| author | nipkow | 
| Tue, 11 Oct 2022 10:45:42 +0200 | |
| changeset 76259 | d1c26efb7a47 | 
| parent 73550 | 2f6855142a8c | 
| permissions | -rw-r--r-- | 
| 26169 | 1 | (* Title: HOL/Library/Countable.thy | 
| 26350 | 2 | Author: Alexander Krauss, TU Muenchen | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 3 | Author: Brian Huffman, Portland State University | 
| 58160 | 4 | Author: Jasmin Blanchette, TU Muenchen | 
| 26169 | 5 | *) | 
| 6 | ||
| 60500 | 7 | section \<open>Encoding (almost) everything into natural numbers\<close> | 
| 26169 | 8 | |
| 9 | theory Countable | |
| 66453 
cc19f7ca2ed6
session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
 wenzelm parents: 
65411diff
changeset | 10 | imports Old_Datatype HOL.Rat Nat_Bijection | 
| 26169 | 11 | begin | 
| 12 | ||
| 60500 | 13 | subsection \<open>The class of countable types\<close> | 
| 26169 | 14 | |
| 29797 | 15 | class countable = | 
| 61076 | 16 | assumes ex_inj: "\<exists>to_nat :: 'a \<Rightarrow> nat. inj to_nat" | 
| 26169 | 17 | |
| 18 | lemma countable_classI: | |
| 19 | fixes f :: "'a \<Rightarrow> nat" | |
| 20 | assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" | |
| 21 |   shows "OFCLASS('a, countable_class)"
 | |
| 22 | proof (intro_classes, rule exI) | |
| 23 | show "inj f" | |
| 24 | by (rule injI [OF assms]) assumption | |
| 25 | qed | |
| 26 | ||
| 27 | ||
| 60500 | 28 | subsection \<open>Conversion functions\<close> | 
| 26169 | 29 | |
| 61076 | 30 | definition to_nat :: "'a::countable \<Rightarrow> nat" where | 
| 26169 | 31 | "to_nat = (SOME f. inj f)" | 
| 32 | ||
| 61076 | 33 | definition from_nat :: "nat \<Rightarrow> 'a::countable" where | 
| 34 | "from_nat = inv (to_nat :: 'a \<Rightarrow> nat)" | |
| 26169 | 35 | |
| 36 | lemma inj_to_nat [simp]: "inj to_nat" | |
| 37 | by (rule exE_some [OF ex_inj]) (simp add: to_nat_def) | |
| 38 | ||
| 43992 | 39 | lemma inj_on_to_nat[simp, intro]: "inj_on to_nat S" | 
| 40 | using inj_to_nat by (auto simp: inj_on_def) | |
| 41 | ||
| 29910 | 42 | lemma surj_from_nat [simp]: "surj from_nat" | 
| 43 | unfolding from_nat_def by (simp add: inj_imp_surj_inv) | |
| 44 | ||
| 26169 | 45 | lemma to_nat_split [simp]: "to_nat x = to_nat y \<longleftrightarrow> x = y" | 
| 46 | using injD [OF inj_to_nat] by auto | |
| 47 | ||
| 48 | lemma from_nat_to_nat [simp]: | |
| 49 | "from_nat (to_nat x) = x" | |
| 50 | by (simp add: from_nat_def) | |
| 51 | ||
| 52 | ||
| 60500 | 53 | subsection \<open>Finite types are countable\<close> | 
| 26169 | 54 | |
| 55 | subclass (in finite) countable | |
| 28823 | 56 | proof | 
| 61076 | 57 | have "finite (UNIV::'a set)" by (rule finite_UNIV) | 
| 31992 | 58 | with finite_conv_nat_seg_image [of "UNIV::'a set"] | 
| 68502 
a8ada04583e7
more explicit statement of rat_denum to fit with top100 thms list
 kleing parents: 
68406diff
changeset | 59 | obtain n and f :: "nat \<Rightarrow> 'a" | 
| 26169 | 60 |     where "UNIV = f ` {i. i < n}" by auto
 | 
| 61 | then have "surj f" unfolding surj_def by auto | |
| 62 | then have "inj (inv f)" by (rule surj_imp_inj_inv) | |
| 61076 | 63 | then show "\<exists>to_nat :: 'a \<Rightarrow> nat. inj to_nat" by (rule exI[of inj]) | 
| 26169 | 64 | qed | 
| 65 | ||
| 66 | ||
| 60500 | 67 | subsection \<open>Automatically proving countability of old-style datatypes\<close> | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 68 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 69 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 70 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 71 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 72 | qualified inductive finite_item :: "'a Old_Datatype.item \<Rightarrow> bool" where | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 73 | undefined: "finite_item undefined" | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 74 | | In0: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In0 x)" | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 75 | | In1: "finite_item x \<Longrightarrow> finite_item (Old_Datatype.In1 x)" | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 76 | | Leaf: "finite_item (Old_Datatype.Leaf a)" | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 77 | | Scons: "\<lbrakk>finite_item x; finite_item y\<rbrakk> \<Longrightarrow> finite_item (Old_Datatype.Scons x y)" | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 78 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 79 | qualified function nth_item :: "nat \<Rightarrow> ('a::countable) Old_Datatype.item"
 | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 80 | where | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 81 | "nth_item 0 = undefined" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 82 | | "nth_item (Suc n) = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 83 | (case sum_decode n of | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 84 | Inl i \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 85 | (case sum_decode i of | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 86 | Inl j \<Rightarrow> Old_Datatype.In0 (nth_item j) | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 87 | | Inr j \<Rightarrow> Old_Datatype.In1 (nth_item j)) | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 88 | | Inr i \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 89 | (case sum_decode i of | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 90 | Inl j \<Rightarrow> Old_Datatype.Leaf (from_nat j) | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 91 | | Inr j \<Rightarrow> | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 92 | (case prod_decode j of | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 93 | (a, b) \<Rightarrow> Old_Datatype.Scons (nth_item a) (nth_item b))))" | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 94 | by pat_completeness auto | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 95 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 96 | lemma le_sum_encode_Inl: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inl y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 97 | unfolding sum_encode_def by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 98 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 99 | lemma le_sum_encode_Inr: "x \<le> y \<Longrightarrow> x \<le> sum_encode (Inr y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 100 | unfolding sum_encode_def by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 101 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 102 | qualified termination | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 103 | by (relation "measure id") | 
| 68406 | 104 | (auto simp flip: sum_encode_eq prod_encode_eq | 
| 105 | simp: le_imp_less_Suc le_sum_encode_Inl le_sum_encode_Inr | |
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 106 | le_prod_encode_1 le_prod_encode_2) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 107 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 108 | lemma nth_item_covers: "finite_item x \<Longrightarrow> \<exists>n. nth_item n = x" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 109 | proof (induct set: finite_item) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 110 | case undefined | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 111 | have "nth_item 0 = undefined" by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 112 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 113 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 114 | case (In0 x) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 115 | then obtain n where "nth_item n = x" by fast | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 116 | hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inl n))))) = Old_Datatype.In0 x" by simp | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 117 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 118 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 119 | case (In1 x) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 120 | then obtain n where "nth_item n = x" by fast | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 121 | hence "nth_item (Suc (sum_encode (Inl (sum_encode (Inr n))))) = Old_Datatype.In1 x" by simp | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 122 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 123 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 124 | case (Leaf a) | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 125 | have "nth_item (Suc (sum_encode (Inr (sum_encode (Inl (to_nat a)))))) = Old_Datatype.Leaf a" | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 126 | by simp | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 127 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 128 | next | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 129 | case (Scons x y) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 130 | then obtain i j where "nth_item i = x" and "nth_item j = y" by fast | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 131 | hence "nth_item | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 132 | (Suc (sum_encode (Inr (sum_encode (Inr (prod_encode (i, j))))))) = Old_Datatype.Scons x y" | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 133 | by simp | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 134 | thus ?case .. | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 135 | qed | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 136 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 137 | theorem countable_datatype: | 
| 58112 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 138 |   fixes Rep :: "'b \<Rightarrow> ('a::countable) Old_Datatype.item"
 | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 139 |   fixes Abs :: "('a::countable) Old_Datatype.item \<Rightarrow> 'b"
 | 
| 
8081087096ad
renamed modules defining old datatypes, as a step towards having 'datatype_new' take 'datatype's place
 blanchet parents: 
57437diff
changeset | 140 |   fixes rep_set :: "('a::countable) Old_Datatype.item \<Rightarrow> bool"
 | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 141 | assumes type: "type_definition Rep Abs (Collect rep_set)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 142 | assumes finite_item: "\<And>x. rep_set x \<Longrightarrow> finite_item x" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 143 |   shows "OFCLASS('b, countable_class)"
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 144 | proof | 
| 63040 | 145 | define f where "f y = (LEAST n. nth_item n = Rep y)" for y | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 146 |   {
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 147 | fix y :: 'b | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 148 | have "rep_set (Rep y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 149 | using type_definition.Rep [OF type] by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 150 | hence "finite_item (Rep y)" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 151 | by (rule finite_item) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 152 | hence "\<exists>n. nth_item n = Rep y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 153 | by (rule nth_item_covers) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 154 | hence "nth_item (f y) = Rep y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 155 | unfolding f_def by (rule LeastI_ex) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 156 | hence "Abs (nth_item (f y)) = y" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 157 | using type_definition.Rep_inverse [OF type] by simp | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 158 | } | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 159 | hence "inj f" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 160 | by (rule inj_on_inverseI) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 161 | thus "\<exists>f::'b \<Rightarrow> nat. inj f" | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 162 | by - (rule exI) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 163 | qed | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 164 | |
| 60500 | 165 | ML \<open> | 
| 58161 | 166 | fun old_countable_datatype_tac ctxt = | 
| 58160 | 167 | SUBGOAL (fn (goal, _) => | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 168 | let | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 169 | val ty_name = | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 170 | (case goal of | 
| 69593 | 171 | (_ $ Const (\<^const_name>\<open>Pure.type\<close>, Type (\<^type_name>\<open>itself\<close>, [Type (n, _)]))) => n | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 172 | | _ => raise Match) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 173 | val typedef_info = hd (Typedef.get_info ctxt ty_name) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 174 | val typedef_thm = #type_definition (snd typedef_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 175 | val pred_name = | 
| 59582 | 176 | (case HOLogic.dest_Trueprop (Thm.concl_of typedef_thm) of | 
| 58160 | 177 | (_ $ _ $ _ $ (_ $ Const (n, _))) => n | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 178 | | _ => raise Match) | 
| 65411 
3c628937899d
use Item_Net to store inductive info
 Lars Hupel <lars.hupel@mytum.de> parents: 
63040diff
changeset | 179 | val induct_info = Inductive.the_inductive_global ctxt pred_name | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 180 | val pred_names = #names (fst induct_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 181 | val induct_thms = #inducts (snd induct_info) | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 182 | val alist = pred_names ~~ induct_thms | 
| 67405 
e9ab4ad7bd15
uniform use of Standard ML op-infix -- eliminated warnings;
 wenzelm parents: 
67399diff
changeset | 183 | val induct_thm = the (AList.lookup (op =) alist pred_name) | 
| 49187 
6096da55d2d6
countable_datatype method: pre-instantiate induction rule to avoid failure with e.g. datatype a = A "b list" and b = B "a"
 huffman parents: 
47432diff
changeset | 184 | val vars = rev (Term.add_vars (Thm.prop_of induct_thm) []) | 
| 59643 | 185 | val insts = vars |> map (fn (_, T) => try (Thm.cterm_of ctxt) | 
| 69593 | 186 | (Const (\<^const_name>\<open>Countable.finite_item\<close>, T))) | 
| 60801 | 187 | val induct_thm' = Thm.instantiate' [] insts induct_thm | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 188 |         val rules = @{thms finite_item.intros}
 | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 189 | in | 
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 190 | SOLVED' (fn i => EVERY | 
| 60752 | 191 |           [resolve_tac ctxt @{thms countable_datatype} i,
 | 
| 192 | resolve_tac ctxt [typedef_thm] i, | |
| 193 | eresolve_tac ctxt [induct_thm'] i, | |
| 194 | REPEAT (resolve_tac ctxt rules i ORELSE assume_tac ctxt i)]) 1 | |
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 195 | end) | 
| 60500 | 196 | \<close> | 
| 47432 | 197 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
61076diff
changeset | 198 | end | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 199 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 200 | |
| 60500 | 201 | subsection \<open>Automatically proving countability of datatypes\<close> | 
| 58160 | 202 | |
| 69605 | 203 | ML_file \<open>../Tools/BNF/bnf_lfp_countable.ML\<close> | 
| 58160 | 204 | |
| 60500 | 205 | ML \<open> | 
| 58161 | 206 | fun countable_datatype_tac ctxt st = | 
| 73550 
2f6855142a8c
support for ML special forms: modified evaluation similar to Scheme;
 wenzelm parents: 
69605diff
changeset | 207 | (case \<^try>\<open>HEADGOAL (old_countable_datatype_tac ctxt) st\<close> of | 
| 60029 | 208 | SOME res => res | 
| 209 | | NONE => BNF_LFP_Countable.countable_datatype_tac ctxt st); | |
| 58161 | 210 | |
| 211 | (* compatibility *) | |
| 212 | fun countable_tac ctxt = | |
| 213 | SELECT_GOAL (countable_datatype_tac ctxt); | |
| 60500 | 214 | \<close> | 
| 58161 | 215 | |
| 60500 | 216 | method_setup countable_datatype = \<open> | 
| 58161 | 217 | Scan.succeed (SIMPLE_METHOD o countable_datatype_tac) | 
| 60500 | 218 | \<close> "prove countable class instances for datatypes" | 
| 58160 | 219 | |
| 220 | ||
| 60500 | 221 | subsection \<open>More Countable types\<close> | 
| 58160 | 222 | |
| 60500 | 223 | text \<open>Naturals\<close> | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 224 | |
| 58160 | 225 | instance nat :: countable | 
| 226 | by (rule countable_classI [of "id"]) simp | |
| 227 | ||
| 60500 | 228 | text \<open>Pairs\<close> | 
| 58160 | 229 | |
| 230 | instance prod :: (countable, countable) countable | |
| 231 | by (rule countable_classI [of "\<lambda>(x, y). prod_encode (to_nat x, to_nat y)"]) | |
| 232 | (auto simp add: prod_encode_eq) | |
| 58158 | 233 | |
| 60500 | 234 | text \<open>Sums\<close> | 
| 58160 | 235 | |
| 236 | instance sum :: (countable, countable) countable | |
| 237 | by (rule countable_classI [of "(\<lambda>x. case x of Inl a \<Rightarrow> to_nat (False, to_nat a) | |
| 238 | | Inr b \<Rightarrow> to_nat (True, to_nat b))"]) | |
| 239 | (simp split: sum.split_asm) | |
| 240 | ||
| 60500 | 241 | text \<open>Integers\<close> | 
| 58158 | 242 | |
| 58160 | 243 | instance int :: countable | 
| 244 | by (rule countable_classI [of int_encode]) (simp add: int_encode_eq) | |
| 245 | ||
| 60500 | 246 | text \<open>Options\<close> | 
| 58160 | 247 | |
| 248 | instance option :: (countable) countable | |
| 249 | by countable_datatype | |
| 250 | ||
| 60500 | 251 | text \<open>Lists\<close> | 
| 58160 | 252 | |
| 253 | instance list :: (countable) countable | |
| 254 | by countable_datatype | |
| 255 | ||
| 60500 | 256 | text \<open>String literals\<close> | 
| 58160 | 257 | |
| 258 | instance String.literal :: countable | |
| 68028 | 259 | by (rule countable_classI [of "to_nat \<circ> String.explode"]) (simp add: String.explode_inject) | 
| 58160 | 260 | |
| 60500 | 261 | text \<open>Functions\<close> | 
| 58160 | 262 | |
| 263 | instance "fun" :: (finite, countable) countable | |
| 264 | proof | |
| 265 | obtain xs :: "'a list" where xs: "set xs = UNIV" | |
| 266 | using finite_list [OF finite_UNIV] .. | |
| 267 |   show "\<exists>to_nat::('a \<Rightarrow> 'b) \<Rightarrow> nat. inj to_nat"
 | |
| 268 | proof | |
| 269 | show "inj (\<lambda>f. to_nat (map f xs))" | |
| 270 | by (rule injI, simp add: xs fun_eq_iff) | |
| 271 | qed | |
| 272 | qed | |
| 273 | ||
| 60500 | 274 | text \<open>Typereps\<close> | 
| 58158 | 275 | |
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 276 | instance typerep :: countable | 
| 58160 | 277 | by countable_datatype | 
| 278 | ||
| 279 | ||
| 60500 | 280 | subsection \<open>The rationals are countably infinite\<close> | 
| 58160 | 281 | |
| 282 | definition nat_to_rat_surj :: "nat \<Rightarrow> rat" where | |
| 283 | "nat_to_rat_surj n = (let (a, b) = prod_decode n in Fract (int_decode a) (int_decode b))" | |
| 284 | ||
| 285 | lemma surj_nat_to_rat_surj: "surj nat_to_rat_surj" | |
| 286 | unfolding surj_def | |
| 287 | proof | |
| 288 | fix r::rat | |
| 289 | show "\<exists>n. r = nat_to_rat_surj n" | |
| 290 | proof (cases r) | |
| 291 | fix i j assume [simp]: "r = Fract i j" and "j > 0" | |
| 58161 | 292 | have "r = (let m = int_encode i; n = int_encode j in nat_to_rat_surj (prod_encode (m, n)))" | 
| 58160 | 293 | by (simp add: Let_def nat_to_rat_surj_def) | 
| 58161 | 294 | thus "\<exists>n. r = nat_to_rat_surj n" by(auto simp: Let_def) | 
| 58160 | 295 | qed | 
| 296 | qed | |
| 297 | ||
| 298 | lemma Rats_eq_range_nat_to_rat_surj: "\<rat> = range nat_to_rat_surj" | |
| 299 | by (simp add: Rats_def surj_nat_to_rat_surj) | |
| 300 | ||
| 301 | context field_char_0 | |
| 302 | begin | |
| 303 | ||
| 304 | lemma Rats_eq_range_of_rat_o_nat_to_rat_surj: | |
| 58221 | 305 | "\<rat> = range (of_rat \<circ> nat_to_rat_surj)" | 
| 58160 | 306 | using surj_nat_to_rat_surj | 
| 307 | by (auto simp: Rats_def image_def surj_def) (blast intro: arg_cong[where f = of_rat]) | |
| 308 | ||
| 309 | lemma surj_of_rat_nat_to_rat_surj: | |
| 58221 | 310 | "r \<in> \<rat> \<Longrightarrow> \<exists>n. r = of_rat (nat_to_rat_surj n)" | 
| 58160 | 311 | by (simp add: Rats_eq_range_of_rat_o_nat_to_rat_surj image_def) | 
| 43534 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 312 | |
| 
15df7bc8e93f
add countable_datatype method for proving countable class instances
 huffman parents: 
40702diff
changeset | 313 | end | 
| 58160 | 314 | |
| 315 | instance rat :: countable | |
| 316 | proof | |
| 317 | show "\<exists>to_nat::rat \<Rightarrow> nat. inj to_nat" | |
| 318 | proof | |
| 319 | have "surj nat_to_rat_surj" | |
| 320 | by (rule surj_nat_to_rat_surj) | |
| 321 | then show "inj (inv nat_to_rat_surj)" | |
| 322 | by (rule surj_imp_inj_inv) | |
| 323 | qed | |
| 324 | qed | |
| 325 | ||
| 68502 
a8ada04583e7
more explicit statement of rat_denum to fit with top100 thms list
 kleing parents: 
68406diff
changeset | 326 | theorem rat_denum: "\<exists>f :: nat \<Rightarrow> rat. surj f" | 
| 
a8ada04583e7
more explicit statement of rat_denum to fit with top100 thms list
 kleing parents: 
68406diff
changeset | 327 | using surj_nat_to_rat_surj by metis | 
| 
a8ada04583e7
more explicit statement of rat_denum to fit with top100 thms list
 kleing parents: 
68406diff
changeset | 328 | |
| 58160 | 329 | end |