| author | haftmann | 
| Sat, 26 Jul 2008 09:00:26 +0200 | |
| changeset 27686 | d1dbe31655be | 
| parent 27651 | 16a26996c30e | 
| permissions | -rw-r--r-- | 
| 23164 | 1 | (* Title: HOL/nat_simprocs.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 2000 University of Cambridge | |
| 5 | ||
| 6 | Simprocs for nat numerals. | |
| 7 | *) | |
| 8 | ||
| 9 | structure Nat_Numeral_Simprocs = | |
| 10 | struct | |
| 11 | ||
| 12 | (*Maps n to #n for n = 0, 1, 2*) | |
| 13 | val numeral_syms = | |
| 23471 | 14 |        [@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym, @{thm numeral_2_eq_2} RS sym];
 | 
| 23164 | 15 | val numeral_sym_ss = HOL_ss addsimps numeral_syms; | 
| 16 | ||
| 17 | fun rename_numerals th = | |
| 18 | simplify numeral_sym_ss (Thm.transfer (the_context ()) th); | |
| 19 | ||
| 20 | (*Utilities*) | |
| 21 | ||
| 22 | fun mk_number n = HOLogic.number_of_const HOLogic.natT $ HOLogic.mk_numeral n; | |
| 24630 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24431diff
changeset | 23 | fun dest_number t = Int.max (0, snd (HOLogic.dest_number t)); | 
| 23164 | 24 | |
| 25 | fun find_first_numeral past (t::terms) = | |
| 26 | ((dest_number t, t, rev past @ terms) | |
| 27 | handle TERM _ => find_first_numeral (t::past) terms) | |
| 28 |   | find_first_numeral past [] = raise TERM("find_first_numeral", []);
 | |
| 29 | ||
| 30 | val zero = mk_number 0; | |
| 31 | val mk_plus = HOLogic.mk_binop @{const_name HOL.plus};
 | |
| 32 | ||
| 33 | (*Thus mk_sum[t] yields t+0; longer sums don't have a trailing zero*) | |
| 34 | fun mk_sum [] = zero | |
| 35 | | mk_sum [t,u] = mk_plus (t, u) | |
| 36 | | mk_sum (t :: ts) = mk_plus (t, mk_sum ts); | |
| 37 | ||
| 38 | (*this version ALWAYS includes a trailing zero*) | |
| 39 | fun long_mk_sum [] = HOLogic.zero | |
| 40 | | long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts); | |
| 41 | ||
| 42 | val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
 | |
| 43 | ||
| 44 | ||
| 45 | (** Other simproc items **) | |
| 46 | ||
| 47 | val trans_tac = Int_Numeral_Simprocs.trans_tac; | |
| 48 | ||
| 49 | val bin_simps = | |
| 23471 | 50 |      [@{thm nat_numeral_0_eq_0} RS sym, @{thm nat_numeral_1_eq_1} RS sym,
 | 
| 51 |       @{thm add_nat_number_of}, @{thm nat_number_of_add_left}, 
 | |
| 52 |       @{thm diff_nat_number_of}, @{thm le_number_of_eq_not_less},
 | |
| 53 |       @{thm mult_nat_number_of}, @{thm nat_number_of_mult_left}, 
 | |
| 54 |       @{thm less_nat_number_of}, 
 | |
| 55 |       @{thm Let_number_of}, @{thm nat_number_of}] @
 | |
| 25481 | 56 |      @{thms arith_simps} @ @{thms rel_simps};
 | 
| 23164 | 57 | |
| 58 | fun prep_simproc (name, pats, proc) = | |
| 59 | Simplifier.simproc (the_context ()) name pats proc; | |
| 60 | ||
| 61 | ||
| 62 | (*** CancelNumerals simprocs ***) | |
| 63 | ||
| 64 | val one = mk_number 1; | |
| 65 | val mk_times = HOLogic.mk_binop @{const_name HOL.times};
 | |
| 66 | ||
| 67 | fun mk_prod [] = one | |
| 68 | | mk_prod [t] = t | |
| 69 | | mk_prod (t :: ts) = if t = one then mk_prod ts | |
| 70 | else mk_times (t, mk_prod ts); | |
| 71 | ||
| 72 | val dest_times = HOLogic.dest_bin @{const_name HOL.times} HOLogic.natT;
 | |
| 73 | ||
| 74 | fun dest_prod t = | |
| 75 | let val (t,u) = dest_times t | |
| 76 | in dest_prod t @ dest_prod u end | |
| 77 | handle TERM _ => [t]; | |
| 78 | ||
| 79 | (*DON'T do the obvious simplifications; that would create special cases*) | |
| 80 | fun mk_coeff (k,t) = mk_times (mk_number k, t); | |
| 81 | ||
| 82 | (*Express t as a product of (possibly) a numeral with other factors, sorted*) | |
| 83 | fun dest_coeff t = | |
| 84 | let val ts = sort Term.term_ord (dest_prod t) | |
| 85 | val (n, _, ts') = find_first_numeral [] ts | |
| 86 | handle TERM _ => (1, one, ts) | |
| 87 | in (n, mk_prod ts') end; | |
| 88 | ||
| 89 | (*Find first coefficient-term THAT MATCHES u*) | |
| 90 | fun find_first_coeff past u [] = raise TERM("find_first_coeff", [])
 | |
| 91 | | find_first_coeff past u (t::terms) = | |
| 92 | let val (n,u') = dest_coeff t | |
| 93 | in if u aconv u' then (n, rev past @ terms) | |
| 94 | else find_first_coeff (t::past) u terms | |
| 95 | end | |
| 96 | handle TERM _ => find_first_coeff (t::past) u terms; | |
| 97 | ||
| 98 | ||
| 99 | (*Split up a sum into the list of its constituent terms, on the way removing any | |
| 100 | Sucs and counting them.*) | |
| 101 | fun dest_Suc_sum (Const ("Suc", _) $ t, (k,ts)) = dest_Suc_sum (t, (k+1,ts))
 | |
| 102 | | dest_Suc_sum (t, (k,ts)) = | |
| 103 | let val (t1,t2) = dest_plus t | |
| 104 | in dest_Suc_sum (t1, dest_Suc_sum (t2, (k,ts))) end | |
| 105 | handle TERM _ => (k, t::ts); | |
| 106 | ||
| 107 | (*Code for testing whether numerals are already used in the goal*) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: 
25481diff
changeset | 108 | fun is_numeral (Const(@{const_name Int.number_of}, _) $ w) = true
 | 
| 23164 | 109 | | is_numeral _ = false; | 
| 110 | ||
| 111 | fun prod_has_numeral t = exists is_numeral (dest_prod t); | |
| 112 | ||
| 113 | (*The Sucs found in the term are converted to a binary numeral. If relaxed is false, | |
| 114 | an exception is raised unless the original expression contains at least one | |
| 115 | numeral in a coefficient position. This prevents nat_combine_numerals from | |
| 116 | introducing numerals to goals.*) | |
| 117 | fun dest_Sucs_sum relaxed t = | |
| 118 | let val (k,ts) = dest_Suc_sum (t,(0,[])) | |
| 119 | in | |
| 120 | if relaxed orelse exists prod_has_numeral ts then | |
| 121 | if k=0 then ts | |
| 24630 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24431diff
changeset | 122 | else mk_number k :: ts | 
| 23164 | 123 |      else raise TERM("Nat_Numeral_Simprocs.dest_Sucs_sum", [t])
 | 
| 124 | end; | |
| 125 | ||
| 126 | ||
| 127 | (*Simplify 1*n and n*1 to n*) | |
| 23881 | 128 | val add_0s  = map rename_numerals [@{thm add_0}, @{thm add_0_right}];
 | 
| 23164 | 129 | val mult_1s = map rename_numerals [@{thm nat_mult_1}, @{thm nat_mult_1_right}];
 | 
| 130 | ||
| 131 | (*Final simplification: cancel + and *; replace Numeral0 by 0 and Numeral1 by 1*) | |
| 132 | ||
| 133 | (*And these help the simproc return False when appropriate, which helps | |
| 134 | the arith prover.*) | |
| 23881 | 135 | val contra_rules = [@{thm add_Suc}, @{thm add_Suc_right}, @{thm Zero_not_Suc},
 | 
| 136 |   @{thm Suc_not_Zero}, @{thm le_0_eq}];
 | |
| 23164 | 137 | |
| 138 | val simplify_meta_eq = | |
| 139 | Int_Numeral_Simprocs.simplify_meta_eq | |
| 23471 | 140 |         ([@{thm nat_numeral_0_eq_0}, @{thm numeral_1_eq_Suc_0}, @{thm add_0}, @{thm add_0_right},
 | 
| 141 |           @{thm mult_0}, @{thm mult_0_right}, @{thm mult_1}, @{thm mult_1_right}] @ contra_rules);
 | |
| 23164 | 142 | |
| 143 | ||
| 144 | (*Like HOL_ss but with an ordering that brings numerals to the front | |
| 145 | under AC-rewriting.*) | |
| 146 | val num_ss = Int_Numeral_Simprocs.num_ss; | |
| 147 | ||
| 148 | (*** Applying CancelNumeralsFun ***) | |
| 149 | ||
| 150 | structure CancelNumeralsCommon = | |
| 151 | struct | |
| 152 | val mk_sum = (fn T:typ => mk_sum) | |
| 153 | val dest_sum = dest_Sucs_sum true | |
| 154 | val mk_coeff = mk_coeff | |
| 155 | val dest_coeff = dest_coeff | |
| 156 | val find_first_coeff = find_first_coeff [] | |
| 157 | val trans_tac = fn _ => trans_tac | |
| 158 | ||
| 159 | val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ | |
| 23881 | 160 |     [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
 | 
| 161 |   val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | |
| 23164 | 162 | fun norm_tac ss = | 
| 163 | ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) | |
| 164 | THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) | |
| 165 | ||
| 166 | val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps; | |
| 167 | fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)); | |
| 168 | val simplify_meta_eq = simplify_meta_eq | |
| 169 | end; | |
| 170 | ||
| 171 | ||
| 172 | structure EqCancelNumerals = CancelNumeralsFun | |
| 173 | (open CancelNumeralsCommon | |
| 174 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 175 | val mk_bal = HOLogic.mk_eq | |
| 176 | val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT | |
| 23471 | 177 |   val bal_add1 = @{thm nat_eq_add_iff1} RS trans
 | 
| 178 |   val bal_add2 = @{thm nat_eq_add_iff2} RS trans
 | |
| 23164 | 179 | ); | 
| 180 | ||
| 181 | structure LessCancelNumerals = CancelNumeralsFun | |
| 182 | (open CancelNumeralsCommon | |
| 183 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 184 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
| 185 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | |
| 23471 | 186 |   val bal_add1 = @{thm nat_less_add_iff1} RS trans
 | 
| 187 |   val bal_add2 = @{thm nat_less_add_iff2} RS trans
 | |
| 23164 | 188 | ); | 
| 189 | ||
| 190 | structure LeCancelNumerals = CancelNumeralsFun | |
| 191 | (open CancelNumeralsCommon | |
| 192 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 193 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
| 194 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | |
| 23471 | 195 |   val bal_add1 = @{thm nat_le_add_iff1} RS trans
 | 
| 196 |   val bal_add2 = @{thm nat_le_add_iff2} RS trans
 | |
| 23164 | 197 | ); | 
| 198 | ||
| 199 | structure DiffCancelNumerals = CancelNumeralsFun | |
| 200 | (open CancelNumeralsCommon | |
| 201 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 202 |   val mk_bal   = HOLogic.mk_binop @{const_name HOL.minus}
 | |
| 203 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.minus} HOLogic.natT
 | |
| 23471 | 204 |   val bal_add1 = @{thm nat_diff_add_eq1} RS trans
 | 
| 205 |   val bal_add2 = @{thm nat_diff_add_eq2} RS trans
 | |
| 23164 | 206 | ); | 
| 207 | ||
| 208 | ||
| 209 | val cancel_numerals = | |
| 210 | map prep_simproc | |
| 211 |    [("nateq_cancel_numerals",
 | |
| 212 | ["(l::nat) + m = n", "(l::nat) = m + n", | |
| 213 | "(l::nat) * m = n", "(l::nat) = m * n", | |
| 214 | "Suc m = n", "m = Suc n"], | |
| 215 | K EqCancelNumerals.proc), | |
| 216 |     ("natless_cancel_numerals",
 | |
| 217 | ["(l::nat) + m < n", "(l::nat) < m + n", | |
| 218 | "(l::nat) * m < n", "(l::nat) < m * n", | |
| 219 | "Suc m < n", "m < Suc n"], | |
| 220 | K LessCancelNumerals.proc), | |
| 221 |     ("natle_cancel_numerals",
 | |
| 222 | ["(l::nat) + m <= n", "(l::nat) <= m + n", | |
| 223 | "(l::nat) * m <= n", "(l::nat) <= m * n", | |
| 224 | "Suc m <= n", "m <= Suc n"], | |
| 225 | K LeCancelNumerals.proc), | |
| 226 |     ("natdiff_cancel_numerals",
 | |
| 227 | ["((l::nat) + m) - n", "(l::nat) - (m + n)", | |
| 228 | "(l::nat) * m - n", "(l::nat) - m * n", | |
| 229 | "Suc m - n", "m - Suc n"], | |
| 230 | K DiffCancelNumerals.proc)]; | |
| 231 | ||
| 232 | ||
| 233 | (*** Applying CombineNumeralsFun ***) | |
| 234 | ||
| 235 | structure CombineNumeralsData = | |
| 236 | struct | |
| 24630 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24431diff
changeset | 237 | type coeff = int | 
| 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24431diff
changeset | 238 | val iszero = (fn x => x = 0) | 
| 
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
 wenzelm parents: 
24431diff
changeset | 239 | val add = op + | 
| 23164 | 240 | val mk_sum = (fn T:typ => long_mk_sum) (*to work for 2*x + 3*x *) | 
| 241 | val dest_sum = dest_Sucs_sum false | |
| 242 | val mk_coeff = mk_coeff | |
| 243 | val dest_coeff = dest_coeff | |
| 23471 | 244 |   val left_distrib      = @{thm left_add_mult_distrib} RS trans
 | 
| 23164 | 245 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv_nohyps | 
| 246 | val trans_tac = fn _ => trans_tac | |
| 247 | ||
| 23881 | 248 |   val norm_ss1 = num_ss addsimps numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1}] @ @{thms add_ac}
 | 
| 249 |   val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | |
| 23164 | 250 | fun norm_tac ss = | 
| 251 | ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) | |
| 252 | THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) | |
| 253 | ||
| 254 | val numeral_simp_ss = HOL_ss addsimps add_0s @ bin_simps; | |
| 255 | fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) | |
| 256 | val simplify_meta_eq = simplify_meta_eq | |
| 257 | end; | |
| 258 | ||
| 259 | structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData); | |
| 260 | ||
| 261 | val combine_numerals = | |
| 262 |   prep_simproc ("nat_combine_numerals", ["(i::nat) + j", "Suc (i + j)"], K CombineNumerals.proc);
 | |
| 263 | ||
| 264 | ||
| 265 | (*** Applying CancelNumeralFactorFun ***) | |
| 266 | ||
| 267 | structure CancelNumeralFactorCommon = | |
| 268 | struct | |
| 269 | val mk_coeff = mk_coeff | |
| 270 | val dest_coeff = dest_coeff | |
| 271 | val trans_tac = fn _ => trans_tac | |
| 272 | ||
| 273 | val norm_ss1 = num_ss addsimps | |
| 23881 | 274 |     numeral_syms @ add_0s @ mult_1s @ [@{thm Suc_eq_add_numeral_1_left}] @ @{thms add_ac}
 | 
| 275 |   val norm_ss2 = num_ss addsimps bin_simps @ @{thms add_ac} @ @{thms mult_ac}
 | |
| 23164 | 276 | fun norm_tac ss = | 
| 277 | ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss1)) | |
| 278 | THEN ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss2)) | |
| 279 | ||
| 280 | val numeral_simp_ss = HOL_ss addsimps bin_simps | |
| 281 | fun numeral_simp_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) | |
| 282 | val simplify_meta_eq = simplify_meta_eq | |
| 283 | end | |
| 284 | ||
| 285 | structure DivCancelNumeralFactor = CancelNumeralFactorFun | |
| 286 | (open CancelNumeralFactorCommon | |
| 287 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 288 |   val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | |
| 289 |   val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
 | |
| 23471 | 290 |   val cancel = @{thm nat_mult_div_cancel1} RS trans
 | 
| 23164 | 291 | val neg_exchanges = false | 
| 292 | ) | |
| 293 | ||
| 23969 | 294 | structure DvdCancelNumeralFactor = CancelNumeralFactorFun | 
| 295 | (open CancelNumeralFactorCommon | |
| 296 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
25919diff
changeset | 297 |   val mk_bal   = HOLogic.mk_binrel @{const_name Ring_and_Field.dvd}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
25919diff
changeset | 298 |   val dest_bal = HOLogic.dest_bin @{const_name Ring_and_Field.dvd} HOLogic.natT
 | 
| 23969 | 299 |   val cancel = @{thm nat_mult_dvd_cancel1} RS trans
 | 
| 300 | val neg_exchanges = false | |
| 301 | ) | |
| 302 | ||
| 23164 | 303 | structure EqCancelNumeralFactor = CancelNumeralFactorFun | 
| 304 | (open CancelNumeralFactorCommon | |
| 305 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 306 | val mk_bal = HOLogic.mk_eq | |
| 307 | val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT | |
| 23471 | 308 |   val cancel = @{thm nat_mult_eq_cancel1} RS trans
 | 
| 23164 | 309 | val neg_exchanges = false | 
| 310 | ) | |
| 311 | ||
| 312 | structure LessCancelNumeralFactor = CancelNumeralFactorFun | |
| 313 | (open CancelNumeralFactorCommon | |
| 314 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 315 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
| 316 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | |
| 23471 | 317 |   val cancel = @{thm nat_mult_less_cancel1} RS trans
 | 
| 23164 | 318 | val neg_exchanges = true | 
| 319 | ) | |
| 320 | ||
| 321 | structure LeCancelNumeralFactor = CancelNumeralFactorFun | |
| 322 | (open CancelNumeralFactorCommon | |
| 323 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 324 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
| 325 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | |
| 23471 | 326 |   val cancel = @{thm nat_mult_le_cancel1} RS trans
 | 
| 23164 | 327 | val neg_exchanges = true | 
| 328 | ) | |
| 329 | ||
| 330 | val cancel_numeral_factors = | |
| 331 | map prep_simproc | |
| 332 |    [("nateq_cancel_numeral_factors",
 | |
| 333 | ["(l::nat) * m = n", "(l::nat) = m * n"], | |
| 334 | K EqCancelNumeralFactor.proc), | |
| 335 |     ("natless_cancel_numeral_factors",
 | |
| 336 | ["(l::nat) * m < n", "(l::nat) < m * n"], | |
| 337 | K LessCancelNumeralFactor.proc), | |
| 338 |     ("natle_cancel_numeral_factors",
 | |
| 339 | ["(l::nat) * m <= n", "(l::nat) <= m * n"], | |
| 340 | K LeCancelNumeralFactor.proc), | |
| 341 |     ("natdiv_cancel_numeral_factors",
 | |
| 342 | ["((l::nat) * m) div n", "(l::nat) div (m * n)"], | |
| 23969 | 343 | K DivCancelNumeralFactor.proc), | 
| 344 |     ("natdvd_cancel_numeral_factors",
 | |
| 345 | ["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"], | |
| 346 | K DvdCancelNumeralFactor.proc)]; | |
| 23164 | 347 | |
| 348 | ||
| 349 | ||
| 350 | (*** Applying ExtractCommonTermFun ***) | |
| 351 | ||
| 352 | (*this version ALWAYS includes a trailing one*) | |
| 353 | fun long_mk_prod [] = one | |
| 354 | | long_mk_prod (t :: ts) = mk_times (t, mk_prod ts); | |
| 355 | ||
| 356 | (*Find first term that matches u*) | |
| 357 | fun find_first_t past u []         = raise TERM("find_first_t", [])
 | |
| 358 | | find_first_t past u (t::terms) = | |
| 359 | if u aconv t then (rev past @ terms) | |
| 360 | else find_first_t (t::past) u terms | |
| 361 | handle TERM _ => find_first_t (t::past) u terms; | |
| 362 | ||
| 363 | (** Final simplification for the CancelFactor simprocs **) | |
| 364 | val simplify_one = Int_Numeral_Simprocs.simplify_meta_eq | |
| 365 |   [@{thm mult_1_left}, @{thm mult_1_right}, @{thm div_1}, @{thm numeral_1_eq_Suc_0}];
 | |
| 366 | ||
| 367 | fun cancel_simplify_meta_eq cancel_th ss th = | |
| 368 | simplify_one ss (([th, cancel_th]) MRS trans); | |
| 369 | ||
| 370 | structure CancelFactorCommon = | |
| 371 | struct | |
| 372 | val mk_sum = (fn T:typ => long_mk_prod) | |
| 373 | val dest_sum = dest_prod | |
| 374 | val mk_coeff = mk_coeff | |
| 375 | val dest_coeff = dest_coeff | |
| 376 | val find_first = find_first_t [] | |
| 377 | val trans_tac = fn _ => trans_tac | |
| 23881 | 378 |   val norm_ss = HOL_ss addsimps mult_1s @ @{thms mult_ac}
 | 
| 23164 | 379 | fun norm_tac ss = ALLGOALS (simp_tac (Simplifier.inherit_context ss norm_ss)) | 
| 380 | end; | |
| 381 | ||
| 382 | structure EqCancelFactor = ExtractCommonTermFun | |
| 383 | (open CancelFactorCommon | |
| 384 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 385 | val mk_bal = HOLogic.mk_eq | |
| 386 | val dest_bal = HOLogic.dest_bin "op =" HOLogic.natT | |
| 23471 | 387 |   val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_eq_cancel_disj}
 | 
| 23164 | 388 | ); | 
| 389 | ||
| 390 | structure LessCancelFactor = ExtractCommonTermFun | |
| 391 | (open CancelFactorCommon | |
| 392 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 393 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less}
 | 
| 394 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less} HOLogic.natT
 | |
| 23471 | 395 |   val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_less_cancel_disj}
 | 
| 23164 | 396 | ); | 
| 397 | ||
| 398 | structure LeCancelFactor = ExtractCommonTermFun | |
| 399 | (open CancelFactorCommon | |
| 400 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 23881 | 401 |   val mk_bal   = HOLogic.mk_binrel @{const_name HOL.less_eq}
 | 
| 402 |   val dest_bal = HOLogic.dest_bin @{const_name HOL.less_eq} HOLogic.natT
 | |
| 23471 | 403 |   val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_le_cancel_disj}
 | 
| 23164 | 404 | ); | 
| 405 | ||
| 406 | structure DivideCancelFactor = ExtractCommonTermFun | |
| 407 | (open CancelFactorCommon | |
| 408 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 409 |   val mk_bal   = HOLogic.mk_binop @{const_name Divides.div}
 | |
| 410 |   val dest_bal = HOLogic.dest_bin @{const_name Divides.div} HOLogic.natT
 | |
| 23471 | 411 |   val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_div_cancel_disj}
 | 
| 23164 | 412 | ); | 
| 413 | ||
| 23969 | 414 | structure DvdCancelFactor = ExtractCommonTermFun | 
| 415 | (open CancelFactorCommon | |
| 416 | val prove_conv = Int_Numeral_Base_Simprocs.prove_conv | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
25919diff
changeset | 417 |   val mk_bal   = HOLogic.mk_binrel @{const_name Ring_and_Field.dvd}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
25919diff
changeset | 418 |   val dest_bal = HOLogic.dest_bin @{const_name Ring_and_Field.dvd} HOLogic.natT
 | 
| 23969 | 419 |   val simplify_meta_eq  = cancel_simplify_meta_eq @{thm nat_mult_dvd_cancel_disj}
 | 
| 420 | ); | |
| 421 | ||
| 23164 | 422 | val cancel_factor = | 
| 423 | map prep_simproc | |
| 424 |    [("nat_eq_cancel_factor",
 | |
| 425 | ["(l::nat) * m = n", "(l::nat) = m * n"], | |
| 426 | K EqCancelFactor.proc), | |
| 427 |     ("nat_less_cancel_factor",
 | |
| 428 | ["(l::nat) * m < n", "(l::nat) < m * n"], | |
| 429 | K LessCancelFactor.proc), | |
| 430 |     ("nat_le_cancel_factor",
 | |
| 431 | ["(l::nat) * m <= n", "(l::nat) <= m * n"], | |
| 432 | K LeCancelFactor.proc), | |
| 433 |     ("nat_divide_cancel_factor",
 | |
| 434 | ["((l::nat) * m) div n", "(l::nat) div (m * n)"], | |
| 23969 | 435 | K DivideCancelFactor.proc), | 
| 436 |     ("nat_dvd_cancel_factor",
 | |
| 437 | ["((l::nat) * m) dvd n", "(l::nat) dvd (m * n)"], | |
| 438 | K DvdCancelFactor.proc)]; | |
| 23164 | 439 | |
| 440 | end; | |
| 441 | ||
| 442 | ||
| 443 | Addsimprocs Nat_Numeral_Simprocs.cancel_numerals; | |
| 444 | Addsimprocs [Nat_Numeral_Simprocs.combine_numerals]; | |
| 445 | Addsimprocs Nat_Numeral_Simprocs.cancel_numeral_factors; | |
| 446 | Addsimprocs Nat_Numeral_Simprocs.cancel_factor; | |
| 447 | ||
| 448 | ||
| 449 | (*examples: | |
| 450 | print_depth 22; | |
| 451 | set timing; | |
| 452 | set trace_simp; | |
| 453 | fun test s = (Goal s; by (Simp_tac 1)); | |
| 454 | ||
| 455 | (*cancel_numerals*) | |
| 456 | test "l +( 2) + (2) + 2 + (l + 2) + (oo + 2) = (uu::nat)"; | |
| 457 | test "(2*length xs < 2*length xs + j)"; | |
| 458 | test "(2*length xs < length xs * 2 + j)"; | |
| 459 | test "2*u = (u::nat)"; | |
| 460 | test "2*u = Suc (u)"; | |
| 461 | test "(i + j + 12 + (k::nat)) - 15 = y"; | |
| 462 | test "(i + j + 12 + (k::nat)) - 5 = y"; | |
| 463 | test "Suc u - 2 = y"; | |
| 464 | test "Suc (Suc (Suc u)) - 2 = y"; | |
| 465 | test "(i + j + 2 + (k::nat)) - 1 = y"; | |
| 466 | test "(i + j + 1 + (k::nat)) - 2 = y"; | |
| 467 | ||
| 468 | test "(2*x + (u*v) + y) - v*3*u = (w::nat)"; | |
| 469 | test "(2*x*u*v + 5 + (u*v)*4 + y) - v*u*4 = (w::nat)"; | |
| 470 | test "(2*x*u*v + (u*v)*4 + y) - v*u = (w::nat)"; | |
| 471 | test "Suc (Suc (2*x*u*v + u*4 + y)) - u = w"; | |
| 472 | test "Suc ((u*v)*4) - v*3*u = w"; | |
| 473 | test "Suc (Suc ((u*v)*3)) - v*3*u = w"; | |
| 474 | ||
| 475 | test "(i + j + 12 + (k::nat)) = u + 15 + y"; | |
| 476 | test "(i + j + 32 + (k::nat)) - (u + 15 + y) = zz"; | |
| 477 | test "(i + j + 12 + (k::nat)) = u + 5 + y"; | |
| 478 | (*Suc*) | |
| 479 | test "(i + j + 12 + k) = Suc (u + y)"; | |
| 480 | test "Suc (Suc (Suc (Suc (Suc (u + y))))) <= ((i + j) + 41 + k)"; | |
| 481 | test "(i + j + 5 + k) < Suc (Suc (Suc (Suc (Suc (u + y)))))"; | |
| 482 | test "Suc (Suc (Suc (Suc (Suc (u + y))))) - 5 = v"; | |
| 483 | test "(i + j + 5 + k) = Suc (Suc (Suc (Suc (Suc (Suc (Suc (u + y)))))))"; | |
| 484 | test "2*y + 3*z + 2*u = Suc (u)"; | |
| 485 | test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = Suc (u)"; | |
| 486 | test "2*y + 3*z + 6*w + 2*y + 3*z + 2*u = 2*y' + 3*z' + 6*w' + 2*y' + 3*z' + u + (vv::nat)"; | |
| 487 | test "6 + 2*y + 3*z + 4*u = Suc (vv + 2*u + z)"; | |
| 488 | test "(2*n*m) < (3*(m*n)) + (u::nat)"; | |
| 489 | ||
| 490 | test "(Suc (Suc (Suc (Suc (Suc (Suc (case length (f c) of 0 => 0 | Suc k => k)))))) <= Suc 0)"; | |
| 491 | ||
| 492 | test "Suc (Suc (Suc (Suc (Suc (Suc (length l1 + length l2)))))) <= length l1"; | |
| 493 | ||
| 494 | test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length l3)))))) <= length (compT P E A ST mxr e))"; | |
| 495 | ||
| 496 | test "( (Suc (Suc (Suc (Suc (Suc (length (compT P E A ST mxr e) + length (compT P E (A Un \<A> e) ST mxr c))))))) <= length (compT P E A ST mxr e))"; | |
| 497 | ||
| 498 | ||
| 499 | (*negative numerals: FAIL*) | |
| 500 | test "(i + j + -23 + (k::nat)) < u + 15 + y"; | |
| 501 | test "(i + j + 3 + (k::nat)) < u + -15 + y"; | |
| 502 | test "(i + j + -12 + (k::nat)) - 15 = y"; | |
| 503 | test "(i + j + 12 + (k::nat)) - -15 = y"; | |
| 504 | test "(i + j + -12 + (k::nat)) - -15 = y"; | |
| 505 | ||
| 506 | (*combine_numerals*) | |
| 507 | test "k + 3*k = (u::nat)"; | |
| 508 | test "Suc (i + 3) = u"; | |
| 509 | test "Suc (i + j + 3 + k) = u"; | |
| 510 | test "k + j + 3*k + j = (u::nat)"; | |
| 511 | test "Suc (j*i + i + k + 5 + 3*k + i*j*4) = (u::nat)"; | |
| 512 | test "(2*n*m) + (3*(m*n)) = (u::nat)"; | |
| 513 | (*negative numerals: FAIL*) | |
| 514 | test "Suc (i + j + -3 + k) = u"; | |
| 515 | ||
| 516 | (*cancel_numeral_factors*) | |
| 517 | test "9*x = 12 * (y::nat)"; | |
| 518 | test "(9*x) div (12 * (y::nat)) = z"; | |
| 519 | test "9*x < 12 * (y::nat)"; | |
| 520 | test "9*x <= 12 * (y::nat)"; | |
| 521 | ||
| 522 | (*cancel_factor*) | |
| 523 | test "x*k = k*(y::nat)"; | |
| 524 | test "k = k*(y::nat)"; | |
| 525 | test "a*(b*c) = (b::nat)"; | |
| 526 | test "a*(b*c) = d*(b::nat)*(x*a)"; | |
| 527 | ||
| 528 | test "x*k < k*(y::nat)"; | |
| 529 | test "k < k*(y::nat)"; | |
| 530 | test "a*(b*c) < (b::nat)"; | |
| 531 | test "a*(b*c) < d*(b::nat)*(x*a)"; | |
| 532 | ||
| 533 | test "x*k <= k*(y::nat)"; | |
| 534 | test "k <= k*(y::nat)"; | |
| 535 | test "a*(b*c) <= (b::nat)"; | |
| 536 | test "a*(b*c) <= d*(b::nat)*(x*a)"; | |
| 537 | ||
| 538 | test "(x*k) div (k*(y::nat)) = (uu::nat)"; | |
| 539 | test "(k) div (k*(y::nat)) = (uu::nat)"; | |
| 540 | test "(a*(b*c)) div ((b::nat)) = (uu::nat)"; | |
| 541 | test "(a*(b*c)) div (d*(b::nat)*(x*a)) = (uu::nat)"; | |
| 542 | *) | |
| 543 | ||
| 544 | ||
| 545 | (*** Prepare linear arithmetic for nat numerals ***) | |
| 546 | ||
| 547 | local | |
| 548 | ||
| 549 | (* reduce contradictory <= to False *) | |
| 24431 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 550 | val add_rules = @{thms ring_distribs} @
 | 
| 23471 | 551 |   [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1}, @{thm nat_0}, @{thm nat_1},
 | 
| 552 |    @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
 | |
| 553 |    @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
 | |
| 554 |    @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
 | |
| 555 |    @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
 | |
| 556 |    @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
 | |
| 557 |    @{thm mult_Suc}, @{thm mult_Suc_right},
 | |
| 24431 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 558 |    @{thm add_Suc}, @{thm add_Suc_right},
 | 
| 23471 | 559 |    @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
 | 
| 560 |    @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of}, @{thm if_True}, @{thm if_False}];
 | |
| 23164 | 561 | |
| 24431 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 562 | (* Products are multiplied out during proof (re)construction via | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 563 | ring_distribs. Ideally they should remain atomic. But that is | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 564 | currently not possible because 1 is replaced by Suc 0, and then some | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 565 | simprocs start to mess around with products like (n+1)*m. The rule | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 566 | 1 == Suc 0 is necessary for early parts of HOL where numerals and | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 567 | simprocs are not yet available. But then it is difficult to remove | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 568 | that rule later on, because it may find its way back in when theories | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 569 | (and thus lin-arith simpsets) are merged. Otherwise one could turn the | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 570 | rule around (Suc n = n+1) and see if that helps products being left | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 571 | alone. *) | 
| 
02d29baa42ff
tuned linear arith (once again) with ring_distribs
 nipkow parents: 
24093diff
changeset | 572 | |
| 23164 | 573 | val simprocs = Nat_Numeral_Simprocs.combine_numerals | 
| 574 | :: Nat_Numeral_Simprocs.cancel_numerals; | |
| 575 | ||
| 576 | in | |
| 577 | ||
| 578 | val nat_simprocs_setup = | |
| 24093 | 579 |   LinArith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, neqE, simpset} =>
 | 
| 23164 | 580 |    {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
 | 
| 581 | inj_thms = inj_thms, lessD = lessD, neqE = neqE, | |
| 582 | simpset = simpset addsimps add_rules | |
| 583 | addsimprocs simprocs}); | |
| 584 | ||
| 585 | end; |