| author | nipkow |
| Sun, 18 Oct 2009 12:07:25 +0200 | |
| changeset 32988 | d1d4d7a08a66 |
| parent 16417 | 9bc16273c2d4 |
| child 32989 | c28279b29ff1 |
| permissions | -rw-r--r-- |
| 6297 | 1 |
(* Title: HOL/UNITY/Extend.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1998 University of Cambridge |
|
5 |
||
| 13798 | 6 |
Extending of state setsExtending of state sets |
| 6297 | 7 |
function f (forget) maps the extended state to the original state |
8 |
function g (forgotten) maps the extended state to the "extending part" |
|
9 |
*) |
|
10 |
||
| 13798 | 11 |
header{*Extending State Sets*}
|
12 |
||
| 16417 | 13 |
theory Extend imports Guar begin |
| 6297 | 14 |
|
15 |
constdefs |
|
16 |
||
|
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
17 |
(*MOVE to Relation.thy?*) |
|
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
18 |
Restrict :: "[ 'a set, ('a*'b) set] => ('a*'b) set"
|
| 13805 | 19 |
"Restrict A r == r \<inter> (A <*> UNIV)" |
|
8948
b797cfa3548d
restructuring: LessThan.ML mostly moved to HOL/SetInterval.ML
paulson
parents:
8703
diff
changeset
|
20 |
|
| 7482 | 21 |
good_map :: "['a*'b => 'c] => bool" |
| 13805 | 22 |
"good_map h == surj h & (\<forall>x y. fst (inv h (h (x,y))) = x)" |
| 7482 | 23 |
(*Using the locale constant "f", this is f (h (x,y))) = x*) |
24 |
||
| 6297 | 25 |
extend_set :: "['a*'b => 'c, 'a set] => 'c set" |
| 10834 | 26 |
"extend_set h A == h ` (A <*> UNIV)" |
| 6297 | 27 |
|
| 7342 | 28 |
project_set :: "['a*'b => 'c, 'c set] => 'a set" |
| 13805 | 29 |
"project_set h C == {x. \<exists>y. h(x,y) \<in> C}"
|
| 7342 | 30 |
|
31 |
extend_act :: "['a*'b => 'c, ('a*'a) set] => ('c*'c) set"
|
|
| 13805 | 32 |
"extend_act h == %act. \<Union>(s,s') \<in> act. \<Union>y. {(h(s,y), h(s',y))}"
|
| 6297 | 33 |
|
|
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
34 |
project_act :: "['a*'b => 'c, ('c*'c) set] => ('a*'a) set"
|
| 13805 | 35 |
"project_act h act == {(x,x'). \<exists>y y'. (h(x,y), h(x',y')) \<in> act}"
|
| 7342 | 36 |
|
| 6297 | 37 |
extend :: "['a*'b => 'c, 'a program] => 'c program" |
38 |
"extend h F == mk_program (extend_set h (Init F), |
|
| 10834 | 39 |
extend_act h ` Acts F, |
40 |
project_act h -` AllowedActs F)" |
|
| 6297 | 41 |
|
|
7878
43b03d412b82
working version with localTo[C] instead of localTo
paulson
parents:
7826
diff
changeset
|
42 |
(*Argument C allows weak safety laws to be projected*) |
|
7880
62fb24e28e5e
exchanged the first two args of "project" and "drop_prog"
paulson
parents:
7878
diff
changeset
|
43 |
project :: "['a*'b => 'c, 'c set, 'c program] => 'a program" |
|
10064
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
44 |
"project h C F == |
|
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
45 |
mk_program (project_set h (Init F), |
| 10834 | 46 |
project_act h ` Restrict C ` Acts F, |
|
10064
1a77667b21ef
added compatibility relation: AllowedActs, Allowed, ok,
paulson
parents:
8948
diff
changeset
|
47 |
{act. Restrict (project_set h C) act :
|
| 10834 | 48 |
project_act h ` Restrict C ` AllowedActs F})" |
| 7342 | 49 |
|
| 6297 | 50 |
locale Extend = |
| 13790 | 51 |
fixes f :: "'c => 'a" |
52 |
and g :: "'c => 'b" |
|
53 |
and h :: "'a*'b => 'c" (*isomorphism between 'a * 'b and 'c *) |
|
54 |
and slice :: "['c set, 'b] => 'a set" |
|
55 |
assumes |
|
56 |
good_h: "good_map h" |
|
57 |
defines f_def: "f z == fst (inv h z)" |
|
58 |
and g_def: "g z == snd (inv h z)" |
|
| 13805 | 59 |
and slice_def: "slice Z y == {x. h(x,y) \<in> Z}"
|
| 13790 | 60 |
|
61 |
||
62 |
(** These we prove OUTSIDE the locale. **) |
|
63 |
||
64 |
||
| 13798 | 65 |
subsection{*Restrict*}
|
66 |
(*MOVE to Relation.thy?*) |
|
| 13790 | 67 |
|
| 13805 | 68 |
lemma Restrict_iff [iff]: "((x,y): Restrict A r) = ((x,y): r & x \<in> A)" |
| 13790 | 69 |
by (unfold Restrict_def, blast) |
70 |
||
71 |
lemma Restrict_UNIV [simp]: "Restrict UNIV = id" |
|
72 |
apply (rule ext) |
|
73 |
apply (auto simp add: Restrict_def) |
|
74 |
done |
|
75 |
||
76 |
lemma Restrict_empty [simp]: "Restrict {} r = {}"
|
|
77 |
by (auto simp add: Restrict_def) |
|
78 |
||
| 13805 | 79 |
lemma Restrict_Int [simp]: "Restrict A (Restrict B r) = Restrict (A \<inter> B) r" |
| 13790 | 80 |
by (unfold Restrict_def, blast) |
81 |
||
| 13805 | 82 |
lemma Restrict_triv: "Domain r \<subseteq> A ==> Restrict A r = r" |
| 13790 | 83 |
by (unfold Restrict_def, auto) |
84 |
||
| 13805 | 85 |
lemma Restrict_subset: "Restrict A r \<subseteq> r" |
| 13790 | 86 |
by (unfold Restrict_def, auto) |
87 |
||
88 |
lemma Restrict_eq_mono: |
|
| 13805 | 89 |
"[| A \<subseteq> B; Restrict B r = Restrict B s |] |
| 13790 | 90 |
==> Restrict A r = Restrict A s" |
91 |
by (unfold Restrict_def, blast) |
|
92 |
||
93 |
lemma Restrict_imageI: |
|
| 13805 | 94 |
"[| s \<in> RR; Restrict A r = Restrict A s |] |
95 |
==> Restrict A r \<in> Restrict A ` RR" |
|
| 13790 | 96 |
by (unfold Restrict_def image_def, auto) |
97 |
||
| 13805 | 98 |
lemma Domain_Restrict [simp]: "Domain (Restrict A r) = A \<inter> Domain r" |
| 13790 | 99 |
by blast |
100 |
||
| 13805 | 101 |
lemma Image_Restrict [simp]: "(Restrict A r) `` B = r `` (A \<inter> B)" |
| 13790 | 102 |
by blast |
103 |
||
104 |
(*Possibly easier than reasoning about "inv h"*) |
|
105 |
lemma good_mapI: |
|
106 |
assumes surj_h: "surj h" |
|
107 |
and prem: "!! x x' y y'. h(x,y) = h(x',y') ==> x=x'" |
|
108 |
shows "good_map h" |
|
109 |
apply (simp add: good_map_def) |
|
110 |
apply (safe intro!: surj_h) |
|
111 |
apply (rule prem) |
|
112 |
apply (subst surjective_pairing [symmetric]) |
|
113 |
apply (subst surj_h [THEN surj_f_inv_f]) |
|
114 |
apply (rule refl) |
|
115 |
done |
|
116 |
||
117 |
lemma good_map_is_surj: "good_map h ==> surj h" |
|
118 |
by (unfold good_map_def, auto) |
|
119 |
||
120 |
(*A convenient way of finding a closed form for inv h*) |
|
121 |
lemma fst_inv_equalityI: |
|
122 |
assumes surj_h: "surj h" |
|
123 |
and prem: "!! x y. g (h(x,y)) = x" |
|
124 |
shows "fst (inv h z) = g z" |
|
| 32988 | 125 |
by (metis UNIV_I f_inv_onto_f pair_collapse prem surj_h surj_range) |
| 13790 | 126 |
|
127 |
||
| 13798 | 128 |
subsection{*Trivial properties of f, g, h*}
|
| 13790 | 129 |
|
130 |
lemma (in Extend) f_h_eq [simp]: "f(h(x,y)) = x" |
|
131 |
by (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
132 |
||
133 |
lemma (in Extend) h_inject1 [dest]: "h(x,y) = h(x',y') ==> x=x'" |
|
134 |
apply (drule_tac f = f in arg_cong) |
|
135 |
apply (simp add: f_def good_h [unfolded good_map_def, THEN conjunct2]) |
|
136 |
done |
|
137 |
||
138 |
lemma (in Extend) h_f_g_equiv: "h(f z, g z) == z" |
|
139 |
by (simp add: f_def g_def |
|
140 |
good_h [unfolded good_map_def, THEN conjunct1, THEN surj_f_inv_f]) |
|
141 |
||
142 |
lemma (in Extend) h_f_g_eq: "h(f z, g z) = z" |
|
143 |
by (simp add: h_f_g_equiv) |
|
144 |
||
145 |
||
146 |
lemma (in Extend) split_extended_all: |
|
147 |
"(!!z. PROP P z) == (!!u y. PROP P (h (u, y)))" |
|
148 |
proof |
|
149 |
assume allP: "\<And>z. PROP P z" |
|
150 |
fix u y |
|
151 |
show "PROP P (h (u, y))" by (rule allP) |
|
152 |
next |
|
153 |
assume allPh: "\<And>u y. PROP P (h(u,y))" |
|
154 |
fix z |
|
155 |
have Phfgz: "PROP P (h (f z, g z))" by (rule allPh) |
|
156 |
show "PROP P z" by (rule Phfgz [unfolded h_f_g_equiv]) |
|
157 |
qed |
|
158 |
||
159 |
||
160 |
||
| 13798 | 161 |
subsection{*@{term extend_set}: basic properties*}
|
| 13790 | 162 |
|
163 |
lemma project_set_iff [iff]: |
|
| 13805 | 164 |
"(x \<in> project_set h C) = (\<exists>y. h(x,y) \<in> C)" |
| 13790 | 165 |
by (simp add: project_set_def) |
166 |
||
| 13805 | 167 |
lemma extend_set_mono: "A \<subseteq> B ==> extend_set h A \<subseteq> extend_set h B" |
| 13790 | 168 |
by (unfold extend_set_def, blast) |
169 |
||
| 13805 | 170 |
lemma (in Extend) mem_extend_set_iff [iff]: "z \<in> extend_set h A = (f z \<in> A)" |
| 13790 | 171 |
apply (unfold extend_set_def) |
172 |
apply (force intro: h_f_g_eq [symmetric]) |
|
173 |
done |
|
174 |
||
175 |
lemma (in Extend) extend_set_strict_mono [iff]: |
|
| 13805 | 176 |
"(extend_set h A \<subseteq> extend_set h B) = (A \<subseteq> B)" |
| 13790 | 177 |
by (unfold extend_set_def, force) |
178 |
||
179 |
lemma extend_set_empty [simp]: "extend_set h {} = {}"
|
|
180 |
by (unfold extend_set_def, auto) |
|
181 |
||
182 |
lemma (in Extend) extend_set_eq_Collect: "extend_set h {s. P s} = {s. P(f s)}"
|
|
183 |
by auto |
|
184 |
||
185 |
lemma (in Extend) extend_set_sing: "extend_set h {x} = {s. f s = x}"
|
|
186 |
by auto |
|
187 |
||
188 |
lemma (in Extend) extend_set_inverse [simp]: |
|
189 |
"project_set h (extend_set h C) = C" |
|
190 |
by (unfold extend_set_def, auto) |
|
191 |
||
192 |
lemma (in Extend) extend_set_project_set: |
|
| 13805 | 193 |
"C \<subseteq> extend_set h (project_set h C)" |
| 13790 | 194 |
apply (unfold extend_set_def) |
195 |
apply (auto simp add: split_extended_all, blast) |
|
196 |
done |
|
197 |
||
198 |
lemma (in Extend) inj_extend_set: "inj (extend_set h)" |
|
199 |
apply (rule inj_on_inverseI) |
|
200 |
apply (rule extend_set_inverse) |
|
201 |
done |
|
202 |
||
203 |
lemma (in Extend) extend_set_UNIV_eq [simp]: "extend_set h UNIV = UNIV" |
|
204 |
apply (unfold extend_set_def) |
|
205 |
apply (auto simp add: split_extended_all) |
|
206 |
done |
|
207 |
||
| 13798 | 208 |
subsection{*@{term project_set}: basic properties*}
|
| 13790 | 209 |
|
210 |
(*project_set is simply image!*) |
|
211 |
lemma (in Extend) project_set_eq: "project_set h C = f ` C" |
|
212 |
by (auto intro: f_h_eq [symmetric] simp add: split_extended_all) |
|
213 |
||
214 |
(*Converse appears to fail*) |
|
| 13805 | 215 |
lemma (in Extend) project_set_I: "!!z. z \<in> C ==> f z \<in> project_set h C" |
| 13790 | 216 |
by (auto simp add: split_extended_all) |
217 |
||
218 |
||
| 13798 | 219 |
subsection{*More laws*}
|
| 13790 | 220 |
|
221 |
(*Because A and B could differ on the "other" part of the state, |
|
222 |
cannot generalize to |
|
| 13805 | 223 |
project_set h (A \<inter> B) = project_set h A \<inter> project_set h B |
| 13790 | 224 |
*) |
225 |
lemma (in Extend) project_set_extend_set_Int: |
|
| 13805 | 226 |
"project_set h ((extend_set h A) \<inter> B) = A \<inter> (project_set h B)" |
| 13790 | 227 |
by auto |
228 |
||
229 |
(*Unused, but interesting?*) |
|
230 |
lemma (in Extend) project_set_extend_set_Un: |
|
| 13805 | 231 |
"project_set h ((extend_set h A) \<union> B) = A \<union> (project_set h B)" |
| 13790 | 232 |
by auto |
233 |
||
234 |
lemma project_set_Int_subset: |
|
| 13805 | 235 |
"project_set h (A \<inter> B) \<subseteq> (project_set h A) \<inter> (project_set h B)" |
| 13790 | 236 |
by auto |
237 |
||
238 |
lemma (in Extend) extend_set_Un_distrib: |
|
| 13805 | 239 |
"extend_set h (A \<union> B) = extend_set h A \<union> extend_set h B" |
| 13790 | 240 |
by auto |
241 |
||
242 |
lemma (in Extend) extend_set_Int_distrib: |
|
| 13805 | 243 |
"extend_set h (A \<inter> B) = extend_set h A \<inter> extend_set h B" |
| 13790 | 244 |
by auto |
245 |
||
246 |
lemma (in Extend) extend_set_INT_distrib: |
|
| 13805 | 247 |
"extend_set h (INTER A B) = (\<Inter>x \<in> A. extend_set h (B x))" |
| 13790 | 248 |
by auto |
249 |
||
250 |
lemma (in Extend) extend_set_Diff_distrib: |
|
251 |
"extend_set h (A - B) = extend_set h A - extend_set h B" |
|
252 |
by auto |
|
253 |
||
254 |
lemma (in Extend) extend_set_Union: |
|
| 13805 | 255 |
"extend_set h (Union A) = (\<Union>X \<in> A. extend_set h X)" |
| 13790 | 256 |
by blast |
257 |
||
258 |
lemma (in Extend) extend_set_subset_Compl_eq: |
|
| 13805 | 259 |
"(extend_set h A \<subseteq> - extend_set h B) = (A \<subseteq> - B)" |
| 13790 | 260 |
by (unfold extend_set_def, auto) |
261 |
||
262 |
||
| 13798 | 263 |
subsection{*@{term extend_act}*}
|
| 13790 | 264 |
|
265 |
(*Can't strengthen it to |
|
| 13805 | 266 |
((h(s,y), h(s',y')) \<in> extend_act h act) = ((s, s') \<in> act & y=y') |
| 13790 | 267 |
because h doesn't have to be injective in the 2nd argument*) |
268 |
lemma (in Extend) mem_extend_act_iff [iff]: |
|
| 13805 | 269 |
"((h(s,y), h(s',y)) \<in> extend_act h act) = ((s, s') \<in> act)" |
| 13790 | 270 |
by (unfold extend_act_def, auto) |
271 |
||
272 |
(*Converse fails: (z,z') would include actions that changed the g-part*) |
|
273 |
lemma (in Extend) extend_act_D: |
|
| 13805 | 274 |
"(z, z') \<in> extend_act h act ==> (f z, f z') \<in> act" |
| 13790 | 275 |
by (unfold extend_act_def, auto) |
276 |
||
277 |
lemma (in Extend) extend_act_inverse [simp]: |
|
278 |
"project_act h (extend_act h act) = act" |
|
279 |
by (unfold extend_act_def project_act_def, blast) |
|
280 |
||
281 |
lemma (in Extend) project_act_extend_act_restrict [simp]: |
|
282 |
"project_act h (Restrict C (extend_act h act)) = |
|
283 |
Restrict (project_set h C) act" |
|
284 |
by (unfold extend_act_def project_act_def, blast) |
|
285 |
||
286 |
lemma (in Extend) subset_extend_act_D: |
|
| 13805 | 287 |
"act' \<subseteq> extend_act h act ==> project_act h act' \<subseteq> act" |
| 13790 | 288 |
by (unfold extend_act_def project_act_def, force) |
289 |
||
290 |
lemma (in Extend) inj_extend_act: "inj (extend_act h)" |
|
291 |
apply (rule inj_on_inverseI) |
|
292 |
apply (rule extend_act_inverse) |
|
293 |
done |
|
294 |
||
295 |
lemma (in Extend) extend_act_Image [simp]: |
|
296 |
"extend_act h act `` (extend_set h A) = extend_set h (act `` A)" |
|
297 |
by (unfold extend_set_def extend_act_def, force) |
|
298 |
||
299 |
lemma (in Extend) extend_act_strict_mono [iff]: |
|
| 13805 | 300 |
"(extend_act h act' \<subseteq> extend_act h act) = (act'<=act)" |
| 13790 | 301 |
by (unfold extend_act_def, auto) |
302 |
||
303 |
declare (in Extend) inj_extend_act [THEN inj_eq, iff] |
|
304 |
(*This theorem is (extend_act h act' = extend_act h act) = (act'=act) *) |
|
305 |
||
306 |
lemma Domain_extend_act: |
|
307 |
"Domain (extend_act h act) = extend_set h (Domain act)" |
|
308 |
by (unfold extend_set_def extend_act_def, force) |
|
309 |
||
310 |
lemma (in Extend) extend_act_Id [simp]: |
|
311 |
"extend_act h Id = Id" |
|
312 |
apply (unfold extend_act_def) |
|
313 |
apply (force intro: h_f_g_eq [symmetric]) |
|
314 |
done |
|
315 |
||
316 |
lemma (in Extend) project_act_I: |
|
| 13805 | 317 |
"!!z z'. (z, z') \<in> act ==> (f z, f z') \<in> project_act h act" |
| 13790 | 318 |
apply (unfold project_act_def) |
319 |
apply (force simp add: split_extended_all) |
|
320 |
done |
|
321 |
||
322 |
lemma (in Extend) project_act_Id [simp]: "project_act h Id = Id" |
|
323 |
by (unfold project_act_def, force) |
|
324 |
||
325 |
lemma (in Extend) Domain_project_act: |
|
326 |
"Domain (project_act h act) = project_set h (Domain act)" |
|
327 |
apply (unfold project_act_def) |
|
328 |
apply (force simp add: split_extended_all) |
|
329 |
done |
|
330 |
||
331 |
||
332 |
||
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
333 |
subsection{*extend*}
|
| 13790 | 334 |
|
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
335 |
text{*Basic properties*}
|
| 13790 | 336 |
|
337 |
lemma Init_extend [simp]: |
|
338 |
"Init (extend h F) = extend_set h (Init F)" |
|
339 |
by (unfold extend_def, auto) |
|
340 |
||
341 |
lemma Init_project [simp]: |
|
342 |
"Init (project h C F) = project_set h (Init F)" |
|
343 |
by (unfold project_def, auto) |
|
344 |
||
345 |
lemma (in Extend) Acts_extend [simp]: |
|
346 |
"Acts (extend h F) = (extend_act h ` Acts F)" |
|
347 |
by (simp add: extend_def insert_Id_image_Acts) |
|
348 |
||
349 |
lemma (in Extend) AllowedActs_extend [simp]: |
|
350 |
"AllowedActs (extend h F) = project_act h -` AllowedActs F" |
|
351 |
by (simp add: extend_def insert_absorb) |
|
352 |
||
353 |
lemma Acts_project [simp]: |
|
354 |
"Acts(project h C F) = insert Id (project_act h ` Restrict C ` Acts F)" |
|
355 |
by (auto simp add: project_def image_iff) |
|
356 |
||
357 |
lemma (in Extend) AllowedActs_project [simp]: |
|
358 |
"AllowedActs(project h C F) = |
|
359 |
{act. Restrict (project_set h C) act
|
|
| 13805 | 360 |
\<in> project_act h ` Restrict C ` AllowedActs F}" |
| 13790 | 361 |
apply (simp (no_asm) add: project_def image_iff) |
362 |
apply (subst insert_absorb) |
|
363 |
apply (auto intro!: bexI [of _ Id] simp add: project_act_def) |
|
364 |
done |
|
365 |
||
366 |
lemma (in Extend) Allowed_extend: |
|
367 |
"Allowed (extend h F) = project h UNIV -` Allowed F" |
|
368 |
apply (simp (no_asm) add: AllowedActs_extend Allowed_def) |
|
369 |
apply blast |
|
370 |
done |
|
371 |
||
372 |
lemma (in Extend) extend_SKIP [simp]: "extend h SKIP = SKIP" |
|
373 |
apply (unfold SKIP_def) |
|
374 |
apply (rule program_equalityI, auto) |
|
375 |
done |
|
376 |
||
377 |
lemma project_set_UNIV [simp]: "project_set h UNIV = UNIV" |
|
378 |
by auto |
|
379 |
||
380 |
lemma project_set_Union: |
|
| 13805 | 381 |
"project_set h (Union A) = (\<Union>X \<in> A. project_set h X)" |
| 13790 | 382 |
by blast |
383 |
||
| 6297 | 384 |
|
| 13790 | 385 |
(*Converse FAILS: the extended state contributing to project_set h C |
386 |
may not coincide with the one contributing to project_act h act*) |
|
387 |
lemma (in Extend) project_act_Restrict_subset: |
|
| 13805 | 388 |
"project_act h (Restrict C act) \<subseteq> |
| 13790 | 389 |
Restrict (project_set h C) (project_act h act)" |
390 |
by (auto simp add: project_act_def) |
|
391 |
||
392 |
lemma (in Extend) project_act_Restrict_Id_eq: |
|
393 |
"project_act h (Restrict C Id) = Restrict (project_set h C) Id" |
|
394 |
by (auto simp add: project_act_def) |
|
395 |
||
396 |
lemma (in Extend) project_extend_eq: |
|
397 |
"project h C (extend h F) = |
|
398 |
mk_program (Init F, Restrict (project_set h C) ` Acts F, |
|
399 |
{act. Restrict (project_set h C) act
|
|
| 13805 | 400 |
\<in> project_act h ` Restrict C ` |
| 13790 | 401 |
(project_act h -` AllowedActs F)})" |
402 |
apply (rule program_equalityI) |
|
403 |
apply simp |
|
404 |
apply (simp add: image_eq_UN) |
|
405 |
apply (simp add: project_def) |
|
406 |
done |
|
407 |
||
408 |
lemma (in Extend) extend_inverse [simp]: |
|
409 |
"project h UNIV (extend h F) = F" |
|
410 |
apply (simp (no_asm_simp) add: project_extend_eq image_eq_UN |
|
411 |
subset_UNIV [THEN subset_trans, THEN Restrict_triv]) |
|
412 |
apply (rule program_equalityI) |
|
413 |
apply (simp_all (no_asm)) |
|
414 |
apply (subst insert_absorb) |
|
415 |
apply (simp (no_asm) add: bexI [of _ Id]) |
|
416 |
apply auto |
|
417 |
apply (rename_tac "act") |
|
418 |
apply (rule_tac x = "extend_act h act" in bexI, auto) |
|
419 |
done |
|
420 |
||
421 |
lemma (in Extend) inj_extend: "inj (extend h)" |
|
422 |
apply (rule inj_on_inverseI) |
|
423 |
apply (rule extend_inverse) |
|
424 |
done |
|
425 |
||
426 |
lemma (in Extend) extend_Join [simp]: |
|
| 13819 | 427 |
"extend h (F\<squnion>G) = extend h F\<squnion>extend h G" |
| 13790 | 428 |
apply (rule program_equalityI) |
429 |
apply (simp (no_asm) add: extend_set_Int_distrib) |
|
430 |
apply (simp add: image_Un, auto) |
|
431 |
done |
|
432 |
||
433 |
lemma (in Extend) extend_JN [simp]: |
|
| 13805 | 434 |
"extend h (JOIN I F) = (\<Squnion>i \<in> I. extend h (F i))" |
| 13790 | 435 |
apply (rule program_equalityI) |
436 |
apply (simp (no_asm) add: extend_set_INT_distrib) |
|
437 |
apply (simp add: image_UN, auto) |
|
438 |
done |
|
439 |
||
440 |
(** These monotonicity results look natural but are UNUSED **) |
|
441 |
||
| 13805 | 442 |
lemma (in Extend) extend_mono: "F \<le> G ==> extend h F \<le> extend h G" |
| 13790 | 443 |
by (force simp add: component_eq_subset) |
444 |
||
| 13805 | 445 |
lemma (in Extend) project_mono: "F \<le> G ==> project h C F \<le> project h C G" |
| 13790 | 446 |
by (simp add: component_eq_subset, blast) |
447 |
||
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
448 |
lemma (in Extend) all_total_extend: "all_total F ==> all_total (extend h F)" |
|
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
449 |
by (simp add: all_total_def Domain_extend_act) |
| 13790 | 450 |
|
| 13798 | 451 |
subsection{*Safety: co, stable*}
|
| 13790 | 452 |
|
453 |
lemma (in Extend) extend_constrains: |
|
| 13805 | 454 |
"(extend h F \<in> (extend_set h A) co (extend_set h B)) = |
455 |
(F \<in> A co B)" |
|
| 13790 | 456 |
by (simp add: constrains_def) |
457 |
||
458 |
lemma (in Extend) extend_stable: |
|
| 13805 | 459 |
"(extend h F \<in> stable (extend_set h A)) = (F \<in> stable A)" |
| 13790 | 460 |
by (simp add: stable_def extend_constrains) |
461 |
||
462 |
lemma (in Extend) extend_invariant: |
|
| 13805 | 463 |
"(extend h F \<in> invariant (extend_set h A)) = (F \<in> invariant A)" |
| 13790 | 464 |
by (simp add: invariant_def extend_stable) |
465 |
||
466 |
(*Projects the state predicates in the property satisfied by extend h F. |
|
467 |
Converse fails: A and B may differ in their extra variables*) |
|
468 |
lemma (in Extend) extend_constrains_project_set: |
|
| 13805 | 469 |
"extend h F \<in> A co B ==> F \<in> (project_set h A) co (project_set h B)" |
| 13790 | 470 |
by (auto simp add: constrains_def, force) |
471 |
||
472 |
lemma (in Extend) extend_stable_project_set: |
|
| 13805 | 473 |
"extend h F \<in> stable A ==> F \<in> stable (project_set h A)" |
| 13790 | 474 |
by (simp add: stable_def extend_constrains_project_set) |
475 |
||
476 |
||
| 13798 | 477 |
subsection{*Weak safety primitives: Co, Stable*}
|
| 13790 | 478 |
|
479 |
lemma (in Extend) reachable_extend_f: |
|
| 13805 | 480 |
"p \<in> reachable (extend h F) ==> f p \<in> reachable F" |
| 13790 | 481 |
apply (erule reachable.induct) |
482 |
apply (auto intro: reachable.intros simp add: extend_act_def image_iff) |
|
483 |
done |
|
484 |
||
485 |
lemma (in Extend) h_reachable_extend: |
|
| 13805 | 486 |
"h(s,y) \<in> reachable (extend h F) ==> s \<in> reachable F" |
| 13790 | 487 |
by (force dest!: reachable_extend_f) |
488 |
||
489 |
lemma (in Extend) reachable_extend_eq: |
|
490 |
"reachable (extend h F) = extend_set h (reachable F)" |
|
491 |
apply (unfold extend_set_def) |
|
492 |
apply (rule equalityI) |
|
493 |
apply (force intro: h_f_g_eq [symmetric] dest!: reachable_extend_f, clarify) |
|
494 |
apply (erule reachable.induct) |
|
495 |
apply (force intro: reachable.intros)+ |
|
496 |
done |
|
497 |
||
498 |
lemma (in Extend) extend_Constrains: |
|
| 13805 | 499 |
"(extend h F \<in> (extend_set h A) Co (extend_set h B)) = |
500 |
(F \<in> A Co B)" |
|
| 13790 | 501 |
by (simp add: Constrains_def reachable_extend_eq extend_constrains |
502 |
extend_set_Int_distrib [symmetric]) |
|
503 |
||
504 |
lemma (in Extend) extend_Stable: |
|
| 13805 | 505 |
"(extend h F \<in> Stable (extend_set h A)) = (F \<in> Stable A)" |
| 13790 | 506 |
by (simp add: Stable_def extend_Constrains) |
507 |
||
508 |
lemma (in Extend) extend_Always: |
|
| 13805 | 509 |
"(extend h F \<in> Always (extend_set h A)) = (F \<in> Always A)" |
| 13790 | 510 |
by (simp (no_asm_simp) add: Always_def extend_Stable) |
511 |
||
512 |
||
513 |
(** Safety and "project" **) |
|
514 |
||
515 |
(** projection: monotonicity for safety **) |
|
516 |
||
517 |
lemma project_act_mono: |
|
| 13805 | 518 |
"D \<subseteq> C ==> |
519 |
project_act h (Restrict D act) \<subseteq> project_act h (Restrict C act)" |
|
| 13790 | 520 |
by (auto simp add: project_act_def) |
521 |
||
522 |
lemma (in Extend) project_constrains_mono: |
|
| 13805 | 523 |
"[| D \<subseteq> C; project h C F \<in> A co B |] ==> project h D F \<in> A co B" |
| 13790 | 524 |
apply (auto simp add: constrains_def) |
525 |
apply (drule project_act_mono, blast) |
|
526 |
done |
|
527 |
||
528 |
lemma (in Extend) project_stable_mono: |
|
| 13805 | 529 |
"[| D \<subseteq> C; project h C F \<in> stable A |] ==> project h D F \<in> stable A" |
| 13790 | 530 |
by (simp add: stable_def project_constrains_mono) |
531 |
||
532 |
(*Key lemma used in several proofs about project and co*) |
|
533 |
lemma (in Extend) project_constrains: |
|
| 13805 | 534 |
"(project h C F \<in> A co B) = |
535 |
(F \<in> (C \<inter> extend_set h A) co (extend_set h B) & A \<subseteq> B)" |
|
| 13790 | 536 |
apply (unfold constrains_def) |
537 |
apply (auto intro!: project_act_I simp add: ball_Un) |
|
538 |
apply (force intro!: project_act_I dest!: subsetD) |
|
539 |
(*the <== direction*) |
|
540 |
apply (unfold project_act_def) |
|
541 |
apply (force dest!: subsetD) |
|
542 |
done |
|
543 |
||
544 |
lemma (in Extend) project_stable: |
|
| 13805 | 545 |
"(project h UNIV F \<in> stable A) = (F \<in> stable (extend_set h A))" |
| 13790 | 546 |
apply (unfold stable_def) |
547 |
apply (simp (no_asm) add: project_constrains) |
|
548 |
done |
|
549 |
||
550 |
lemma (in Extend) project_stable_I: |
|
| 13805 | 551 |
"F \<in> stable (extend_set h A) ==> project h C F \<in> stable A" |
| 13790 | 552 |
apply (drule project_stable [THEN iffD2]) |
553 |
apply (blast intro: project_stable_mono) |
|
554 |
done |
|
555 |
||
556 |
lemma (in Extend) Int_extend_set_lemma: |
|
| 13805 | 557 |
"A \<inter> extend_set h ((project_set h A) \<inter> B) = A \<inter> extend_set h B" |
| 13790 | 558 |
by (auto simp add: split_extended_all) |
559 |
||
560 |
(*Strange (look at occurrences of C) but used in leadsETo proofs*) |
|
561 |
lemma project_constrains_project_set: |
|
| 13805 | 562 |
"G \<in> C co B ==> project h C G \<in> project_set h C co project_set h B" |
| 13790 | 563 |
by (simp add: constrains_def project_def project_act_def, blast) |
564 |
||
565 |
lemma project_stable_project_set: |
|
| 13805 | 566 |
"G \<in> stable C ==> project h C G \<in> stable (project_set h C)" |
| 13790 | 567 |
by (simp add: stable_def project_constrains_project_set) |
568 |
||
569 |
||
| 13798 | 570 |
subsection{*Progress: transient, ensures*}
|
| 13790 | 571 |
|
572 |
lemma (in Extend) extend_transient: |
|
| 13805 | 573 |
"(extend h F \<in> transient (extend_set h A)) = (F \<in> transient A)" |
| 13790 | 574 |
by (auto simp add: transient_def extend_set_subset_Compl_eq Domain_extend_act) |
575 |
||
576 |
lemma (in Extend) extend_ensures: |
|
| 13805 | 577 |
"(extend h F \<in> (extend_set h A) ensures (extend_set h B)) = |
578 |
(F \<in> A ensures B)" |
|
| 13790 | 579 |
by (simp add: ensures_def extend_constrains extend_transient |
580 |
extend_set_Un_distrib [symmetric] extend_set_Diff_distrib [symmetric]) |
|
581 |
||
582 |
lemma (in Extend) leadsTo_imp_extend_leadsTo: |
|
| 13805 | 583 |
"F \<in> A leadsTo B |
584 |
==> extend h F \<in> (extend_set h A) leadsTo (extend_set h B)" |
|
| 13790 | 585 |
apply (erule leadsTo_induct) |
586 |
apply (simp add: leadsTo_Basis extend_ensures) |
|
587 |
apply (blast intro: leadsTo_Trans) |
|
588 |
apply (simp add: leadsTo_UN extend_set_Union) |
|
589 |
done |
|
590 |
||
| 13798 | 591 |
subsection{*Proving the converse takes some doing!*}
|
| 13790 | 592 |
|
| 13805 | 593 |
lemma (in Extend) slice_iff [iff]: "(x \<in> slice C y) = (h(x,y) \<in> C)" |
| 13790 | 594 |
by (simp (no_asm) add: slice_def) |
595 |
||
| 13805 | 596 |
lemma (in Extend) slice_Union: "slice (Union S) y = (\<Union>x \<in> S. slice x y)" |
| 13790 | 597 |
by auto |
598 |
||
599 |
lemma (in Extend) slice_extend_set: "slice (extend_set h A) y = A" |
|
600 |
by auto |
|
601 |
||
602 |
lemma (in Extend) project_set_is_UN_slice: |
|
| 13805 | 603 |
"project_set h A = (\<Union>y. slice A y)" |
| 13790 | 604 |
by auto |
605 |
||
606 |
lemma (in Extend) extend_transient_slice: |
|
| 13805 | 607 |
"extend h F \<in> transient A ==> F \<in> transient (slice A y)" |
|
13812
91713a1915ee
converting HOL/UNITY to use unconditional fairness
paulson
parents:
13805
diff
changeset
|
608 |
by (unfold transient_def, auto) |
| 13790 | 609 |
|
610 |
(*Converse?*) |
|
611 |
lemma (in Extend) extend_constrains_slice: |
|
| 13805 | 612 |
"extend h F \<in> A co B ==> F \<in> (slice A y) co (slice B y)" |
| 13790 | 613 |
by (auto simp add: constrains_def) |
614 |
||
615 |
lemma (in Extend) extend_ensures_slice: |
|
| 13805 | 616 |
"extend h F \<in> A ensures B ==> F \<in> (slice A y) ensures (project_set h B)" |
| 13790 | 617 |
apply (auto simp add: ensures_def extend_constrains extend_transient) |
618 |
apply (erule_tac [2] extend_transient_slice [THEN transient_strengthen]) |
|
619 |
apply (erule extend_constrains_slice [THEN constrains_weaken], auto) |
|
620 |
done |
|
621 |
||
622 |
lemma (in Extend) leadsTo_slice_project_set: |
|
| 13805 | 623 |
"\<forall>y. F \<in> (slice B y) leadsTo CU ==> F \<in> (project_set h B) leadsTo CU" |
| 13790 | 624 |
apply (simp (no_asm) add: project_set_is_UN_slice) |
625 |
apply (blast intro: leadsTo_UN) |
|
626 |
done |
|
627 |
||
| 13798 | 628 |
lemma (in Extend) extend_leadsTo_slice [rule_format]: |
| 13805 | 629 |
"extend h F \<in> AU leadsTo BU |
630 |
==> \<forall>y. F \<in> (slice AU y) leadsTo (project_set h BU)" |
|
| 13790 | 631 |
apply (erule leadsTo_induct) |
632 |
apply (blast intro: extend_ensures_slice leadsTo_Basis) |
|
633 |
apply (blast intro: leadsTo_slice_project_set leadsTo_Trans) |
|
634 |
apply (simp add: leadsTo_UN slice_Union) |
|
635 |
done |
|
636 |
||
637 |
lemma (in Extend) extend_leadsTo: |
|
| 13805 | 638 |
"(extend h F \<in> (extend_set h A) leadsTo (extend_set h B)) = |
639 |
(F \<in> A leadsTo B)" |
|
| 13790 | 640 |
apply safe |
641 |
apply (erule_tac [2] leadsTo_imp_extend_leadsTo) |
|
642 |
apply (drule extend_leadsTo_slice) |
|
643 |
apply (simp add: slice_extend_set) |
|
644 |
done |
|
645 |
||
646 |
lemma (in Extend) extend_LeadsTo: |
|
| 13805 | 647 |
"(extend h F \<in> (extend_set h A) LeadsTo (extend_set h B)) = |
648 |
(F \<in> A LeadsTo B)" |
|
| 13790 | 649 |
by (simp add: LeadsTo_def reachable_extend_eq extend_leadsTo |
650 |
extend_set_Int_distrib [symmetric]) |
|
651 |
||
652 |
||
| 13798 | 653 |
subsection{*preserves*}
|
| 13790 | 654 |
|
655 |
lemma (in Extend) project_preserves_I: |
|
| 13805 | 656 |
"G \<in> preserves (v o f) ==> project h C G \<in> preserves v" |
| 13790 | 657 |
by (auto simp add: preserves_def project_stable_I extend_set_eq_Collect) |
658 |
||
659 |
(*to preserve f is to preserve the whole original state*) |
|
660 |
lemma (in Extend) project_preserves_id_I: |
|
| 13805 | 661 |
"G \<in> preserves f ==> project h C G \<in> preserves id" |
| 13790 | 662 |
by (simp add: project_preserves_I) |
663 |
||
664 |
lemma (in Extend) extend_preserves: |
|
| 13805 | 665 |
"(extend h G \<in> preserves (v o f)) = (G \<in> preserves v)" |
| 13790 | 666 |
by (auto simp add: preserves_def extend_stable [symmetric] |
667 |
extend_set_eq_Collect) |
|
668 |
||
| 13805 | 669 |
lemma (in Extend) inj_extend_preserves: "inj h ==> (extend h G \<in> preserves g)" |
| 13790 | 670 |
by (auto simp add: preserves_def extend_def extend_act_def stable_def |
671 |
constrains_def g_def) |
|
672 |
||
673 |
||
| 13798 | 674 |
subsection{*Guarantees*}
|
| 13790 | 675 |
|
676 |
lemma (in Extend) project_extend_Join: |
|
| 13819 | 677 |
"project h UNIV ((extend h F)\<squnion>G) = F\<squnion>(project h UNIV G)" |
| 13790 | 678 |
apply (rule program_equalityI) |
679 |
apply (simp add: project_set_extend_set_Int) |
|
680 |
apply (simp add: image_eq_UN UN_Un, auto) |
|
681 |
done |
|
682 |
||
683 |
lemma (in Extend) extend_Join_eq_extend_D: |
|
| 13819 | 684 |
"(extend h F)\<squnion>G = extend h H ==> H = F\<squnion>(project h UNIV G)" |
| 13790 | 685 |
apply (drule_tac f = "project h UNIV" in arg_cong) |
686 |
apply (simp add: project_extend_Join) |
|
687 |
done |
|
688 |
||
689 |
(** Strong precondition and postcondition; only useful when |
|
690 |
the old and new state sets are in bijection **) |
|
691 |
||
692 |
||
693 |
lemma (in Extend) ok_extend_imp_ok_project: |
|
694 |
"extend h F ok G ==> F ok project h UNIV G" |
|
695 |
apply (auto simp add: ok_def) |
|
696 |
apply (drule subsetD) |
|
697 |
apply (auto intro!: rev_image_eqI) |
|
698 |
done |
|
699 |
||
700 |
lemma (in Extend) ok_extend_iff: "(extend h F ok extend h G) = (F ok G)" |
|
701 |
apply (simp add: ok_def, safe) |
|
702 |
apply (force+) |
|
703 |
done |
|
704 |
||
705 |
lemma (in Extend) OK_extend_iff: "OK I (%i. extend h (F i)) = (OK I F)" |
|
706 |
apply (unfold OK_def, safe) |
|
707 |
apply (drule_tac x = i in bspec) |
|
708 |
apply (drule_tac [2] x = j in bspec) |
|
709 |
apply (force+) |
|
710 |
done |
|
711 |
||
712 |
lemma (in Extend) guarantees_imp_extend_guarantees: |
|
| 13805 | 713 |
"F \<in> X guarantees Y ==> |
714 |
extend h F \<in> (extend h ` X) guarantees (extend h ` Y)" |
|
| 13790 | 715 |
apply (rule guaranteesI, clarify) |
716 |
apply (blast dest: ok_extend_imp_ok_project extend_Join_eq_extend_D |
|
717 |
guaranteesD) |
|
718 |
done |
|
719 |
||
720 |
lemma (in Extend) extend_guarantees_imp_guarantees: |
|
| 13805 | 721 |
"extend h F \<in> (extend h ` X) guarantees (extend h ` Y) |
722 |
==> F \<in> X guarantees Y" |
|
| 13790 | 723 |
apply (auto simp add: guar_def) |
724 |
apply (drule_tac x = "extend h G" in spec) |
|
725 |
apply (simp del: extend_Join |
|
726 |
add: extend_Join [symmetric] ok_extend_iff |
|
727 |
inj_extend [THEN inj_image_mem_iff]) |
|
728 |
done |
|
729 |
||
730 |
lemma (in Extend) extend_guarantees_eq: |
|
| 13805 | 731 |
"(extend h F \<in> (extend h ` X) guarantees (extend h ` Y)) = |
732 |
(F \<in> X guarantees Y)" |
|
| 13790 | 733 |
by (blast intro: guarantees_imp_extend_guarantees |
734 |
extend_guarantees_imp_guarantees) |
|
| 6297 | 735 |
|
736 |
end |