| 244 |      1 | (*  Title: 	HOLCF/coind.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Franz Regensburger
 | 
|  |      4 |     Copyright   1993 Technische Universitaet Muenchen
 | 
|  |      5 | *)
 | 
|  |      6 | 
 | 
|  |      7 | open Coind;
 | 
|  |      8 | 
 | 
|  |      9 | (* ------------------------------------------------------------------------- *)
 | 
|  |     10 | (* expand fixed point properties                                             *)
 | 
|  |     11 | (* ------------------------------------------------------------------------- *)
 | 
|  |     12 | 
 | 
|  |     13 | 
 | 
|  |     14 | val nats_def2 = fix_prover Coind.thy nats_def 
 | 
|  |     15 | 	"nats = scons[dzero][smap[dsucc][nats]]";
 | 
|  |     16 | 
 | 
|  |     17 | val from_def2 = fix_prover Coind.thy from_def 
 | 
|  |     18 | 	"from = (LAM n.scons[n][from[dsucc[n]]])";
 | 
|  |     19 | 
 | 
|  |     20 | 
 | 
|  |     21 | 
 | 
|  |     22 | (* ------------------------------------------------------------------------- *)
 | 
|  |     23 | (* recursive  properties                                                     *)
 | 
|  |     24 | (* ------------------------------------------------------------------------- *)
 | 
|  |     25 | 
 | 
|  |     26 | 
 | 
|  |     27 | val from = prove_goal Coind.thy "from[n] = scons[n][from[dsucc[n]]]"
 | 
|  |     28 |  (fn prems =>
 | 
|  |     29 | 	[
 | 
|  |     30 | 	(rtac trans 1),
 | 
|  |     31 | 	(rtac (from_def2 RS ssubst) 1),
 | 
|  |     32 | 	(simp_tac HOLCF_ss  1),
 | 
|  |     33 | 	(rtac refl 1)
 | 
|  |     34 | 	]);
 | 
|  |     35 | 
 | 
|  |     36 | 
 | 
|  |     37 | val from1 = prove_goal Coind.thy "from[UU] = UU"
 | 
|  |     38 |  (fn prems =>
 | 
|  |     39 | 	[
 | 
|  |     40 | 	(rtac trans 1),
 | 
|  |     41 | 	(rtac (from RS ssubst) 1),
 | 
|  |     42 | 	(resolve_tac  stream_constrdef 1),
 | 
|  |     43 | 	(rtac refl 1)
 | 
|  |     44 | 	]);
 | 
|  |     45 | 
 | 
|  |     46 | val coind_rews = 
 | 
|  |     47 | 	[iterator1, iterator2, iterator3, smap1, smap2,from1];
 | 
|  |     48 | 
 | 
|  |     49 | 
 | 
|  |     50 | (* ------------------------------------------------------------------------- *)
 | 
|  |     51 | (* the example                                                               *)
 | 
|  |     52 | (* prove:        nats = from[dzero]                                          *)
 | 
|  |     53 | (* ------------------------------------------------------------------------- *)
 | 
|  |     54 | 
 | 
|  |     55 | 
 | 
|  |     56 | val coind_lemma1 = prove_goal Coind.thy "iterator[n][smap[dsucc]][nats] =\
 | 
|  |     57 | \		 scons[n][iterator[dsucc[n]][smap[dsucc]][nats]]"
 | 
|  |     58 |  (fn prems =>
 | 
|  |     59 | 	[
 | 
| 297 |     60 | 	(res_inst_tac [("s","n")] dnat_ind 1),
 | 
| 244 |     61 | 	(simp_tac (HOLCF_ss addsimps (coind_rews @ stream_rews)) 1),
 | 
|  |     62 | 	(simp_tac (HOLCF_ss addsimps (coind_rews @ stream_rews)) 1),
 | 
|  |     63 | 	(rtac trans 1),
 | 
|  |     64 | 	(rtac nats_def2 1),
 | 
|  |     65 | 	(simp_tac (HOLCF_ss addsimps (coind_rews @ dnat_rews)) 1),
 | 
|  |     66 | 	(rtac trans 1),
 | 
|  |     67 | 	(etac iterator3 1),
 | 
|  |     68 | 	(rtac trans 1),
 | 
|  |     69 | 	(asm_simp_tac HOLCF_ss 1),
 | 
|  |     70 | 	(rtac trans 1),
 | 
|  |     71 | 	(etac smap2 1),
 | 
|  |     72 | 	(rtac cfun_arg_cong 1),
 | 
|  |     73 | 	(asm_simp_tac (HOLCF_ss addsimps ([iterator3 RS sym] @ dnat_rews)) 1)
 | 
|  |     74 | 	]);
 | 
|  |     75 | 
 | 
|  |     76 | 
 | 
|  |     77 | val nats_eq_from = prove_goal Coind.thy "nats = from[dzero]"
 | 
|  |     78 |  (fn prems =>
 | 
|  |     79 | 	[
 | 
|  |     80 | 	(res_inst_tac [("R",
 | 
|  |     81 | "% p q.? n. p = iterator[n][smap[dsucc]][nats] & q = from[n]")] stream_coind 1),
 | 
|  |     82 | 	(res_inst_tac [("x","dzero")] exI 2),
 | 
|  |     83 | 	(asm_simp_tac (HOLCF_ss addsimps coind_rews) 2),
 | 
|  |     84 | 	(rewrite_goals_tac [stream_bisim_def]),
 | 
|  |     85 | 	(strip_tac 1),
 | 
|  |     86 | 	(etac exE 1),
 | 
|  |     87 | 	(res_inst_tac [("Q","n=UU")] classical2 1),
 | 
|  |     88 | 	(rtac disjI1 1),
 | 
|  |     89 | 	(asm_simp_tac (HOLCF_ss addsimps coind_rews) 1),
 | 
|  |     90 | 	(rtac disjI2 1),
 | 
|  |     91 | 	(etac conjE 1),
 | 
|  |     92 | 	(hyp_subst_tac 1),
 | 
|  |     93 | 	(hyp_subst_tac 1),
 | 
|  |     94 | 	(res_inst_tac [("x","n")] exI 1),
 | 
|  |     95 | 	(res_inst_tac [("x","iterator[dsucc[n]][smap[dsucc]][nats]")] exI 1),
 | 
|  |     96 | 	(res_inst_tac [("x","from[dsucc[n]]")] exI 1),
 | 
|  |     97 | 	(etac conjI 1),
 | 
|  |     98 | 	(rtac conjI 1),
 | 
|  |     99 | 	(rtac coind_lemma1 1),
 | 
|  |    100 | 	(rtac conjI 1),
 | 
|  |    101 | 	(rtac from 1),
 | 
|  |    102 | 	(res_inst_tac [("x","dsucc[n]")] exI 1),
 | 
|  |    103 | 	(fast_tac HOL_cs 1)
 | 
|  |    104 | 	]);
 | 
|  |    105 | 
 | 
|  |    106 | (* another proof using stream_coind_lemma2 *)
 | 
|  |    107 | 
 | 
|  |    108 | val nats_eq_from = prove_goal Coind.thy "nats = from[dzero]"
 | 
|  |    109 |  (fn prems =>
 | 
|  |    110 | 	[
 | 
|  |    111 | 	(res_inst_tac [("R","% p q.? n. p = \
 | 
|  |    112 | \	iterator[n][smap[dsucc]][nats] & q = from[n]")] stream_coind 1),
 | 
|  |    113 | 	(rtac stream_coind_lemma2 1),
 | 
|  |    114 | 	(strip_tac 1),
 | 
|  |    115 | 	(etac exE 1),
 | 
|  |    116 | 	(res_inst_tac [("Q","n=UU")] classical2 1),
 | 
|  |    117 | 	(asm_simp_tac (HOLCF_ss addsimps coind_rews) 1),
 | 
|  |    118 | 	(res_inst_tac [("x","UU::dnat")] exI 1),
 | 
|  |    119 | 	(simp_tac (HOLCF_ss addsimps coind_rews addsimps stream_rews) 1),
 | 
|  |    120 | 	(etac conjE 1),
 | 
|  |    121 | 	(hyp_subst_tac 1),
 | 
|  |    122 | 	(hyp_subst_tac 1),
 | 
|  |    123 | 	(rtac conjI 1),
 | 
|  |    124 | 	(rtac (coind_lemma1 RS ssubst) 1),
 | 
|  |    125 | 	(rtac (from RS ssubst) 1),
 | 
|  |    126 | 	(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1),
 | 
|  |    127 | 	(res_inst_tac [("x","dsucc[n]")] exI 1),
 | 
|  |    128 | 	(rtac conjI 1),
 | 
|  |    129 | 	(rtac trans 1),
 | 
|  |    130 | 	(rtac (coind_lemma1 RS ssubst) 1),
 | 
|  |    131 | 	(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1),
 | 
|  |    132 | 	(rtac refl 1),
 | 
|  |    133 | 	(rtac trans 1),
 | 
|  |    134 | 	(rtac (from RS ssubst) 1),
 | 
|  |    135 | 	(asm_simp_tac (HOLCF_ss addsimps stream_rews) 1),
 | 
|  |    136 | 	(rtac refl 1),
 | 
|  |    137 | 	(res_inst_tac [("x","dzero")] exI 1),
 | 
|  |    138 | 	(asm_simp_tac (HOLCF_ss addsimps coind_rews) 1)
 | 
|  |    139 | 	]);
 | 
|  |    140 | 
 |