro exI[of _ D]) (fastforce simp add: subset_eq set_eq_iff)+ | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2396 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2397 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2398 | lemma continuous_on_inv: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2399 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2400 | assumes "continuous_on s f" "compact s" "\<forall>x\<in>s. g (f x) = x" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2401 | shows "continuous_on (f ` s) g" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2402 | unfolding continuous_on_topological | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2403 | proof (clarsimp simp add: assms(3)) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2404 | fix x :: 'a and B :: "'a set" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2405 | assume "x \<in> s" and "open B" and "x \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2406 | have 1: "\<forall>x\<in>s. f x \<in> f ` (s - B) \<longleftrightarrow> x \<in> s - B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2407 | using assms(3) by (auto, metis) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2408 | have "continuous_on (s - B) f" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2409 | using `continuous_on s f` Diff_subset | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2410 | by (rule continuous_on_subset) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2411 | moreover have "compact (s - B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2412 | using `open B` and `compact s` | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2413 | unfolding Diff_eq by (intro compact_inter_closed closed_Compl) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2414 | ultimately have "compact (f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2415 | by (rule compact_continuous_image) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2416 | hence "closed (f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2417 | by (rule compact_imp_closed) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2418 | hence "open (- f ` (s - B))" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2419 | by (rule open_Compl) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2420 | moreover have "f x \<in> - f ` (s - B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2421 | using `x \<in> s` and `x \<in> B` by (simp add: 1) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2422 | moreover have "\<forall>y\<in>s. f y \<in> - f ` (s - B) \<longrightarrow> y \<in> B" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2423 | by (simp add: 1) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2424 | ultimately show "\<exists>A. open A \<and> f x \<in> A \<and> (\<forall>y\<in>s. f y \<in> A \<longrightarrow> y \<in> B)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2425 | by fast | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2426 | qed | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2427 | |
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2428 | lemma continuous_on_inv_into: | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2429 | fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2430 | assumes s: "continuous_on s f" "compact s" and f: "inj_on f s" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2431 | shows "continuous_on (f ` s) (the_inv_into s f)" | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2432 | by (rule continuous_on_inv[OF s]) (auto simp: the_inv_into_f_f[OF f]) | 
| 
ef949192e5d6
move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
 hoelzl parents: 
51480diff
changeset | 2433 | |
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2434 | lemma (in linorder_topology) compact_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2435 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2436 | shows "\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2437 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2438 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. t \<le> s)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2439 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. s < t s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2440 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2441 |   then have "\<forall>s\<in>S. open {..< t s}" "S \<subseteq> (\<Union>s\<in>S. {..< t s})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2442 | by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2443 |   with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {..< t s})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2444 | by (erule compactE_image) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2445 |   with `S \<noteq> {}` have Max: "Max (t`C) \<in> t`C" and "\<forall>s\<in>t`C. s \<le> Max (t`C)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2446 | by (auto intro!: Max_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2447 |   with C have "S \<subseteq> {..< Max (t`C)}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2448 | by (auto intro: less_le_trans simp: subset_eq) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2449 | with t Max `C \<subseteq> S` show ?thesis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2450 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2451 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2452 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2453 | lemma (in linorder_topology) compact_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2454 |   assumes "compact S" "S \<noteq> {}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2455 | shows "\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2456 | proof (rule classical) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2457 | assume "\<not> (\<exists>s\<in>S. \<forall>t\<in>S. s \<le> t)" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2458 | then obtain t where t: "\<forall>s\<in>S. t s \<in> S" and "\<forall>s\<in>S. t s < s" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2459 | by (metis not_le) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2460 |   then have "\<forall>s\<in>S. open {t s <..}" "S \<subseteq> (\<Union>s\<in>S. {t s <..})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2461 | by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2462 |   with `compact S` obtain C where "C \<subseteq> S" "finite C" and C: "S \<subseteq> (\<Union>s\<in>C. {t s <..})"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2463 | by (erule compactE_image) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2464 |   with `S \<noteq> {}` have Min: "Min (t`C) \<in> t`C" and "\<forall>s\<in>t`C. Min (t`C) \<le> s"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2465 | by (auto intro!: Min_in) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2466 |   with C have "S \<subseteq> {Min (t`C) <..}"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2467 | by (auto intro: le_less_trans simp: subset_eq) | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2468 | with t Min `C \<subseteq> S` show ?thesis | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2469 | by fastforce | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2470 | qed | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2471 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2472 | lemma continuous_attains_sup: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2473 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2474 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s.  f y \<le> f x)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2475 | using compact_attains_sup[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2476 | |
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2477 | lemma continuous_attains_inf: | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2478 | fixes f :: "'a::topological_space \<Rightarrow> 'b::linorder_topology" | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2479 |   shows "compact s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> continuous_on s f \<Longrightarrow> (\<exists>x\<in>s. \<forall>y\<in>s. f x \<le> f y)"
 | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2480 | using compact_attains_inf[of "f ` s"] compact_continuous_image[of s f] by auto | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2481 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2482 | subsection {* Connectedness *}
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2483 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2484 | context topological_space | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2485 | begin | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2486 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2487 | definition "connected S \<longleftrightarrow> | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2488 |   \<not> (\<exists>A B. open A \<and> open B \<and> S \<subseteq> A \<union> B \<and> A \<inter> B \<inter> S = {} \<and> A \<inter> S \<noteq> {} \<and> B \<inter> S \<noteq> {})"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2489 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2490 | lemma connectedI: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2491 |   "(\<And>A B. open A \<Longrightarrow> open B \<Longrightarrow> A \<inter> U \<noteq> {} \<Longrightarrow> B \<inter> U \<noteq> {} \<Longrightarrow> A \<inter> B \<inter> U = {} \<Longrightarrow> U \<subseteq> A \<union> B \<Longrightarrow> False)
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2492 | \<Longrightarrow> connected U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2493 | by (auto simp: connected_def) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2494 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2495 | lemma connected_empty[simp]: "connected {}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2496 | by (auto intro!: connectedI) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2497 | |
| 56329 | 2498 | lemma connectedD: | 
| 2499 |   "connected A \<Longrightarrow> open U \<Longrightarrow> open V \<Longrightarrow> U \<inter> V \<inter> A = {} \<Longrightarrow> A \<subseteq> U \<union> V \<Longrightarrow> U \<inter> A = {} \<or> V \<inter> A = {}" 
 | |
| 2500 | by (auto simp: connected_def) | |
| 2501 | ||
| 51479 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2502 | end | 
| 
33db4b7189af
move compact to the HOL image; prove compactness of real closed intervals; show that continuous functions attain supremum and infimum on compact sets
 hoelzl parents: 
51478diff
changeset | 2503 | |
| 59106 | 2504 | lemma connected_iff_const: | 
| 2505 | fixes S :: "'a::topological_space set" | |
| 2506 | shows "connected S \<longleftrightarrow> (\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c))" | |
| 2507 | proof safe | |
| 2508 | fix P :: "'a \<Rightarrow> bool" assume "connected S" "continuous_on S P" | |
| 2509 |   then have "\<And>b. \<exists>A. open A \<and> A \<inter> S = P -` {b} \<inter> S"
 | |
| 2510 | unfolding continuous_on_open_invariant by simp | |
| 2511 | from this[of True] this[of False] | |
| 2512 |   obtain t f where "open t" "open f" and *: "f \<inter> S = P -` {False} \<inter> S" "t \<inter> S = P -` {True} \<inter> S"
 | |
| 2513 | by auto | |
| 2514 |   then have "t \<inter> S = {} \<or> f \<inter> S = {}"
 | |
| 2515 | by (intro connectedD[OF `connected S`]) auto | |
| 2516 | then show "\<exists>c. \<forall>s\<in>S. P s = c" | |
| 2517 | proof (rule disjE) | |
| 2518 |     assume "t \<inter> S = {}" then show ?thesis
 | |
| 2519 | unfolding * by (intro exI[of _ False]) auto | |
| 2520 | next | |
| 2521 |     assume "f \<inter> S = {}" then show ?thesis
 | |
| 2522 | unfolding * by (intro exI[of _ True]) auto | |
| 2523 | qed | |
| 2524 | next | |
| 2525 | assume P: "\<forall>P::'a \<Rightarrow> bool. continuous_on S P \<longrightarrow> (\<exists>c. \<forall>s\<in>S. P s = c)" | |
| 2526 | show "connected S" | |
| 2527 | proof (rule connectedI) | |
| 2528 |     fix A B assume *: "open A" "open B" "A \<inter> S \<noteq> {}" "B \<inter> S \<noteq> {}" "A \<inter> B \<inter> S = {}" "S \<subseteq> A \<union> B"
 | |
| 2529 | have "continuous_on S (\<lambda>x. x \<in> A)" | |
| 2530 | unfolding continuous_on_open_invariant | |
| 2531 | proof safe | |
| 2532 | fix C :: "bool set" | |
| 2533 |       have "C = UNIV \<or> C = {True} \<or> C = {False} \<or> C = {}"
 | |
| 2534 | using subset_UNIV[of C] unfolding UNIV_bool by auto | |
| 2535 | with * show "\<exists>T. open T \<and> T \<inter> S = (\<lambda>x. x \<in> A) -` C \<inter> S" | |
| 2536 |         by (intro exI[of _ "(if True \<in> C then A else {}) \<union> (if False \<in> C then B else {})"]) auto
 | |
| 2537 | qed | |
| 2538 | from P[rule_format, OF this] obtain c where "\<And>s. s \<in> S \<Longrightarrow> (s \<in> A) = c" by blast | |
| 2539 | with * show False | |
| 2540 | by (cases c) auto | |
| 2541 | qed | |
| 2542 | qed | |
| 2543 | ||
| 2544 | lemma connectedD_const: | |
| 2545 | fixes P :: "'a::topological_space \<Rightarrow> bool" | |
| 2546 | shows "connected S \<Longrightarrow> continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c" | |
| 2547 | unfolding connected_iff_const by auto | |
| 2548 | ||
| 2549 | lemma connectedI_const: | |
| 2550 | "(\<And>P::'a::topological_space \<Rightarrow> bool. continuous_on S P \<Longrightarrow> \<exists>c. \<forall>s\<in>S. P s = c) \<Longrightarrow> connected S" | |
| 2551 | unfolding connected_iff_const by auto | |
| 2552 | ||
| 56329 | 2553 | lemma connected_local_const: | 
| 2554 | assumes "connected A" "a \<in> A" "b \<in> A" | |
| 2555 | assumes *: "\<forall>a\<in>A. eventually (\<lambda>b. f a = f b) (at a within A)" | |
| 2556 | shows "f a = f b" | |
| 2557 | proof - | |
| 2558 | obtain S where S: "\<And>a. a \<in> A \<Longrightarrow> a \<in> S a" "\<And>a. a \<in> A \<Longrightarrow> open (S a)" | |
| 2559 | "\<And>a x. a \<in> A \<Longrightarrow> x \<in> S a \<Longrightarrow> x \<in> A \<Longrightarrow> f a = f x" | |
| 2560 | using * unfolding eventually_at_topological by metis | |
| 2561 | ||
| 2562 |   let ?P = "\<Union>b\<in>{b\<in>A. f a = f b}. S b" and ?N = "\<Union>b\<in>{b\<in>A. f a \<noteq> f b}. S b"
 | |
| 2563 |   have "?P \<inter> A = {} \<or> ?N \<inter> A = {}"
 | |
| 2564 | using `connected A` S `a\<in>A` | |
| 2565 | by (intro connectedD) (auto, metis) | |
| 2566 | then show "f a = f b" | |
| 2567 | proof | |
| 2568 |     assume "?N \<inter> A = {}"
 | |
| 2569 | then have "\<forall>x\<in>A. f a = f x" | |
| 2570 | using S(1) by auto | |
| 2571 | with `b\<in>A` show ?thesis by auto | |
| 2572 | next | |
| 2573 |     assume "?P \<inter> A = {}" then show ?thesis
 | |
| 2574 | using `a \<in> A` S(1)[of a] by auto | |
| 2575 | qed | |
| 2576 | qed | |
| 2577 | ||
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2578 | lemma (in linorder_topology) connectedD_interval: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2579 | assumes "connected U" and xy: "x \<in> U" "y \<in> U" and "x \<le> z" "z \<le> y" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2580 | shows "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2581 | proof - | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2582 |   have eq: "{..<z} \<union> {z<..} = - {z}"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2583 | by auto | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2584 |   { assume "z \<notin> U" "x < z" "z < y"
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2585 | with xy have "\<not> connected U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2586 | unfolding connected_def simp_thms | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2587 |       apply (rule_tac exI[of _ "{..< z}"])
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2588 |       apply (rule_tac exI[of _ "{z <..}"])
 | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2589 | apply (auto simp add: eq) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2590 | done } | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2591 | with assms show "z \<in> U" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2592 | by (metis less_le) | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2593 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2594 | |
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2595 | lemma connected_continuous_image: | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2596 | assumes *: "continuous_on s f" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2597 | assumes "connected s" | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2598 | shows "connected (f ` s)" | 
| 59106 | 2599 | proof (rule connectedI_const) | 
| 2600 | fix P :: "'b \<Rightarrow> bool" assume "continuous_on (f ` s) P" | |
| 2601 | then have "continuous_on s (P \<circ> f)" | |
| 2602 | by (rule continuous_on_compose[OF *]) | |
| 2603 | from connectedD_const[OF `connected s` this] show "\<exists>c. \<forall>s\<in>f ` s. P s = c" | |
| 2604 | by auto | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2605 | qed | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2606 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2607 | section {* Connectedness *}
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2608 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2609 | class linear_continuum_topology = linorder_topology + linear_continuum | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2610 | begin | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2611 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2612 | lemma Inf_notin_open: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2613 | assumes A: "open A" and bnd: "\<forall>a\<in>A. x < a" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2614 | shows "Inf A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2615 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2616 | assume "Inf A \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2617 |   then obtain b where "b < Inf A" "{b <.. Inf A} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2618 | using open_left[of A "Inf A" x] assms by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2619 | with dense[of b "Inf A"] obtain c where "c < Inf A" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2620 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2621 | then show False | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2622 | using cInf_lower[OF `c \<in> A`] bnd by (metis not_le less_imp_le bdd_belowI) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2623 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2624 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2625 | lemma Sup_notin_open: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2626 | assumes A: "open A" and bnd: "\<forall>a\<in>A. a < x" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2627 | shows "Sup A \<notin> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2628 | proof | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2629 | assume "Sup A \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2630 |   then obtain b where "Sup A < b" "{Sup A ..< b} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2631 | using open_right[of A "Sup A" x] assms by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2632 | with dense[of "Sup A" b] obtain c where "Sup A < c" "c \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2633 | by (auto simp: subset_eq) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2634 | then show False | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2635 | using cSup_upper[OF `c \<in> A`] bnd by (metis less_imp_le not_le bdd_aboveI) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2636 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2637 | |
| 51480 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2638 | end | 
| 
3793c3a11378
move connected to HOL image; used to show intermediate value theorem
 hoelzl parents: 
51479diff
changeset | 2639 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2640 | instance linear_continuum_topology \<subseteq> perfect_space | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2641 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2642 | fix x :: 'a | 
| 53381 | 2643 | obtain y where "x < y \<or> y < x" | 
| 2644 | using ex_gt_or_lt [of x] .. | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2645 |   with Inf_notin_open[of "{x}" y] Sup_notin_open[of "{x}" y]
 | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2646 |   show "\<not> open {x}"
 | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2647 | by auto | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2648 | qed | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2649 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2650 | lemma connectedI_interval: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2651 | fixes U :: "'a :: linear_continuum_topology set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2652 | assumes *: "\<And>x y z. x \<in> U \<Longrightarrow> y \<in> U \<Longrightarrow> x \<le> z \<Longrightarrow> z \<le> y \<Longrightarrow> z \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2653 | shows "connected U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2654 | proof (rule connectedI) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2655 |   { fix A B assume "open A" "open B" "A \<inter> B \<inter> U = {}" "U \<subseteq> A \<union> B"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2656 | fix x y assume "x < y" "x \<in> A" "y \<in> B" "x \<in> U" "y \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2657 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2658 |     let ?z = "Inf (B \<inter> {x <..})"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2659 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2660 | have "x \<le> ?z" "?z \<le> y" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2661 | using `y \<in> B` `x < y` by (auto intro: cInf_lower cInf_greatest) | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2662 | with `x \<in> U` `y \<in> U` have "?z \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2663 | by (rule *) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2664 |     moreover have "?z \<notin> B \<inter> {x <..}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2665 | using `open B` by (intro Inf_notin_open) auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2666 | ultimately have "?z \<in> A" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2667 |       using `x \<le> ?z` `A \<inter> B \<inter> U = {}` `x \<in> A` `U \<subseteq> A \<union> B` by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2668 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2669 |     { assume "?z < y"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2670 |       obtain a where "?z < a" "{?z ..< a} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2671 | using open_right[OF `open A` `?z \<in> A` `?z < y`] by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2672 | moreover obtain b where "b \<in> B" "x < b" "b < min a y" | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2673 |         using cInf_less_iff[of "B \<inter> {x <..}" "min a y"] `?z < a` `?z < y` `x < y` `y \<in> B`
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2674 | by (auto intro: less_imp_le) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53215diff
changeset | 2675 | moreover have "?z \<le> b" | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53215diff
changeset | 2676 | using `b \<in> B` `x < b` | 
| 54258 
adfc759263ab
use bdd_above and bdd_below for conditionally complete lattices
 hoelzl parents: 
53946diff
changeset | 2677 | by (intro cInf_lower) auto | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2678 | moreover have "b \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2679 | using `x \<le> ?z` `?z \<le> b` `b < min a y` | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2680 | by (intro *[OF `x \<in> U` `y \<in> U`]) (auto simp: less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2681 | ultimately have "\<exists>b\<in>B. b \<in> A \<and> b \<in> U" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2682 | by (intro bexI[of _ b]) auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2683 | then have False | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2684 |       using `?z \<le> y` `?z \<in> A` `y \<in> B` `y \<in> U` `A \<inter> B \<inter> U = {}` unfolding le_less by blast }
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2685 | note not_disjoint = this | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2686 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2687 |   fix A B assume AB: "open A" "open B" "U \<subseteq> A \<union> B" "A \<inter> B \<inter> U = {}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2688 |   moreover assume "A \<inter> U \<noteq> {}" then obtain x where x: "x \<in> U" "x \<in> A" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2689 |   moreover assume "B \<inter> U \<noteq> {}" then obtain y where y: "y \<in> U" "y \<in> B" by auto
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2690 | moreover note not_disjoint[of B A y x] not_disjoint[of A B x y] | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2691 | ultimately show False by (cases x y rule: linorder_cases) auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2692 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2693 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2694 | lemma connected_iff_interval: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2695 | fixes U :: "'a :: linear_continuum_topology set" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2696 | shows "connected U \<longleftrightarrow> (\<forall>x\<in>U. \<forall>y\<in>U. \<forall>z. x \<le> z \<longrightarrow> z \<le> y \<longrightarrow> z \<in> U)" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2697 | by (auto intro: connectedI_interval dest: connectedD_interval) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2698 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2699 | lemma connected_UNIV[simp]: "connected (UNIV::'a::linear_continuum_topology set)" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2700 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2701 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2702 | lemma connected_Ioi[simp]: "connected {a::'a::linear_continuum_topology <..}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2703 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2704 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2705 | lemma connected_Ici[simp]: "connected {a::'a::linear_continuum_topology ..}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2706 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2707 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2708 | lemma connected_Iio[simp]: "connected {..< a::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2709 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2710 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2711 | lemma connected_Iic[simp]: "connected {.. a::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2712 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2713 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2714 | lemma connected_Ioo[simp]: "connected {a <..< b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2715 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2716 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2717 | lemma connected_Ioc[simp]: "connected {a <.. b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2718 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2719 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2720 | lemma connected_Ico[simp]: "connected {a ..< b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2721 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2722 | |
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2723 | lemma connected_Icc[simp]: "connected {a .. b::'a::linear_continuum_topology}"
 | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2724 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2725 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2726 | lemma connected_contains_Ioo: | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2727 | fixes A :: "'a :: linorder_topology set" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2728 |   assumes A: "connected A" "a \<in> A" "b \<in> A" shows "{a <..< b} \<subseteq> A"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2729 | using connectedD_interval[OF A] by (simp add: subset_eq Ball_def less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2730 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2731 | subsection {* Intermediate Value Theorem *}
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2732 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2733 | lemma IVT': | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2734 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2735 | assumes y: "f a \<le> y" "y \<le> f b" "a \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2736 |   assumes *: "continuous_on {a .. b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2737 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2738 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2739 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2740 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2741 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f a" "f b" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2742 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2743 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2744 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2745 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2746 | lemma IVT2': | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2747 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2748 | assumes y: "f b \<le> y" "y \<le> f a" "a \<le> b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2749 |   assumes *: "continuous_on {a .. b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2750 | shows "\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2751 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2752 |   have "connected {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2753 | unfolding connected_iff_interval by auto | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2754 | from connected_continuous_image[OF * this, THEN connectedD_interval, of "f b" "f a" y] y | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2755 | show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2756 | by (auto simp add: atLeastAtMost_def atLeast_def atMost_def) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2757 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2758 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2759 | lemma IVT: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2760 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2761 | shows "f a \<le> y \<Longrightarrow> y \<le> f b \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2762 | by (rule IVT') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2763 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2764 | lemma IVT2: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2765 | fixes f :: "'a :: linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2766 | shows "f b \<le> y \<Longrightarrow> y \<le> f a \<Longrightarrow> a \<le> b \<Longrightarrow> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x) \<Longrightarrow> \<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2767 | by (rule IVT2') (auto intro: continuous_at_imp_continuous_on) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2768 | |
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2769 | lemma continuous_inj_imp_mono: | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 2770 | fixes f :: "'a::linear_continuum_topology \<Rightarrow> 'b :: linorder_topology" | 
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2771 | assumes x: "a < x" "x < b" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2772 |   assumes cont: "continuous_on {a..b} f"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2773 |   assumes inj: "inj_on f {a..b}"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2774 | shows "(f a < f x \<and> f x < f b) \<or> (f b < f x \<and> f x < f a)" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2775 | proof - | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2776 | note I = inj_on_iff[OF inj] | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2777 |   { assume "f x < f a" "f x < f b"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2778 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f x < f s" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2779 | using IVT'[of f x "min (f a) (f b)" b] IVT2'[of f x "min (f a) (f b)" a] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2780 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2781 | with x I have False by auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2782 | moreover | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2783 |   { assume "f a < f x" "f b < f x"
 | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2784 | then obtain s t where "x \<le> s" "s \<le> b" "a \<le> t" "t \<le> x" "f s = f t" "f s < f x" | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2785 | using IVT'[of f a "max (f a) (f b)" x] IVT2'[of f b "max (f a) (f b)" x] x | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2786 | by (auto simp: continuous_on_subset[OF cont] less_imp_le) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2787 | with x I have False by auto } | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2788 | ultimately show ?thesis | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2789 | using I[of a x] I[of x b] x less_trans[OF x] by (auto simp add: le_less less_imp_neq neq_iff) | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2790 | qed | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 2791 | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2792 | subsection {* Setup @{typ "'a filter"} for lifting and transfer *}
 | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2793 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2794 | context begin interpretation lifting_syntax . | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2795 | |
| 55942 | 2796 | definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
 | 
| 2797 | where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)" | |
| 2798 | ||
| 2799 | lemma rel_filter_eventually: | |
| 2800 | "rel_filter R F G \<longleftrightarrow> | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2801 | ((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)" | 
| 55942 | 2802 | by(simp add: rel_filter_def eventually_def) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2803 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2804 | lemma filtermap_id [simp, id_simps]: "filtermap id = id" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2805 | by(simp add: fun_eq_iff id_def filtermap_ident) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2806 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2807 | lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2808 | using filtermap_id unfolding id_def . | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2809 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2810 | lemma Quotient_filter [quot_map]: | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2811 | assumes Q: "Quotient R Abs Rep T" | 
| 55942 | 2812 | shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2813 | unfolding Quotient_alt_def | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2814 | proof(intro conjI strip) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2815 | from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2816 | unfolding Quotient_alt_def by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2817 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2818 | fix F G | 
| 55942 | 2819 | assume "rel_filter T F G" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2820 | thus "filtermap Abs F = G" unfolding filter_eq_iff | 
| 55945 | 2821 | by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2822 | next | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2823 | from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2824 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2825 | fix F | 
| 55942 | 2826 | show "rel_filter T (filtermap Rep F) F" | 
| 55945 | 2827 | by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI | 
| 55942 | 2828 | del: iffI simp add: eventually_filtermap rel_filter_eventually) | 
| 2829 | qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2830 | fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def]) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2831 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2832 | lemma eventually_parametric [transfer_rule]: | 
| 55942 | 2833 | "((A ===> op =) ===> rel_filter A ===> op =) eventually eventually" | 
| 55945 | 2834 | by(simp add: rel_fun_def rel_filter_eventually) | 
| 55942 | 2835 | |
| 2836 | lemma rel_filter_eq [relator_eq]: "rel_filter op = = op =" | |
| 55945 | 2837 | by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff) | 
| 55942 | 2838 | |
| 2839 | lemma rel_filter_mono [relator_mono]: | |
| 2840 | "A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B" | |
| 2841 | unfolding rel_filter_eventually[abs_def] | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2842 | by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2843 | |
| 55942 | 2844 | lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>" | 
| 55945 | 2845 | by(auto simp add: rel_filter_eventually fun_eq_iff rel_fun_def) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2846 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2847 | lemma is_filter_parametric_aux: | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2848 | assumes "is_filter F" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2849 | assumes [transfer_rule]: "bi_total A" "bi_unique A" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2850 | and [transfer_rule]: "((A ===> op =) ===> op =) F G" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2851 | shows "is_filter G" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2852 | proof - | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2853 | interpret is_filter F by fact | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2854 | show ?thesis | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2855 | proof | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2856 | have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2857 | thus "G (\<lambda>x. True)" by(simp add: True) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2858 | next | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2859 | fix P' Q' | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2860 | assume "G P'" "G Q'" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2861 | moreover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2862 | from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def] | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2863 | obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2864 | have "F P = G P'" "F Q = G Q'" by transfer_prover+ | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2865 | ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2866 | moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2867 | ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2868 | next | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2869 | fix P' Q' | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2870 | assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2871 | moreover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2872 | from bi_total_fun[OF `bi_unique A` bi_total_eq, unfolded bi_total_def] | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2873 | obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2874 | have "F P = G P'" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2875 | moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2876 | ultimately have "F Q" by(simp add: mono) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2877 | moreover have "F Q = G Q'" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2878 | ultimately show "G Q'" by simp | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2879 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2880 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2881 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2882 | lemma is_filter_parametric [transfer_rule]: | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2883 | "\<lbrakk> bi_total A; bi_unique A \<rbrakk> | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2884 | \<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter" | 
| 55945 | 2885 | apply(rule rel_funI) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2886 | apply(rule iffI) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2887 | apply(erule (3) is_filter_parametric_aux) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2888 | apply(erule is_filter_parametric_aux[where A="conversep A"]) | 
| 55945 | 2889 | apply(auto simp add: rel_fun_def) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2890 | done | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2891 | |
| 56518 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 kuncar parents: 
56371diff
changeset | 2892 | lemma left_total_rel_filter [transfer_rule]: | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2893 | assumes [transfer_rule]: "bi_total A" "bi_unique A" | 
| 55942 | 2894 | shows "left_total (rel_filter A)" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2895 | proof(rule left_totalI) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2896 | fix F :: "'a filter" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2897 | from bi_total_fun[OF bi_unique_fun[OF `bi_total A` bi_unique_eq] bi_total_eq] | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2898 | obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2899 | unfolding bi_total_def by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2900 | moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2901 | hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter) | 
| 55942 | 2902 | ultimately have "rel_filter A F (Abs_filter G)" | 
| 2903 | by(simp add: rel_filter_eventually eventually_Abs_filter) | |
| 2904 | thus "\<exists>G. rel_filter A F G" .. | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2905 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2906 | |
| 55942 | 2907 | lemma right_total_rel_filter [transfer_rule]: | 
| 2908 | "\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)" | |
| 2909 | using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp | |
| 2910 | ||
| 2911 | lemma bi_total_rel_filter [transfer_rule]: | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2912 | assumes "bi_total A" "bi_unique A" | 
| 55942 | 2913 | shows "bi_total (rel_filter A)" | 
| 56524 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 kuncar parents: 
56518diff
changeset | 2914 | unfolding bi_total_alt_def using assms | 
| 55942 | 2915 | by(simp add: left_total_rel_filter right_total_rel_filter) | 
| 2916 | ||
| 56518 
beb3b6851665
left_total and left_unique rules are now transfer rules (cleaner solution, reflexvity_rule attribute not needed anymore)
 kuncar parents: 
56371diff
changeset | 2917 | lemma left_unique_rel_filter [transfer_rule]: | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2918 | assumes "left_unique A" | 
| 55942 | 2919 | shows "left_unique (rel_filter A)" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2920 | proof(rule left_uniqueI) | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2921 | fix F F' G | 
| 55942 | 2922 | assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2923 | show "F = F'" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2924 | unfolding filter_eq_iff | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2925 | proof | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2926 | fix P :: "'a \<Rightarrow> bool" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2927 | obtain P' where [transfer_rule]: "(A ===> op =) P P'" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2928 | using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2929 | have "eventually P F = eventually P' G" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2930 | and "eventually P F' = eventually P' G" by transfer_prover+ | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2931 | thus "eventually P F = eventually P F'" by simp | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2932 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2933 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2934 | |
| 55942 | 2935 | lemma right_unique_rel_filter [transfer_rule]: | 
| 2936 | "right_unique A \<Longrightarrow> right_unique (rel_filter A)" | |
| 2937 | using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp | |
| 2938 | ||
| 2939 | lemma bi_unique_rel_filter [transfer_rule]: | |
| 2940 | "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)" | |
| 56524 
f4ba736040fa
setup for Transfer and Lifting from BNF; tuned thm names
 kuncar parents: 
56518diff
changeset | 2941 | by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2942 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2943 | lemma top_filter_parametric [transfer_rule]: | 
| 55942 | 2944 | "bi_total A \<Longrightarrow> (rel_filter A) top top" | 
| 2945 | by(simp add: rel_filter_eventually All_transfer) | |
| 2946 | ||
| 2947 | lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot" | |
| 55945 | 2948 | by(simp add: rel_filter_eventually rel_fun_def) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2949 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2950 | lemma sup_filter_parametric [transfer_rule]: | 
| 55942 | 2951 | "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup" | 
| 55945 | 2952 | by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2953 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2954 | lemma Sup_filter_parametric [transfer_rule]: | 
| 55942 | 2955 | "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup" | 
| 55945 | 2956 | proof(rule rel_funI) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2957 | fix S T | 
| 55942 | 2958 | assume [transfer_rule]: "rel_set (rel_filter A) S T" | 
| 2959 | show "rel_filter A (Sup S) (Sup T)" | |
| 2960 | by(simp add: rel_filter_eventually eventually_Sup) transfer_prover | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2961 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2962 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2963 | lemma principal_parametric [transfer_rule]: | 
| 55942 | 2964 | "(rel_set A ===> rel_filter A) principal principal" | 
| 55945 | 2965 | proof(rule rel_funI) | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2966 | fix S S' | 
| 55938 | 2967 | assume [transfer_rule]: "rel_set A S S'" | 
| 55942 | 2968 | show "rel_filter A (principal S) (principal S')" | 
| 2969 | by(simp add: rel_filter_eventually eventually_principal) transfer_prover | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2970 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2971 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2972 | context | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2973 | fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2974 | assumes [transfer_rule]: "bi_unique A" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2975 | begin | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2976 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2977 | lemma le_filter_parametric [transfer_rule]: | 
| 55942 | 2978 | "(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2979 | unfolding le_filter_def[abs_def] by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2980 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2981 | lemma less_filter_parametric [transfer_rule]: | 
| 55942 | 2982 | "(rel_filter A ===> rel_filter A ===> op =) op < op <" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2983 | unfolding less_filter_def[abs_def] by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2984 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2985 | context | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2986 | assumes [transfer_rule]: "bi_total A" | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2987 | begin | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2988 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2989 | lemma Inf_filter_parametric [transfer_rule]: | 
| 55942 | 2990 | "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf" | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2991 | unfolding Inf_filter_def[abs_def] by transfer_prover | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2992 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2993 | lemma inf_filter_parametric [transfer_rule]: | 
| 55942 | 2994 | "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf" | 
| 55945 | 2995 | proof(intro rel_funI)+ | 
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 2996 | fix F F' G G' | 
| 55942 | 2997 | assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'" | 
| 2998 |   have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
 | |
| 2999 | thus "rel_filter A (inf F G) (inf F' G')" by simp | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3000 | qed | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3001 | |
| 51518 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 3002 | end | 
| 
6a56b7088a6a
separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
 hoelzl parents: 
51481diff
changeset | 3003 | |
| 53946 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3004 | end | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3005 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3006 | end | 
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3007 | |
| 
5431e1392b14
add relator for 'a filter and parametricity theorems
 Andreas Lochbihler parents: 
53860diff
changeset | 3008 | end |