| 
35849
 | 
     1  | 
(*  Author: Clemens Ballarin, started 15 April 1997
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
Ring homomorphism.
  | 
| 
7998
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
21423
 | 
     6  | 
header {* Ring homomorphism *}
 | 
| 
 | 
     7  | 
  | 
| 
27541
 | 
     8  | 
theory RingHomo
  | 
| 
 | 
     9  | 
imports Ring2
  | 
| 
 | 
    10  | 
begin
  | 
| 
7998
 | 
    11  | 
  | 
| 
21423
 | 
    12  | 
definition
  | 
| 
 | 
    13  | 
  homo :: "('a::ring => 'b::ring) => bool" where
 | 
| 
 | 
    14  | 
  "homo f \<longleftrightarrow> (ALL a b. f (a + b) = f a + f b &
  | 
| 
17479
 | 
    15  | 
                                   f (a * b) = f a * f b) &
  | 
| 
 | 
    16  | 
                                   f 1 = 1"
  | 
| 
7998
 | 
    17  | 
  | 
| 
21423
 | 
    18  | 
  | 
| 
 | 
    19  | 
lemma homoI:
  | 
| 
 | 
    20  | 
  "!! f. [| !! a b. f (a + b) = f a + f b; !! a b. f (a * b) = f a * f b;  
  | 
| 
 | 
    21  | 
            f 1 = 1 |] ==> homo f"
  | 
| 
 | 
    22  | 
  unfolding homo_def by blast
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
lemma homo_add [simp]: "!! f. homo f ==> f (a + b) = f a + f b"
  | 
| 
 | 
    25  | 
  unfolding homo_def by blast
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
lemma homo_mult [simp]: "!! f. homo f ==> f (a * b) = f a * f b"
  | 
| 
 | 
    28  | 
  unfolding homo_def by blast
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma homo_one [simp]: "!! f. homo f ==> f 1 = 1"
  | 
| 
 | 
    31  | 
  unfolding homo_def by blast
  | 
| 
 | 
    32  | 
  | 
| 
 | 
    33  | 
lemma homo_zero [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f 0 = 0"
 | 
| 
 | 
    34  | 
  apply (rule_tac a = "f 0" in a_lcancel)
  | 
| 
 | 
    35  | 
  apply (simp (no_asm_simp) add: homo_add [symmetric])
  | 
| 
 | 
    36  | 
  done
  | 
| 
 | 
    37  | 
  | 
| 
 | 
    38  | 
lemma homo_uminus [simp]:
  | 
| 
 | 
    39  | 
  "!! f::('a::ring=>'b::ring). homo f ==> f (-a) = - f a"
 | 
| 
 | 
    40  | 
  apply (rule_tac a = "f a" in a_lcancel)
  | 
| 
 | 
    41  | 
  apply (frule homo_zero)
  | 
| 
 | 
    42  | 
  apply (simp (no_asm_simp) add: homo_add [symmetric])
  | 
| 
 | 
    43  | 
  done
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma homo_power [simp]: "!! f::('a::ring=>'b::ring). homo f ==> f (a ^ n) = f a ^ n"
 | 
| 
 | 
    46  | 
  apply (induct_tac n)
  | 
| 
 | 
    47  | 
   apply (drule homo_one)
  | 
| 
 | 
    48  | 
   apply simp
  | 
| 
 | 
    49  | 
  apply (drule_tac a = "a^n" and b = "a" in homo_mult)
  | 
| 
 | 
    50  | 
  apply simp
  | 
| 
 | 
    51  | 
  done
  | 
| 
 | 
    52  | 
  | 
| 
 | 
    53  | 
lemma homo_SUM [simp]:
  | 
| 
 | 
    54  | 
  "!! f::('a::ring=>'b::ring).  
 | 
| 
 | 
    55  | 
    homo f ==> f (setsum g {..n::nat}) = setsum (f o g) {..n}"
 | 
| 
 | 
    56  | 
  apply (induct_tac n)
  | 
| 
 | 
    57  | 
   apply simp
  | 
| 
 | 
    58  | 
  apply simp
  | 
| 
 | 
    59  | 
  done
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma id_homo [simp]: "homo (%x. x)"
  | 
| 
 | 
    62  | 
  by (blast intro!: homoI)
  | 
| 
 | 
    63  | 
  | 
| 
7998
 | 
    64  | 
end
  |